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Abstract

Referring expression comprehension aims to locate the

object instance described by a natural language referring

expression in an image. This task is compositional and in-

herently requires visual reasoning on top of the relation-

ships among the objects in the image. Meanwhile, the vi-

sual reasoning process is guided by the linguistic structure

of the referring expression. However, existing approaches

treat the objects in isolation or only explore the first-order

relationships between objects without being aligned with

the potential complexity of the expression. Thus it is hard

for them to adapt to the grounding of complex referring

expressions. In this paper, we explore the problem of re-

ferring expression comprehension from the perspective of

language-driven visual reasoning, and propose a dynamic

graph attention network to perform multi-step reasoning by

modeling both the relationships among the objects in the

image and the linguistic structure of the expression. In par-

ticular, we construct a graph for the image with the nodes

and edges corresponding to the objects and their relation-

ships respectively, propose a differential analyzer to predict

a language-guided visual reasoning process, and perform

stepwise reasoning on top of the graph to update the com-

pound object representation at every node. Experimental

results demonstrate that the proposed method can not only

significantly surpass all existing state-of-the-art algorithms

across three common benchmark datasets, but also gener-

ate interpretable visual evidences for stepwisely locating

the objects referred to in complex language descriptions.

1. Introduction

A referring expression is a natural language description

of a particular object in an image. Referring expression
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Figure 1. Visual reasoning by Dynamic Graph Attention Network

for identifying compound objects. Given an expression and im-

age, the static attention module constructs the multi-modal relation

graph; the linguistic structure analyzer prescribes a visual reason-

ing process based on the expression; the dynamic graph attention

module performs visual reasoning on top of the graph by following

the prescribed visual reasoning process to identify the compound

objects step by step.

comprehension thus requires locating the object instance in

the image according to a given referring expression. It is

one of the core tasks in the field of artificial intelligence to

realize human-computer communication.

The core of referring expression comprehension lies in

joint understanding of high-level semantics of co-occurring

language and visual contents, which inherently involves

reasoning. For example, the grounding of the referring ex-

pression “the umbrella held by the person in the pink hat”

requires three-step reasoning (shown in Figure 1), first lo-

cating the pink hat in the image under the guidance of the

phrase “the pink hat”, next identifying the person who is

“in the pink hat”, and finally locating the umbrella which

is “held by” “the person in the pink hat”. However, almost

all the existing approaches for referring expression compre-

hension do not introduce reasoning or only support single-

step reasoning. Meanwhile, the models trained with those

approaches have poor interpretability. Among them, the

most classic work [13, 16, 21, 25] encodes an expression

with an LSTM model [5], extracts features of visual ob-

jects in the image using CNNs [24, 20], and adopts match-

ing loss functions to learn a common feature space for the

expression and the visual objects. There also exists work
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[31, 19, 26, 28], which involves extra pairwise context fea-

tures or multi-order context features to improve the under-

standing of the image. However, they generally treat the

learning process as a black box without explicit reasoning,

and the learned monolithic features do not have adequate

competitiveness when complex referring expressions are

given. Recently, single-step reasoning [7, 30] has been pro-

posed by decomposing the expression into different compo-

nents and matching each component with a corresponding

visual region via modular networks. The method in [33] is

the only one that exploits multi-step reasoning for referring

expression comprehension. Its stepwise reasoning is imple-

mented using an LSTM model, which recurrently generates

attended visual features while feeding the combination of

word embedding and the attended visual features back to

the LSTM. However, its stepwise reasoning does not con-

sider the linguistic structure of the expression, and it does

not explore the relationships among objects in the image.

To overcome the aforementioned difficulties, we propose

a Dynamic Graph Attention Network (DGA) to achieve a

high-level understanding of the expression and the image,

and enable the multi-step reasoning of the interactions be-

tween the expression and the image. The core ideas behind

the proposed DGA come from three aspects, which include

expression decomposition based on linguistic structure, ob-

ject relationships modeling, and multi-step reasoning for

identifying compound objects from relations. First, parsing

the language structure of the expression is critical because

it directly provides the visual reasoning steps for finding

the referent. However, it is hard to accurately obtain the

linguistic structure of a referring expression as such expres-

sions are usually complex and flexible. Therefore, we resort

to a differential analyzer module to predict constituent ex-

pressions of the input expression step by step to capture the

linguistic structure, and the input expression is represented

as a sequence of constituent expressions. Second, it is nec-

essary to take into consideration the relationships among

the objects in the image because unambiguous referring ex-

pressions normally not only describe the attributes of the

referent itself, but also its relationships to other objects in

the image [31, 7, 28]. Therefore, the proposed DGA con-

structs a directed graph over the objects in the image. The

nodes and edges of the graph correspond to the objects and

relationships among the objects respectively. Last but not

the least, the DGA performs reasoning over the graph un-

der the guidance of the constituent expressions in a step-

wise manner to capture higher-order relationships among

the objects and update the compound objects corresponding

to each node through graph propagation.

In summary, this paper has the following contributions:

• It is the first piece of work that explores the problem of

referring expression comprehension from the perspec-

tive of language-driven visual reasoning in real-world

images and expressions. A differential analyzer is pro-

posed to predict a multi-step language-guided visual

reasoning process.

• A dynamic graph attention network is proposed to per-

form multi-step visual reasoning on top of a multi-

modal relation graph and identify compound objects

by following the predicted reasoning process, which is

specified as a sequence of constituent expressions.

• Experimental results show that the proposed method

can not only significantly surpass all existing state-

of-the-art algorithms, but also generate visualizable

and interpretable results, showing visual evidences for

stepwise locating the objects referred to in complex

language descriptions.

2. Related Work

2.1. Referring Expression Comprehension

Referring expression comprehension is to locate the ob-

ject in an image given an input expression. To solve this

language-vision multi-modal challenge, it is necessary to

learn the correlations between those two modals. Some

previous work [16, 21, 25] independently encodes the in-

puts in the two modals and learns a common feature space

for them. To learn the common feature space, they propose

different matching loss functions to optimize, e.g., softmax

loss [16, 21] and triplet loss [25]. Another work [18, 31, 19]

learns to maximize the likelihood of the expression given

the referent and the image, and the work inputs the fusion

of visual object feature, visual context feature (e.g., entire

image CNN feature [18], the visual difference between the

objects belonging to the same category in the image [31]

and context region CNN features [19]), object location fea-

ture and the word embedding to an LSTM to parameterize

the distribution. Different from the previous work, recent

work [33, 4] adopts co-attention mechanisms to build up

the interactions between the expression and the objects in

the image.

Those approaches ignore the relationships among ob-

jects in the image and the linguistic structure in the expres-

sion, which is the key to referring expression comprehen-

sion. For an image, they represent the image as a set of in-

dependent visual objects [16, 21, 25, 13, 18] or compound

objects only including direct relationship [19, 31]. For an

expression, they encode the expression sequentially and ig-

nore the dependencies in the expression. In order to im-

prove the comprehension, some work [7, 30] designs fixed

templates to softly decompose the expression into different

semantic components via self-attention, and they compute

the language-vision matching scores for each pair of the

component and visual region. However, current work is not

applicable for expressions that do not conform to the fixed

templates. In addition, they ignore the relationships among
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Figure 2. The overall architecture of the Dynamic Graph Attention Network (DGA) for referring expression comprehension. First, the

DGA builds a graph over the objects in the image, where the nodes and edges correspond to the objects and relationships respectively, and

then fuses the language representation of the expression into the graph; Second, the analyzer learns the language guidance for reasoning

by exploring the linguistic structure of the expression. Next, the DGA performs step-wise dynamic reasoning on top of the graph under

the guidance of the predicted visual reasoning process which is a sequence of constituent expressions. At each step, the DGA highlights

the nodes and edges in the graph by attending the constituent expression over the nodes and edges, and identifies the compound objects for

the highlighted nodes by considering their relationships with the compound objects connected by the highlighted edges. Finally, the DGA

computes the matching scores between the compound objects and the referring expression. Better view in color, and the different colors

represent different steps.

the visual objects. Recently, [14] explores the visual rea-

soning for referring expression comprehension in synthetic

domain. Different with them, we focus on real-world im-

ages and expressions, but do not resort to the guidance of

language parsing (language programs[14]) ground-truth.

To overcome the limitations above, we propose a method

to learn to encode the dependencies in the expression and

image, and build the interactions between them. We take

the linguistic structure into consideration to understand the

expression and construct a graph over the visual objects to

model the image. And then, their interactions are built up

by attention mechanisms.

2.2. Interpretable Reasoning

Visual reasoning has drawn much attention because it is

essential in the development of Artificial Intelligence. For

fulfilling the task of the visual reasoning, the models need to

learn reasoning abilities and improve their interpretabilities

for the decision rules. There are some existing methods for

achieving those requirements. For one-step relational rea-

soning, the relation networks [22] model pairwise relation-

ships between objects directly. For single-step or multi-step

reasoning, some work [29, 27, 15, 8] explains the reasoning

steps by generating updated attention distribution on the im-

age for each step using the attention mechanisms. The other

work [1, 9, 6, 3] decomposes the reasoning procedure into

a sequence of sub-tasks and learns different modular net-

works to deal with each sub-task.

There are also some methods on referring expression

comprehension which attempt to introduce interpretable

reasoning. The modular networks are used to improve the

interpretabilities of models on referring expression compre-

hension [7, 30]. [7] decomposes the expression into subject-

relationship-object triplets and aligns the textual representa-

tions with image regions using localization module or rela-

tionship module; however, referring expressions have much

richer forms than this fixed subject-relationship-object tem-

plate. MattNet [30] decomposes the expressions into three

phrases which are corresponding to the subject, location and

relationship modules respectively; however, it cannot pro-

cess multi-step reasoning. The other work [33] enables rea-

soning as a step-wise attention process following the step-

wise representation of the expression; however, it treats the

expression as the sequence of words, which ignores the lin-

guistic structure of the expression. Different from existing

work on referring expression comprehension, we adopt a

differential analyzer module to dynamically decompose the

expression into its constituent expressions step by step to

maintain its linguistic structure and to implement multi-step

and dynamic reasoning.

3. Dynamic Graph Attention Network

We introduce a type of network, Dynamic Graph Atten-

tion Network (DGA), to address interpretability and multi-

step reasoning in referring expression comprehension. Our

method performs reasoning by identifying a sequence of

compound objects corresponding to partial referring ex-

pressions. Our model consists of four main modules: (1)

A language-driven differential analyzer (shown inside the

green-dotted box in Figure 2), that predicts a visual rea-

soning process for a referring expression and decomposes

the expression into a sequence of constituent expressions,

each of which is specified as a soft distribution over the

words in the expression. (2) A static graph attention mod-
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ule (shown inside the blue-dotted box in Figure 2), that con-

structs a directed graph over the visual objects in the image

and further builds a multi-modal graph under the guidance

of the expression. (3) A dynamic graph attention module

(shown inside the orange-dotted box in Figure 2), which en-

ables reasoning on top of the multi-modal graph and identi-

fies compound objects corresponding to constituent expres-

sions. During each reasoning step, the current constituent

expression attends the nodes and edges in the graph, and up-

dates the expression-related features of visual objects. (4)

A matching module, which computes the matching score

between an expression and every compound object.

The overall framework of the proposed DGA is illus-

trated in Figure 2. In the rest of this section, we elaborate

all the modules in this network.

3.1. Language­Guided Visual Reasoning Process

Referring expressions are complex, and include rich de-

pendencies and nested linguistic structures, which further

guide the visual reasoning process. In theory, natural lan-

guage parsers can parse grammatical relations among the

words in an expression, but existing language parsers are

not practical for referring expression comprehension due to

highly unrestricted language [30]. Each complex expres-

sion is defined by its constituent expressions and the rules

used to combine them. We model an expression as a se-

quence of constituent expressions, and each constituent ex-

pression is specified as a soft distribution over the words in

the expression.

Given an expression Q = {ql}
L
l=1 with L words, a

DGA network predicts the constituent expression (i.e., a tu-

ple consisting of soft distribution over the words R(t) =

{r
(t)
l }

L
l=1 and Q) corresponding to the compound object

at each reasoning step t. The DGA’s computational pro-

cess for the distribution is similar to the control unit in

[8]. The DGA first learns an embedding for the words,

F = {f l}
L
l=1, and then encodes the sequence of word

embeddings into a vector sequence H = {hl}
L
l=1 using

a bi-directional LSTM [2], where hl is the concatenation

of the output from the forward and backward LSTMs at the

l-th word. Meanwhile, the overall expression is represented

with a feature vector q, which is the concatenation of the

last hidden states of both the forward and backward LSTMs.

Next, the DGA runs recurrently for T time steps, where T

is the number of reasoning steps. During each time step t,

the DGA transforms the feature vector q into a time-step

dependent vector q(t) through a learned linear transform,

and concatenates the vector q(t) with the output from the

previous time step y(t−1) to form a new vector u(t),

q(t) = W (t)q + b(t),

u(t) = [q(t);y(t−1)];
(1)

where W (t) and b(t) are trainable parameters at time step

t; y(t−1) is the output at the previous time step t − 1; u(t)

includes the information at previous time steps and the over-

all information of the expression, and the trainable parame-

ters y(0) is randomly initialized at the beginning of training.

Then, the DAG computes the similarity between u(t) and

the encoded words H to predict the relevance of each word

in visual reasoning during the current time step. The soft

distribution over the words at time step t, R(t) = {r
(t)
l }

L
l=1,

is calculated as follows:

s(t) = relu(W uu
(t) + bu),

a
(t)
l = W s2[tanh(W s0s

(t) +W s1hl)],

r
(t)
l =

exp(a
(t)
l )

∑L

l=1 exp(a
(t)
l )

,

(2)

where W u, bu, W s0, W s1 and W s2 are trainable parame-

ters, and they are shared across different time steps. Finally,

the output y(t) at time step t is defined as follows:

y(t) =

L∑

l=1

r
(t)
l hl. (3)

y(t) is part of the input at the next time step t+ 1.

Once we have run this language-guided visual reasoning

process for T steps, the sequence of soft distribution over

the words, {R(t)}Tt=1, can be obtained. The soft constituent

expression (R(t), Q) provides guidance to identify the com-

pound object for time step t.

3.2. Static Graph Attention

The DGA first constructs a directed graph GI over the

visual objects in the image. The nodes of the graph cor-

respond to the visual objects, and the edges correspond to

the relationships between objects. Next, the DGA attends

the words in the expression over the nodes and edges of the

graph GI , which builds the connection between the expres-

sion and the image, and then sets up a multi-modal graph

GM . GI models the dependencies among objects in the im-

age while GM enhances GI by representing the interaction

between the expression and the image.

3.2.1 Graph construction

Given an image I with K object proposals O = {ok}
K
k=1

(bounding boxes), the DGA builds a directed graph GI =
(V,E,XI), where V = {vk}

K
k=1 is the set of nodes and

vk corresponds to object ok; E = {eij}
K
i,j=1 is the set of

edges and eij corresponds to the relationship between oi
and oj ; XI = {xI

k}
K
k=1 is a set of features, and xI

k is

the concatenation of ok’s visual feature xo
k and ok’s spatial

feature pk (xI
k = [xo

k;pk]). In particular, xo
k is extracted

from a pretrained CNN model [24, 20], and spatial feature

pk is defined as pk = W p[x0k, x1k, wk, hk, wkhk], where
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(x0k, x1k) are the normalized coordinates of the center of

object ok, wk and hk are the normalized width and height,

and W p is a trainable parameter.

Similar to [28], we explore the relationship between each

pair of object proposals according to their size and loca-

tions. For any pair of objects oi and oj , edge eij is defined

as follows. We compute the relative distance dij , relative

angle θij ∈ [0, 360) (i.e., the angle between the horizontal

axis and vector (x0i − x0j , x1i − x1j)), and Intersection

over Union mij between them. If oi includes oj , eij = 1,

which means “inside”; if oi is covered by oj , eij = 2, which

means “cover”; if none of the above two cases is true and

mij is larger than 0.5, eij = 3, which means “overlap”; oth-

erwise, when the ratio between dij and the diagonal length

of the image is larger than 0.5, eij = 0, which means “no re-

lationship”; In the reset of the cases, eij = 4 + ⌊
θij+22.5

45 ⌋.
eij = [4, 5, ...11] means “right”, “top right”, “top”, “top

left”, “left”, “bottom left”, “bottom”, and “bottom right”,

respectively. In summary, eij = 0 means no edge between

nodes vi and vj , and the range of eij is from 1 to Ne = 11.

3.2.2 Static Attention

The multi-modal graph GM is defined as GM =
(V,E,XM ), where V and E are as same as the nodes and

edges of graph GI respectively, while the features of nodes,

XM , are computed under the guidance of the expression.

Here, we use the word embedding F = {f l}
L
l=1 mentioned

in Section 3.1 to represent the expression.

Words in a referring expression can usually be classified

into two types (i.e., entity and relation). We compute the

weight of each type, zl = [z0l, z1l], for the l-th word repre-

sented as ql as follows,

z0l = sigmoid(W z1(W z0f l + bz0) + bz1),

z1l = 1− z0l,
(4)

where W z0, W z1, bz0 and bz1 are trainable parameters; z0l
and z1l are the entity weight and relation weight of word ql
respectively.

Next, we represent the interactions between graph

GIand the expression by attending the expression over the

nodes and edges of the graph. On the basis of the word em-

bedding, F = {f l}
L
l=1, and the entity weights of words,

{z0l}
L
l=1, the weighted normalized attention distribution

over the nodes of graph GI is defined as follows.

ak,l = W α2[tanh(W α1x
I
k +W α0f l)],

αk,l = z0l
exp(ak,l)∑K

k=1 exp(ak,l)
,

(5)

where W α0, W α1 and W α2 are trainable parameters. αk,l

is the weighted normalized attention, indicating the prob-

ability of the l-th word in the expression referring to node

vk. Thus, the language representation ck at node vk is com-

puted by aggregating all attention weighted word feature

vectors,

ck =

L∑

l=1

αk,lf l. (6)

Likewise, we compute a normalized distribution of

words over the edges of graph GI . Each edge has its own

relation type (i.e., 1, ..., 11 as described in Section 3.2.1),

and the weights for edges are formulated as the weights for

edges’ types.

βl = z1lsoftmax(W β1σ(W β0f l + bβ0) + bβ1), (7)

where W β0, W β1, bβ0 and bβ1 are trainable parameters;

σ is the activation function; the softmax function is defined

over the Ne = 11 types; βn,l is the n-th element of βl,

which is the weighted probability of the l-th word referring

to edge type n ∈ 1, 2, ..., Ne.

Then, we compute the features for the nodes in graph

GM , XM . The feature at node vk, xM
k , is a combination of

the node feature xI
k of graph GI and the language represen-

tation ck,

xM
k = Wm[xI

k; ck] + bm, (8)

where the Wm and bm are trainable parameters.

3.3. Dynamic Graph Attention

The DGA performs multi-step reasoning on top of the

multi-modal graph GM under the guidance of the predicted

visual reasoning process {R(t)}Tt=1 generated from the re-

ferring expression (Section 3.1). The DGA’s actual reason-

ing steps takes into account the relationships among the ob-

jects in the image as well as the dependencies in the ex-

pression. Such reasoning steps start from the initial fea-

tures XM at the nodes V of graph GM , and these initial

features represent individual objects corresponding to the

nodes. During the actual reasoning process, the DGA grad-

ually updates the representations of compound objects ac-

cording to the soft distributions ({R(t)}Tt=1), the structure

of graph GM , individual visual objects as well as compound

objects in previous time steps.

At each time-step t, the DGA maintains a set of memo-

ries, M (t) = {m
(t)
k }

K
k=1, to save individual objects (t = 1)

or compound objects (t > 1) identified in time step t, and

m
(t)
k represents the individual object or compound object

corresponding to node vk; meanwhile, it maintains two sets

of gates, P (t) = {p
(t)
k }

K
k=1 and {ν

(t)
n }

Ne

n=1, to save the

weights of nodes and the weights of edges at the current

and all previous time steps. Specifically, p
(t)
k represents the

weight of node vk and ν
(t)
n represents the weight of edge

type n. Reasoning at time step t is guided by the constituent

expression (R(t) = {r
(t)
l }

L
l=1, Q = {ql}

L
l=1). By attend-

ing the constituent expression over the nodes and edges of
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graph GM , we can obtain the normalized weights of nodes

and edges for time step t. We compute such weights in

two steps. First, we compute the γ
(t)
k,l , that represents the

probability of the l-word referring to node vk, and δ
(t)
n,l, that

represents the probability of the l-th word referring to edge

type n, as weighted the distribution over words, R(t), over

the static attention weight, αk,l and βn,l, introduced in Sec-

tion 3.2.2,

γ
(t)
k,l = r

(t)
l αk,l, δ

(t)
n,l = r

(t)
l βn,l. (9)

Second, we compute λ
(t)
k (or µ

(t)
n ) that represents the weight

of node vk (or the edge type n) being mentioned in time

step t as the summation of weights representing individual

words in the constituent expression referring to node vk (or

edge type n),

λ
(t)
k =

L∑

l=1

γ
(t)
k,l , µ

(t)
n =

L∑

l=1

δ
(t)
n,l. (10)

Next, we update the gates for every node, vk, and the gates

for every type of edge, n,

p
(t)
k = λ

(t)
k + p

(t−1)
k , ν(t)n = µ(t)

n + ν(t−1)
n . (11)

Then, we obtain the object feature corresponding to node

vk for time step t, m
(t)
k . When t = 1, m

(t)
k is set to the fea-

ture at node vk in the multi-modal graph GM , xM
k . Other-

wise, we identify the compound object, mk, corresponding

to node vk by considering the nodes connected to vk as well

as compound objects identified in previous time steps,

←−m
(t)
k =

∑

ej,k>0

ν(t)ej,k
(
←−
Wm

(t−1)
j p

(t−1)
j +

←−
b ej,k),

m̃
(t)
k = W̃m

(t−1)
k + b̃,

m
(t)
k =

λ
(t)
k (Ŵ (←−m

(t)
k + m̃

(t)
k ) + b̂) + p

(t−1)
k m

(t−1)
k

p
(t)
k

,

(12)

where
←−
W , {

←−
b n}

Ne

n=1, W̃ , b̃, Ŵ and b̂ are trainable pa-

rameters, and they are shared across all time steps. ←−m
(t)
k is

encoded feature from relationships, m̃
(t)
k is its updated ver-

sion, and m
(t)
k combines the features from both the current

time step and the previous time steps. When p
(t)
k is equal to

zero, m
(t)
k is set to m

(t−1)
k .

Finally, we use the compound object corresponding to

node vk at the time step T to represent object proposal ok.

3.4. Matching

The matching score between proposal ok and the input

expression is defined as follow,

scorek = L2Norm(W c0m
(T )
k )⊙ L2Norm(W c1q), (13)

where W c0 and W c1 are trainable parameters; q is the fea-

ture of the entire expression, which is defined in Section 3.1.

We adopt the triplet loss with online hard negative min-

ing [23] to train the DGA network. The triplet loss is de-

fined as

loss = max(scoreneg +△− scoregt, 0), (14)

where scoreneg and scoregt are the matching scores of the

negative proposal and the ground-truth proposal respec-

tively; △ is the margin. During the inference stage, the

proposal with highest matching score is chosen as the pre-

diction.

4. Experiments

4.1. Datasets

We have conducted experiments on the following three

common benchmark datasets for referring expression com-

prehension, which were collected from the MSCOCO [12]

dataset.

RefCOCO [31] contains 142,210 referring expressions for

50,000 objects in 19,994 images, which were collected from

an interactive game interface [10]. It is split into train, val-

idation, testA and testB, which has 120,624, 10,834, 5,657

and 5,095 expression-referent pairs, respectively. testA in-

cludes images of multiple people while testB includes im-

ages with multiple other objects.

RefCOCO+ [31] has 141,564 expressions for 49,856 ob-

jects in 19,992 images collected from an interactive game

interface. RefCOCO+ does not contain descriptions of ab-

solute location in the expressions. It is split into train, val-

idation, testA and testB, which has 120,191, 10,758, 5,726

and 4,889 expression-referent pairs, respectively.

RefCOCOg [18] includes 95,010 long referring expres-

sions for 49,822 objects in 25,799 images collected in a

non-interactive setting. RefCOCOg [19] has 80,512, 4,896

and 9,602 expression-referent pairs for training, validation

and testing, respectively.

4.2. Evaluation and Implementation

We evaluate the proposed DGA on both ground-truth ob-

jects and detected objects. Accuracy is used as the evalua-

tion metric. A prediction is considered correct if the top pre-

dicted object is the ground-truth object when ground-truth

objects are used, or if the Intersection over Union between

the top predicted object and the ground-truth object is larger

than 0.5 when detected objects are used.

We follow the similar produce of [28] to extract the vi-

sual object features of images. Specifically, each object is

represented as 2,048-dimensional feature extracted from the

pool5 layer of the ResNet-101 based Faster R-CNN model

[20]. Since some previous methods use VGG-16 [24] as

the feature extractor, for the sake of fairness, we also report
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RefCOCO RefCOCO+ RefCOCOg

feature val testA testB val testA testB val test

MMI [18] vgg16 - 63.15 64.21 - 48.73 42.13 - -

Neg Bag [19] vgg16 76.90 75.60 78.00 - - - - 68.40

CG [16] vgg16 - 74.04 73.43 - 60.26 55.03 - -

Attr [13] vgg16 - 78.85 78.07 - 61.47 57.22 - -

CMN [7] vgg16 - 75.94 79.57 - 59.29 59.34 - -

Speaker [31] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 - -

Spearker+Listener+Reinforcer[32] vgg16 78.36 77.97 79.86 61.33 63.10 58.19 71.32 71.72

Speaker+Listener+Reinforcer [32] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 71.65 71.92

AccumulateAttn [4] vgg16 81.27 81.17 80.01 65.56 68.76 60.63 - -

ParallelAttn [33] vgg16 81.67 80.81 81.32 64.18 66.31 61.46 - -

MAttNet [30] vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.04 72.79

Ours DGA vgg16 83.73 83.56 82.51 68.99 72.72 62.98 75.76 75.79

MAttNet [30] resnet101 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12

Ours DGA resnet101 86.34 86.64 84.79 73.56 78.31 68.15 80.21 80.26

Table 1. Comparison with state-of-the-art methods on RefCOCO, RefCOCO+ and RefCOCOg when ground-truth bounding boxes are

used. The best performing method is marked in bold.

the results using VGG-16 as backbone. During training, the

mini-batch size is set to 64 and we adopt Adam optimizer

[11] to update the network parameters. The learning rate is

initially set to 0.0005. Margin is set to 0.1 in all our experi-

ments.

4.3. Comparison with the State of the Art

We conduct experimental comparison between our pro-

posed DGA and existing state-of-the-art approaches.

Ground-truth objects Table 1 shows quantitative evalua-

tion results on ground-truth objects. Our proposed DGA

consistently outperforms existing methods across all the

datasets. When the VGG-16 features are used, the DGA

improves the average accuracy over the validation and test-

ing sets achieved by the best performing existing approach

by 2.00%, 3.25% and 2.86% respectively on the RefCOCO,

RefCOCO+ and RefCOCOg datasets. Once we switch to

use the ResNet-101 based Faster R-CNN as the backbone,

the average accuracy across all the splits is further increased

by approximately 4.03%. These results demonstrate that

the linguistic structure of the referring expression and the

relationships among the visual objects in the image are con-

ducive to referring expression comprehension.

Detected objects We have also evaluated the performance

of the DGA on automatically detected objects in the three

datasets. The detected objects are obtained using Faster R-

CNN [20] pretrained on MSCOCO’s training images with

the images in the validation and testing sets of RefCOCO,

RefCOCO+ and RefCOCOg excluded. Since most previ-

ous methods report their results using VGG-16 features, for

fair comparison, we also adopt VGG-16 features here. The

results are shown in Table 2. The performance drops af-

ter we switch from ground-truth objects to detected objects,

which is due to detection errors. Nevertheless, the proposed

DGA still outperforms all the existing state-of-the-art mod-

els, which demonstrates the robustness of the DGA with

RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB test

MMI [18] 64.90 54.51 54.03 42.81 -

Neg Bag [19] 58.60 56.40 - - 49.50

CG [16] 67.94 55.18 57.05 43.33 -

Attr [13] 72.08 57.29 57.97 46.20 -

CMN [7] 71.03 65.77 54.32 47.76 -

Speaker [31] 67.64 55.16 55.81 43.43 -

S+L+R [32] 72.94 62.98 58.68 47.68 59.63

S+L+R [32] 72.88 63.43 60.43 48.74 59.21

ParallelAttn [33] 75.31 65.52 61.34 50.86 -

Ours DGA 78.42 65.53 69.07 51.99 63.28

Table 2. Comparison with the state-of-the-art methods on Ref-

COCO, RefCOCO+ and RefCOCOg when detected objects are

used. The best performing method is marked in bold.

respect to object detection results.

4.4. Qualitative Evaluation

In order to better explore the reasoning processes learned

by the DGA, we study the visualizations of sample re-

sults along with their attention distributions produced by the

DGA during its iterative computation. At each time step, we

visualize the soft distribution over the words to reveal the

attended language information during reasoning, and show

the attention distribution over graph nodes to indicate the re-

lated objects. If a compound object occurs during this time

step, we also visualize the relationship distribution by high-

lighting the other objects that interact with the object that is

transformed into the compound object. Moreover, the final

matching scores are also provided.

The qualitative evaluation results shown in Figure 3

demonstrates that the proposed DGA can generate visual-

izable and interpretable evidences for the decision rules. In

Figure 3(a), the expression is parsed into a tree structure,

which indicates that the referent “a lady” is “wearing a pur-

ple shirt” and meanwhile it is “with a birthday cake”. Dur-
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(a) a lady wearing a purple shirt with a birthday cake
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(b) the elephant behind the man wearing a gray shirt
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Figure 3. Qualitative results showing the iteratively reasoning processes predicted by the DGA, including the word attention weights, node

attention maps, relationship attention maps and final matching scores.

ing the first two time steps, the DGA pays more attention

to the “birthday cake” and the “purple shirt” respectively.

At the third step, it focuses on the compound object “a lady

wearing a purple shirt with a birthday cake” by involving

the two related objects (i.e. “birthday cake” and “purple

shirt”). In Figure 3(b), the visual reasoning process forms a

chain structure and the DGA gradually identifies the com-

pound objects. At first time step, the DGA attends the “gray

shirt”. Next, it focuses on the compound object “the man

wearing gray shirt” by connecting “the man” with the “gray

shirt”. Then, it shifts focus to the compound object “the ele-

phant behind the man wearing a gray shirt” by relating “the

elephant” to the compound object “the man wearing gray

shirt” in the last step. The final compound object achieves

the highest matching score with the referring expression.

4.5. Ablation Study

To demonstrate the effectiveness of the linguistic struc-

ture of expressions and multi-step reasoning on top of the

relationships among objects in referring expression com-

prehension, we train four additional models for comparison.

The results are shown in Table 3. The static DGA performs

matching between the initial features of nodes in the multi-

modal graph with the given referring expression. The per-

formance of the static DGA is worse than the dynamic DGA

because the static DGA ignores the relationships among ob-

jects and it does not perform reasoning. The DGA with lan-

guage parser [17] groups the words in the expression into

multiple parts, and treats these parts as the constituent ex-

pressions to guide reasoning. In comparison to the DGA(3)

(a DGA with three time steps), the performance drop of the

DGA with language parser demonstrates the crucial role of

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

static DGA 82.10 82.13 82.08 70.56 74.71 65.31 74.45 76.52

DGA* 83.73 84.69 83.69 71.32 74.83 65.43 75.98 76.33

DGA(2) 84.84 85.50 83.69 72.88 76.58 66.62 78.64 79.09

DGA(4) 86.11 86.72 85.65 73.34 77.10 66.95 79.17 79.90

DGA(3) 86.34 86.64 84.79 73.56 78.31 68.15 80.21 80.26

Table 3. Ablation study on RefCOCO, RefCOCO+ and Ref-

COCOg. The number following “DGA” indicates the number of

reasoning steps used in the model. DGA* means DGA with lan-

guage parser.

the proposed analyzer for obtaining the linguistic structure.

Next, we explore the number of reasoning steps used in the

DGA. The DGA(2) with two steps performs worse than the

DGA(3) with three steps and DGA(4) with four steps be-

cause DGA(2) only considers direct relationships between

objects. The reason why the performance of DGA(3) is bet-

ter than that of DGA(4) might be that three steps of reason-

ing are adequate for the datasets used, and any extra steps

introduce noise.

5. Conclusion

In this paper, we have presented Dynamic Graph Atten-

tion Networks (DGA) to address referring expression com-

prehension. A DGA network performs multi-step reasoning

on top of the relationships among the objects in an image.

This process is guided by the learned linguistic structure of

the accompanying referring expression. Experimental re-

sults on common benchmark datasets demonstrate that the

DGA can not only outperform all existing state-of-the-art

methods, but also generate visualizable and interpretable re-

sults for the decision rules.
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