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Abstract

We present a method for hiding video content inside au-

dio files while preserving the perceptual fidelity of the cover

audio. This is a form of cross-modal steganography and

is particularly challenging due to the high bitrate of video.

Our scheme uses recent advances in flow-based generative

models, which enable mapping audio to latent codes such

that nearby codes correspond to perceptually similar sig-

nals. We show that compressed video data can be con-

cealed in the latent codes of audio sequences while pre-

serving the fidelity of both the hidden video and the cover

audio. We can embed 128x128 video inside same-duration

audio, or higher-resolution video inside longer audio se-

quences. Quantitative experiments show that our approach

outperforms relevant baselines in steganographic capacity

and fidelity.

1. Introduction

Consider an activist who needs to publicize a video

record of human rights violations under a repressive regime.

The regime monitors communication in and out of the coun-

try. How can the activist transmit the video without detec-

tion? The field of steganography investigates techniques for

hiding information within media such as images, video, and

audio. Steganography aims to enable concealment of secret

content inside publicly transmitted files [29].

In this work, we consider the possibility of hiding video

content inside audio files. This pushes the boundaries

of steganography, which commonly deals with hiding text

messages or embedding media of the same type as the cover

file (e.g., images within images) [25]. We choose to con-

ceal video due to its effectiveness in depiction and com-

munication (e.g., the 1992 Los Angeles riots were sparked

by video footage of police brutality). We choose audio as

the cover medium because audio has higher embedding ca-

pacity than text or image files, and because audio sharing

platforms such as CLYP and YourListen will not transcode

the audio files, which eases the embedding of content inside

the file [37].

*Joint first authors

Hiding video in audio while preserving the fidelity of

both the secret and the cover media is extremely challeng-

ing. Consider concealing a one-second 128 × 128 color

video in one-second audio with 22K samples. There are

128 × 128 × 30 × 24 = 12M bits in one second of video,

an order of magnitude more than the audio samples. Al-

though a variety of traditional and deep learning methods

for steganography have been proposed [3, 41], a direct ap-

plication of these techniques to our setting would require

more than five minutes of audio to absorb one second of

video. We aim for much more efficient embedding, such as

hiding a video clip in an audio segment of the same length.

(One second of video inside one second of audio.)

Our steganography scheme for hiding video in audio

builds upon flow-based generative models. Specifically, we

use WaveGlow, a reversible generative model that computes

bijective mappings between audio signals and latent vari-

ables [33]. Although this model is invertible, the latent

variable reconstructed from encoded audio may not be ex-

actly the same. Some bits in the reconstructed latent vari-

able may be flipped due to numerical errors in floating-point

arithmetic. Therefore, we apply a novel optimization-based

strategy to convert binary codes to latent variables. The op-

timization takes into consideration the average flip rate of

each bit in a latent variable and the importance of each bit

in a binary code.

We conduct experiments to evaluate the performance of

our proposed model and several learning-based and heuris-

tic baselines. Our optimized flow-based model significantly

outperforms other baselines in video reconstruction quality

and capacity. Our model can efficiently hide a 128 × 128
video in a same-duration audio file with a sampling rate of

22,050 Hz. The concealed video can be recovered at high fi-

delity (MS-SSIM 0.965) while the modification to the cover

audio is unnoticeable to human listeners. Our approach can

also embed one second of high-resolution 848× 480 video

in a 10-second audio file. Our contributions can be summa-

rized as follows:

• We study a new cross-modal steganography task: hid-

ing video in audio. The encoded audio signals are per-

ceptually indistinguishable from the original.

• We propose a new steganography scheme based on
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deep reversible generative models.

• We design a novel optimization-based strategy that en-

ables hiding longer video in audio without compromis-

ing the quality of the reconstructed video.

2. Related work

2.1. Steganography

Steganography methods can be analyzed in terms of

transparency, capacity, and robustness [29]. Transparency

indicates that the encoded file is perceptually indistinguish-

able and is undetectable by steganalysis [29]. Capacity is

defined as the total amount of hidden data [6]. Robustness

measures the ability to preserve the secret information when

intended or unintended modification occurs [1].

Researchers have proposed a variety of steganography

methods that use different cover files such as images, au-

dio signals, and video frames to embed secret informa-

tion [25, 11, 35, 30, 19]. A classic audio steganography

method is hiding the secret data in the least significant bits

(LSB) [4, 1], so that the subtle changes in audio are not au-

ditorily apparent. However, this alters the statistical distri-

bution of the cover media, resulting in reliable detection by

steganalysis. LSB has relatively high capacity but is vulner-

able to modification and easy to detect [13]. Furthermore,

for hiding video in audio, the capacity of LSB (one or two

bits per sample) is far from sufficient. Our proposed method

achieves high perceptual transparency and high capacity via

a different approach.

Some audio steganography methods such as echo hid-

ing [16] and tone insertion [2] exploit limitations of the hu-

man auditory system (HAS) by adding echo signal or low

power tones which are less salient to human perception. The

encoded audio is perceptually transparent but not secure to

detection. Other methods such as phase coding [12] and

spread spectrum [9] utilize the phase information of the au-

dio signal, which makes the encoded audio more robust to

modification and compression while getting lower capacity.

Deep networks have recently been applied to steganog-

raphy, with a strong focus on images [3, 41, 17, 34, 31].

Hayes et al. [17] proposed to train an end-to-end deep net-

work for hiding one image inside another. Baluja et al. [3]

suggested utilizing an adversarial loss [5, 23] to generate

better encoded images. Zhu et al. [41] applied an adver-

sarial loss and increased robustness by training with noise

layers and differentiable compression layers. Since the hu-

man visual system (HVS) is less sensitive than the human

auditory system (HAS), hiding secret information in digital

audio is generally more difficult than embedding it in im-

ages [40]. Audio generated by adversarial networks may

introduce additional noise [10]. We therefore exploit the

possibility of hiding a large amount of information in audio

using recent advances in deep generative modeling.

2.2. Flow­based Generative Models

A flow-based generative model is constructed by a se-

quence of invertible transformations to building a one-to-

one mapping between a simple prior distribution (i.e. Gaus-

sian) and a complex distribution. Recent flow-based mod-

els [8, 33, 26, 21, 32, 27] have produced high-quality results

for both image and audio generation. Dinh et al. [7, 8] pro-

posed a novel differentiable and invertible affine coupling

layer that serves as a basic transformation in a flow-based

network. Kingma and Dhariwal [21] further proposed using

a 1 × 1 convolutional layer in the structure to enhance in-

formation propagation. WaveGlow [33] adapted flow-based

image generative models to audio generation by using di-

lated convolutions [39] conditioned on Mel-spectrograms.

Our proposed steganography scheme for hiding video in au-

dio leverages the invertibility of WaveGlow. We can hide

information in the latent variable in the highest-density re-

gions of the prior distribution, such that the generated audio

remains perceptually indistinguishable from the original.

Although there are other types of generative models such

as generative adversarial networks (GAN) [15] and vari-

ational autoencoders (VAE) [22], flow-based models are

more suitable to our framework, which requires an encoder

that produces the original latent variable. GANs have no

encoder and VAEs do not recover the exact original latent

variable since the encoder in a VAE outputs a distribution

for sampling latent variables.

3. Preliminaries

3.1. Image Compression Networks

An image compression network can encode an RGB im-

age as a binary code that can be then decoded to reconstruct

the image. For a video, we can compute the binary code

B of each video frame I by B = EI(I), where EI is the

encoder. Then we can obtain the reconstructed video frame

Î by Î = DI(B), where DI is the decoder.

We use the image compression network (ICN) proposed

by Toderici et al. [36] to encode an image I (e.g., a single

frame in a video) because this model is robust to bit corrup-

tion. Note that some bits in the reconstructed binary code

may be flipped due to numerical errors. The ICN progres-

sively encodes residual information rk in K iterations:

r0 = I,

bk = EI(rk−1, gk−1),

rk = rk−1 −DI(bk, hk−1),

k = 1, 2, . . . ,K

where gk and hk are hidden states in the ConvLSTM model

[18]. The encoder and decoder have the same architecture

for all K iterations. The model is trained by minimizing the

sum of all the residual information
∑K

k=1 ‖rk‖1. We can
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Figure 1: Overview of our steganography pipeline. (a) In the hiding stage, given a video V, the image compression network (ICN) first

compresses each frame into a binary code B. (b) The binary encoder embeds a binary code into a latent variable Z. (c) Given the latent

variable Z and the mel-spectrogram of cover audio A, WaveGlow generates encoded audio, Â, which sounds perceptually equivalent to

A. In the revealing stage, we first recover a latent variable Z′, leveraging the invertibility of WaveGlow. We then use the binary decoder to

reconstruct the binary code B′. Finally, we reconstruct the video V ′ by feeding B′ into the decoder of ICN.

increase the iteration number K to preserve more details,

but this creates more binary bits in the binary code. In prac-

tice, we set the iteration number K to be 4 to balance the

reconstructed image quality and the number of bits.

3.2. WaveGlow

We will use WaveGlow [33] as a key building block in

our steganography scheme. WaveGlow is a flow-based gen-

erative model that generates audio by sampling from a sim-

ple prior distribution (zero-mean spherical Gaussian). The

model is composed of a sequence of invertible and differen-

tiable layers in a neural network. The size of output audio

signals is the same as the input latent variable. We can for-

mulate the WaveGlow model as follows:

Z ∼ N(0, I),

x = f0 ◦ f1 ◦ f2... ◦ fk(Z),

Z = f−1
k ◦ f−1

k−1... ◦ f
−1
0 (x).

The model is trained by minimizing the negative log-

likelihood of the data distribution. Since the transforma-

tion operations are all bijective, we can apply the change of

variables theorem to calculate the log-likelihood directly:

log pθ(x) = log pθ(z) +

k
∑

i=1

log | det(J(f−1
i (x)))|.

The second term is derived from the change of variables

theorem, where J is the Jacobian Matrix and det is the de-

terminant. This indicates that for each transformation layer,

the Jacobian matrix should be easy to compute. With this re-

quirement, two simple but efficient transformations are ap-

plied in the network.

Affine coupling layers. Affine coupling layers enable in-

teractions across spatial dimensions. Their architecture is

defined as follows:

xa, xb = split(x),

(log s, t) = WN(xa,mel-spectrogram),

x′

b = s⊙ xb + t,

f−1
coupling(x) = concat(xa, x

′

b).

The split and concat operations are defined along the chan-

nel dimension. WN uses dilated convolutions with tanh

and takes mel-spectrograms to control the content and tone

of the output audio.

1× 1 invertible convolution. 1× 1 convolution is used to

generate permutation along the channel dimension, which

increases the generative capacity of the model.

In our steganography pipeline, we embed the binary code

from the compression model into the latent variable Z and

use this latent variable to generate encoded audio condi-

tioned on the mel-spectrogram of the input audio. Given

the encoded audio, we can retrieve the latent variable by
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Figure 2: The upper layout describes the structure of the IEEE

Standard for Floating-Point Arithmetic (IEEE 754). In the bottom

layout, we can hide binary bits in the hidable slots in the IEEE 754

structure.

applying invertible inference in WaveGlow with the same

mel-spectrogram.

4. Method

4.1. Overview

Our model consists of a hiding stage and a revealing

stage, as illustrated by the blue and pink flowchart arrows

in Figure 1. Consider a sequence of video frames V and

a cover audio signal A. In the hiding stage, our goal is to

hide V into an encoded audio signal Â that is perceptually

indistinguishable to A. In the revealing stage, our goal is to

reconstruct V̂ from Â so that V̂ is visually similar to V .

In the hiding stage, we hide the binary codes generated

by the image compression network (ICN) [36] into an au-

dio signal. Each frame I is compressed into a binary code

B ∈ {−1, 1}K×
H
16

×
W
16

×32, where K denotes the number

of iterations used in ICN. Then the binary encoder embeds

all the bits in B into a latent variable Z. Then, a pretrained

WaveGlow is used to generate an encoded audio Â given

Z and the mel-spectrogram of signal A. Recall that Wave-

Glow consists of a sequence of invertible transformations.

To reconstruct Z from the encoded audio Â, we also need

the mel-spectrogram of A, and thus we generate a final en-

coded stereo audio (Â, A). Since Â and A are perceptually

indistinguishable, the stereo audio sounds the same as the

original audio A.

In the revealing stage, we first reconstruct the latent vari-

able Z ′ from Â and the mel-spectrogram from A by Wave-

Glow. Note that due to numerical errors in floating-point

arithmetic, Z ′ is usually not exactly equal to Z. Then, for

each video frame, a binary code B′ can be recovered from

Z ′ by the binary decoder. Finally, B′ can be used to recon-

struct a video frame through the decoder of ICN.

4.2. Binary encoder and decoder

The role of the binary encoder is to embed binary codes

into Z (a sequence of 32-bit floating-point numbers), and

the binary decoder is an inverse mapping that recovers

the embedded binary codes from Z. Since the pretrained

. . .

. . .

. . .

. . .

Figure 3: Sample images of Îj when the bit bj is flipped. We can

see that flipping Î4 is more damaging than other samples. This

implies that b4 is a more important bit in the binary code for image

reconstruction.

WaveGlow takes a latent variable sampled from Gaussian

normal distribution, the binary encoder should generate

floating-point numbers that “follow” the Gaussian distribu-

tion. WaveGlow can generate desirable encoded audio as

long as Z is in the highest density range of the Gaussian

distribution (and the mel-spectrogram of the cover audio).

We utilize the structure of IEEE Standard for Floating-

Point Arithmetic (IEEE 754) [14] as shown in Figure 2.

A floating-point number β contains 32 positions {βi}
31
i=0

where the position index starts from the end of fraction part.

The actual value of a floating-point number z can be calcu-

lated by

β = (−1)β31 × 2(e−127) × (1 +m),

e =

7
∑

i=0

β23+i2
i ,

m =

23
∑

i=1

β23−i2
−i.

If we fix 9 positions {βi}
30
i=22 to 011111100, the range

of β becomes −0.75 ≤ β ≤ −0.5 or 0.5 ≤ β ≤ 0.75.

We use 20 positions in β hidable slots, represented as a list

S = (β3, β4, . . . , β21, β31). Note that the three positions

{β0, β1, β2} are not used because of their high sensitivity

to numerical instability.

4.3. Encoding optimization

A simple encoding strategy is to embed every 20 bits in

B into Z sequentially, but this is not optimal. Some bits of

the recovered binary code B′ from Z ′ can be flipped due to

numerical errors in floating-point arithmetic. When we hide

20 bits into a latent variable, the average flip rate is 13.28%.

Flipping some bits in the binary code can severely dam-

age the reconstructed video frames. Therefore, we have de-

signed an embedding optimization strategy for better video
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multiple of 32. There is little difference in bit importance after

iteration 4.

Figure 4: Analysis on flip rates and bit importance.

reconstruction quality.

If we can estimate the importance of each bit in B for

image reconstruction, the embedding process can be opti-

mized by assigning important bits into slots with low flip

rates. The shape of a binary code tensor B for a video frame

It is (K, H
16 ,

W
16 , 32) where K denotes the number of total

iterations used in compression, and H and W are the height

and width of It.

Consider all the bits in B(·, y, x, ·) at location (x, y) as

a vector b = {b1, b2, . . . , bM} where M = K × 32. This

M -bit vector b represents a 16 × 16 patch in the image.

Let wj be the importance of bj and pi be the flip rate of

the i-th slot in S . The flip rate pi indicates how likely the

value of the i-th slot in S will change numerically in the

encoding and decoding process of WaveGlow. Let π be an

embedding function that maps bj to the π(bj)-th slot in S .

We can obtain a better embedding function by solving

argmax
π

M
∑

j=1

wj(1− pπ(bj)), (1)

subject to
∑

b

M
∑

j=1

1[π(bj) = i] ≤ L, ∀i ∈ {1, 2, . . . , 20},

where 1 is the indicator function and L is the number of

floating-point numbers we can use. The constraint enforces

that the total number of assignments to each slot in S is not

greater than L.

We can further alleviate the negative effects of flipped

bits by embedding the same bit multiple times to the same

slot location in several floating-point numbers and then tak-

ing the majority vote in the binary decoder. We can extend

the objective function with multiple assignments:

argmax
π

M
∑

j=1

wj(1− pπ(bj),τ(bj)), (2)

s.t.
∑

b

M
∑

j=1

τ(bj)1[π(bj) = i] ≤ L, ∀i ∈ {1, 2, . . . , 20},

where τ(·) ∈ {1, 3, 5, . . .} is a function indicating the num-

ber of the assignments of a bit, and pi,n is the probability of

getting a flipped value when we embed a bit n times on the

i-th slot:

If n = 1, pi,1 = pi; (3)

If n = 3, pi,3 = p3i +

(

3

2

)

p2i (1− pi); (4)

If n = 5, pi,5 = p5i +

(

5

4

)

p4i (1− pi) +

(

5

3

)

p3i (1− pi)
2.

(5)

Next, we will go through the details of this optimization

problem, including the estimation of the flip rate and the

importance of each bit in a binary code, and the details of

our optimization algorithm.

Bit importance and flip rates. We can measure the impor-

tance of each bit bj by measuring the reconstructed image

quality when the value of bj is flipped. Let Îj be the recon-

structed image from the binary code B when bj is flipped

for each 16 × 16 patch. Figure 3 is the sample result of

{Îj}
128
j=1 where the number of iterations is K = 4. We eval-

uate the change in image quality using MS-SSIM [38]. We

can use MS-SSIM to compute the bit importance wj :

wj = EI

[

MS-SSIM(I, Î)− MS-SSIM(I, Îj)
]

.

In practice, wj is estimated by sampling images from the

COCO dataset [24].

Similarly, the flip rate pi can be estimated by sampling

audio from the LJ Speech dataset [20] and sampling latent

variables from a Gaussian distribution for WaveGlow. The

values of wj and pi are visualized in Figure 4.

Embedding optimization. To simplify the optimiza-

tion problem, we perform embedding on a frame-by-

frame basis. Suppose we are hiding the binary code

B ∈ R
K×

H
16

×
W
16

×32 for a frame I . The number of floating-

point numbers needed to hide B is
⌈

K×32
20

⌉

× H
16 ×

W
16 . The

capacity of each slot i is also
⌈

K×32
20

⌉

× H
16 × W

16 , as shown

in Figure 5.

We can apply a greedy algorithm to embed the bits in B.

We greedily pick an unassigned bit with the highest impor-

tance and assign it an available slot with the lowest flip rate.

We repeat this process until all the bits are assigned.
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Figure 5: Encoding optimization. We optimize the encoding process by allocating important bits first to slots that have lower flip rates. We

assign the same bit multiple times, reconstructing it via majority voting.

Some slots may be unfilled after embedding all the bits in

the binary code. We can further exploit this remaining space

by assigning the same bit multiple times. We perform a

greedy algorithm that picks a bit to be embedded into some

slot twice so that the objective in Equation 2 is maximized.

5. Experiments

5.1. Baselines

Naive encoding. We can directly encode a binary code

to a latent variable without considering flip rates and

bit importance. We can simply hide every 18 bits

(β5, β6, . . . , β21, β30) in the binary code into the 18 slots

in each floating-point number. Since the size of bi-

nary code for each frame is (K, H
16 ,

W
16 , 32), we need

⌈

K × H
16 × W

16 × 32× 1
18

⌉

floating-point numbers for em-

bedding one frame.

Continuous bottleneck. We replace the sign operator with

a tanh activation in the bottleneck layer of the image com-

pression network [36]. The extracted code from this new

network architecture is not binary: it consists of floating-

point numbers between -1 and 1. Then we do not need the

conversion between binary codes and latent variables. We

can directly feed the floating-point code as the latent vari-

able into WaveGlow. The size of the floating-point code is

set to be
(

K, H
16 ,

W
16 , 4

)

. The modified image compression

network with continuous bottleneck is trained on the COCO

dataset [24] for 40 epochs with learning rate 5e− 4.

ConvNet-based model. Following the deep steganography

structure proposed by Baluja et al. [3], we can build a neu-

ral network model for hiding a video frame in audio. The

model consists of three networks: a preparation network,

a hiding network, and a revealing network. We apply the

short-time Fourier transform on the cover audio to obtain

its spectrogram. Then the preparation network transforms

a secret video frame to an encoded image with the same

spatial resolution as the spectrogram. The hiding network

takes the spectrogram and the embedded image as input and

generates encoded audio that sounds similar to the cover

audio. In the end, the revealing network can reconstruct a

video from the encoded audio. The model is trained with

a video loss that minimizes the difference between the re-

constructed video and the original video, and an audio loss

that minimizes the difference between the cover audio and

encoded audio. The model is trained on the COCO and LJ

Speech datasets for 40 epochs with learning rate 5e− 4.

5.2. Datasets

DAVIS. DAVIS is a popular video segmentation

dataset [28]. It consists of 150 videos. Each video

contains 69.7 frames on average. For the evaluation of our

models and various baselines, we crop all video frames

to 128 × 128. We also conduct an experiment to embed

high-resolution 480p video into audio with our approach.

LJ Speech. We use the LJ Speech dataset [20] for cover au-

dio. This dataset is composed of 13,100 audio clips sampled

at 22,050 Hz. Each clip is of length 1 to 10 seconds and re-

produces a single speaker reading passages from non-fiction

books.

5.3. Hiding 128× 128 Video

We first conduct an experiment on hiding all 90 DAVIS

videos at resolution 128× 128 in audio using our approach

as well as all presented baselines. We randomly sample 90

audio clips from the LJ dataset as cover audio. The results

are summarized in Table 1. The video reconstructed by our

steganography scheme has much high quality than the base-

lines in terms of PSNR and SSIM. Our method also has the

highest capacity in hiding pixels in audio. Our method can

hide a 128× 128 video in 0.6 seconds of audio.
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Methods PSNR MS-SSIM Samples per one-second video

ConvNet (spectrogram) 21.6270 0.9049 330750 (15.00 sec)

Continuous bottleneck 23.2836 0.9384 30720 (1.39 sec)

Naive encoding 11.5683 0.4690 13680 (0.62 sec)

Ours 25.4318 0.9648 13440 (0.60 sec)

Table 1: Quantitative analysis of our model and the baselines. We measure PSNR and MS-SSIM between the ground truth

and the reconstructed video frames. The capacity of different models is shown in terms of how many audio samples are

needed to hide a one-second video.
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Figure 6: Visual comparison of different methods on hiding DAVIS video [28] in LJ audio [20]. Our approach achieves higher visual

quality than the baselines.

Figure 6 provides a qualitative comparison of the visual

quality of video frames reconstructed by different methods.

Our reconstructed video has higher visual fidelity and fewer

artifacts than the baselines.

5.4. Hiding High­resolution Video

Our approach can also hide 480 × 848 video in audio.

Figure 7 visualizes the reconstructed video. Our reconstruc-

tion is perceptually indistinguishable from the ground-truth
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Figure 7: Our reconstructed high-resolution 480× 848 video with two different compression parameters: K = 4, 8. A one-second video

can be embedded in a 10-second audio signal and has high visual fidelity, with MS-SSIM beyond 0.96 for K = 4. When K is increased

to 8, the visual fidelity is even higher but requires twice the number of audio samples for embedding.
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Figure 8: User study results on comparing the encoded audio and

the original cover audio.

video. Under our steganography scheme, one-second 480p

video can be embedded in 10-second audio with MS-SSIM

beyond 0.96. In principle, our model can embed video of

any resolution with high reconstruction fidelity.

5.5. Evaluation of Audio Fidelity

We conduct a user study comparing the encoded audio

and the original cover audio with 30 participants. We ran-

domly sample 10 encoded audio clips embedded with the

DAVIS videos. In the user study, each participant hears the

encoded audio and the original cover audio in random order

once. Then the participant needs to choose one of the three

options: 1) Audio A is more natural, 2) Audio B is more

natural, 3) They are perceptually the same. As shown in

Figure 8, in 95.0% of the comparisons, participants cannot

tell the difference. This user study shows that our model

is perceptually transparent. (No claims on transparency to

steganalysis are made.)

6. Discussion

We have proposed a flow-based model for hiding video

in audio by combining image compression networks and in-

vertible generative models. To enhance performance, we

developed a novel optimized strategy for conversion be-

tween binary codes and floating-point latent variables. Our

experiments have shown that our steganography scheme can

efficiently conceal video in audio with high fidelity of re-

constructed video and perceptually indistinguishable cover

audio. We hope that our work can inspire more research

on cross-modal steganography. Future work may investi-

gate more robust steganography schemes that are resistant

to data corruption or compression.
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