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Figure 1: Our model transforms points sampled from a simple prior to realistic point clouds through continuous normalizing

flows. The videos of the transformations can be viewed on our project website: https://www.guandaoyang.com/

PointFlow/.

Abstract

As 3D point clouds become the representation of choice

for multiple vision and graphics applications, the ability to

synthesize or reconstruct high-resolution, high-fidelity point

clouds becomes crucial. Despite the recent success of deep

learning models in discriminative tasks of point clouds,

generating point clouds remains challenging. This paper

proposes a principled probabilistic framework to gener-

ate 3D point clouds by modeling them as a distribution

of distributions. Specifically, we learn a two-level hier-

archy of distributions where the first level is the distribu-

tion of shapes and the second level is the distribution of

points given a shape. This formulation allows us to both

sample shapes and sample an arbitrary number of points

from a shape. Our generative model, named PointFlow,

learns each level of the distribution with a continuous nor-

malizing flow. The invertibility of normalizing flows en-

ables the computation of the likelihood during training and

∗Equal contribution.

allows us to train our model in the variational inference

framework. Empirically, we demonstrate that PointFlow

achieves state-of-the-art performance in point cloud gen-

eration. We additionally show that our model can faithfully

reconstruct point clouds and learn useful representations in

an unsupervised manner. The code is available at https:

//github.com/stevenygd/PointFlow .

1. Introduction

Point clouds are becoming popular as a 3D represen-

tation because they can capture a much higher resolution

than voxel grids and are a stepping stone to more sophis-

ticated representations such as meshes. Learning a gen-

erative model of point clouds could benefit a wide range

of point cloud synthesis tasks such as reconstruction and

super-resolution, by providing a better prior of point clouds.

However, a major roadblock in generating point clouds is

the complexity of the space of point clouds. A cloud of

points corresponding to a chair is best thought of as sam-
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ples from a distribution that corresponds to the surface of

the chair, and the chair itself is best thought of as a sample

from a distribution of chair shapes. As a result, in order to

generate a chair according to this formulation, we need to

characterize a distribution of distributions, which is under-

explored by existing generative models.

In this paper, we propose PointFlow, a principled gen-

erative model for 3D point clouds that learns a distribution

of distributions: the former being the distribution of shapes

and the latter being the distribution of points given a shape.

Our key insight is that instead of directly parametrizing the

distribution of points in a shape, we model this distribution

as an invertible parameterized transformation of 3D points

from a prior distribution (e.g., a 3D Gaussian). Intuitively,

under this model, generating points for a given shape in-

volves sampling points from a generic Gaussian prior, and

then moving them according to this parameterized transfor-

mation to their new location in the target shape, as illus-

trated in Figure 1. In this formulation, a given shape is then

simply the variable that parametrizes such transformation,

and a category is simply a distribution of this variable. In-

terestingly, we find that representing this distribution too as

a transformation of a prior distribution leads to a more ex-

pressive model of shapes. In particular, we use the recently

proposed continuous normalizing flow framework to model

both kinds of transformations [38, 5, 16].

This parameterization confers several advantages. The

invertibility of these transformations allows us to not just

sample but also estimate probability densities. The ability

to estimate probability densities in turn allows us to train

these models in a principled manner using the variational

inference framework [26], where we maximize a variational

lower bound on the log-likelihood of a training set of point

clouds. This probabilistic framework for training further

lets us avoid the complexities of training GANs or hand-

crafting good distance metrics for measuring the difference

between two sets of points. Experiments show that Point-

Flow outperforms previous state-of-the-art generative mod-

els of point clouds, and achieves compelling results in point

cloud reconstruction and unsupervised feature learning.

2. Related work

Deep learning for point clouds. Deep learning has been

introduced to improve performance in various point cloud

discriminative tasks including classification [36, 37, 49, 53],

segmentation [36, 41], and critical points sampling [10].

Recently, substantial progress has been made in point cloud

synthesis tasks such as auto-encoding [1, 49, 17], single-

view 3D reconstruction [12, 21, 28, 30, 13], stereo recon-

struction [43], and point cloud completion [52, 51]. Many

point cloud synthesis works convert a point distribution to

a N × 3 matrix by sampling N (N is pre-defined) points

from the distribution so that existing generative models are

readily applicable. For example, Gadelha et al. [13] ap-

ply variational auto-encoders (VAEs) [26] and Zamorski

et al. [54] apply adversarial auto-encoders (AAEs) [32] to

point cloud generation. Achlioptas et al. [1] explore gen-

erative adversarial networks (GANs) [15, 2, 19] for point

clouds in both raw data space and latent space of a pre-

trained auto-encoder. In the above methods, the auto-

encoders are trained with heuristic loss functions that mea-

sure the distance between two point sets, such as Cham-

fer distance (CD) or earth mover’s distance (EMD). Sun et

al. [42] apply auto-regressive models [45] with a discrete

point distribution to generate one point at a time, also using

a fixed number of points per shape.

However, treating a point cloud as a fixed-dimensional

matrix has several drawbacks. First, the model is restricted

to generate a fixed number of points. Getting more points

for a particular shape requires separate up-sampling mod-

els such as [52, 51, 50]. Second, it ignores the permuta-

tion invariance property of point sets, which might lead to

suboptimal parameter efficiency. Heuristic set distances are

also far from ideal objectives from a generative modeling

perspective since they make the original probabilistic in-

terpretation of VAE/AAE no longer applicable when used

as the reconstruction objective. In addition, exact EMD is

slow to compute while approximations could lead to biased

or noisy gradients. CD has been shown to incorrectly favor

point clouds that are overly concentrated in the mode of the

marginal point distribution [1].

Some recent works introduce sophisticated decoders

consisting of a cascade [49] or a mixture [17] of smaller

decoders to map one (or a mixture of) 2-D uniform distribu-

tion(s) to the target point distribution, overcoming the short-

comings of using a fixed number of points. However, they

still rely on heuristic set distances that lack a probabilistic

guarantee. Also, their methods only learn the distribution

of points for each shape, but not the distribution of shapes.

Li et al. [29] propose a “sandwiching” reconstruction objec-

tive that combines a variant of WGAN [2] loss with EMD.

They also train another GAN in the latent space to learn

shape distribution, similar to Achlioptas et al. [1]. In con-

trast, our method is simply trained end-to-end by maximiz-

ing a variational lower bound on the log-likelihood, does

not require multi-stage training, and does not have any in-

stability issues common for GAN-based methods.

Generative models. There are several popular frameworks

of deep generative models, including generative adversar-

ial networks [15, 2, 22], variational auto-encoders [26,

39], auto-regressive models [33, 45], and flow-based mod-

els [8, 38, 9, 24]. In particular, flow-based models and

auto-regressive models can both perform exact likelihood

evaluation, while flow-based models are much more effi-

cient to sample from. Flow-based models have been suc-

cessfully applied to a variety of generation tasks such as
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image generation [24, 9, 8], video generation [27], and

voice synthesis [35]. Also, there has been recent work

that combines flows with other generative models, such as

GANs [18, 7], auto-regressive models [20, 34, 25], and

VAEs [25, 44, 6, 38, 44, 5, 16].

Most existing deep generative models aim at learning the

distribution of fixed-dimensional variables. Learning the

distribution of distributions, where the data consists of a

set of sets, is still underexplored. Edwards and Storkey [11]

propose a hierarchical VAE named Neural Statistician that

consumes a set of sets. They are mostly interested in the

few-shot case where each set only has a few samples. Also,

they are focused on classifying sets or generating new sam-

ples from a given set. While our method is also applica-

ble to these tasks, our focus is on learning the distribution

of sets and generating new sets (point clouds in our case).

In addition, our model employs a tighter lower bound on

the log-likelihood, thanks to the use of normalizing flow in

modeling both the reconstruction likelihood and the prior.

3. Overview

Consider a set of shapes X = {Xi}
N
i=1 from a particular

class of object, where each shape is represented as a set of

3D points Xi = {xij}
Mi

j=1. As discussed in Section 1, each

point xij ∈ R
3 is best thought of as being sampled from

a point distribution Qi(x), usually a uniform distribution

over the surface of an object Xi. Each shape Xi is itself a

sample from a distribution over shapes Q(X) that captures

what shapes in this category look like.

Our goal is to learn the distribution of shapes, each shape

itself being a distribution of points. In other words, our

generative model should be able to both sample shapes and

sample an arbitrary number of points from a shape.

We propose to use continuous normalizing flows to

model the distribution of points given a shape. A continuous

normalizing flow can be thought of as a vector field in the

3-D Euclidean space, which induces a distribution of points

through transforming a generic prior distribution (e.g., a

standard Gaussian). To sample points from the induced dis-

tribution, we simply sample points from the prior and move

them according to the vector field. Moreover, the contin-

uous normalizing flow is invertible, which means we can

move data points back to the prior distribution to compute

the exact likelihood. This model is highly intuitive and in-

terpretable, allowing a close inspection of the generative

process as shown in Figure 1.

We parametrize each continuous normalizing flow with

a latent variable that represents the shape. As a result, mod-

eling the distribution of shapes can be reduced to modeling

the distribution of the latent variable. Interestingly, we find

continuous normalizing flow also effective in modeling the

latent distribution. Our full generative model thus consists

of two levels of continuous normalizing flows, one model-

ing the shape distribution by modeling the distribution of

the latent variable, and the other modeling the point distri-

bution given a shape.

In order to optimize the generative model, we construct

a variational lower bound on the log-likelihood by introduc-

ing an inference network that infers a latent variable distri-

bution from a point cloud. Here, we benefit from the fact

that the invertibility of the continuous normalizing flow en-

ables likelihood computation. This allows us to train our

model end-to-end in a stable manner, unlike previous work

based on GANs that requires two-stage training [1, 29]. As

a side benefit, we find the inference network learns a useful

representation of point clouds in an unsupervised manner.

In Section 4 we introduce some background on contin-

uous normalizing flows and variational auto-encoders. We

then describe our model and training in detail in Section 5.

4. Background

4.1. Continuous normalizing flow

A normalizing flow [38] is a series of invertible map-

pings that transform an initial known distribution to a more

complicated one. Formally, let f1, . . . , fn denote a series of

invertible transformations we want to apply to a latent vari-

able y with a distribution P (y). x = fn ◦ fn−1 ◦ · · · ◦ f1(y)
is the output variable. Then the probability density of the

output variable is given by the change of variables formula:

logP (x) = logP (y)−
n
∑

k=1

log

∣

∣

∣

∣

det
∂fk

∂yk−1

∣

∣

∣

∣

, (1)

where y can be computed from x using the inverse flow:

y = f−1
1 ◦ · · · ◦ f−1

n (x). In practice, f1, . . . , fn are usu-

ally instantiated as neural networks with an architecture that

makes the determinant of the Jacobian

∣

∣

∣
det ∂fk

∂yk−1

∣

∣

∣
easy to

compute. The normalizing flow has been generalized from a

discrete sequence to a continuous transformation [16, 5] by

defining the transformation f using a continuous-time dy-

namic
∂y(t)
∂t

= f(y(t), t), where f is a neural network that

has an unrestricted architecture. The continuous normal-

izing flow (CNF) model for P (x) with a prior distribution

P (y) at the start time can be written as:

x = y(t0) +

∫ t1

t0

f(y(t), t)dt, y(t0) ∼ P (y)

logP (x) = logP (y(t0))−

∫ t1

t0

Tr

(

∂f

∂y(t)

)

dt (2)

and y(t0) can be computed using the inverse flow y(t0) =

x+
∫ t0

t1
f(y(t), t)dt. A black-box ordinary differential equa-

tion (ODE) solver can been applied to estimate the out-

puts and the input gradients of a continuous normalizing

flow [16, 5].
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4.2. Variational auto­encoder

Suppose we have a random variableX that we are build-
ing generative models for. The variational auto-encoder
(VAE) is a framework that allows one to learn P (X) from
a dataset of observations of X [26, 39]. The VAE models
the data distribution via a latent variable z with a prior dis-
tribution Pψ(z), and a decoder Pθ(X|z) which captures the
(hopefully simpler) distribution of X given z. During train-
ing, it additionally learns an inference model (or encoder)
Qφ(z|X). The encoder and decoder are jointly trained to
maximize a lower bound on the log-likelihood of the obser-
vations

logPθ(X) ≥ logPθ(X)−DKL(Qφ(z|X)||Pθ(z|X))

= EQφ(z|x) [logPθ(X|z)]−DKL (Qφ(z|X)||Pψ(z))

, L(X;φ, ψ, θ) , (3)

which is also called the evidence lower bound (ELBO).

One can interpret ELBO as the sum of the negative recon-

struction error (the first term) and a latent space regularizer

(the second term). In practice, Qφ(z|X) is usually mod-

eled as a diagonal Gaussian N (z|µφ(X), σφ(X)) whose

mean and standard deviation are predicted by a neural net-

work with parameters φ. To efficiently optimize the ELBO,

sampling from Qφ(z|X) is done by reparametrizing z as

z = µφ(X) + σφ(X) · ǫ, where ǫ ∼ N (0, I ).

5. Model

We now have the paraphernalia needed to define our gen-

erative model of point clouds. Using the terminology of the

VAE, we need three modules: the encoder Qφ(z|X) that

encodes a point cloud into a shape representation z, a prior

Pψ(z) over shape representations, and a decoder Pθ(X|z)
that models the distribution of points given the shape rep-

resentation. We use a simple permutation-invariant encoder

to predict Qφ(z|X), following the architecture in Achliop-

tas et al. [1]. We use continuous normalizing flows for both

the prior Pψ(z) and the generator Pθ(X|z), which are de-

scribed below.

5.1. Flow­based point generation from shape repre­
sentations

We first decompose the reconstruction log-likelihood of

a point set into the sum of log-likelihood of each point

logPθ(X|z) =
∑

x∈X

logPθ(x|z) . (4)

We propose to model Pθ(x|z) using a conditional extension
of CNF. Specifically, a point x in the point setX is the result
of transforming some point y(t0) in the prior distribution
P (y) = N (0, I ) using a CNF conditioned on z:

x = Gθ(y(t0); z) , y(t0)+

∫ t1

t0

gθ(y(t), t, z)dt, y(t0) ∼ P (y) ,

where gθ defines the continuous-time dynamics of the flow

Gθ conditioned on z. Note that the inverse of Gθ is given

by G−1
θ (x; z) = x +

∫ t0

t1
gθ(y(t), t, z)dt with y(t1) = x.

The reconstruction likelihood of follows equation (2):

logPθ(x|z) = logP (G−1
θ (x; z))−

∫ t1

t0

Tr

(

∂gθ

∂y(t)

)

dt .

(5)

Note that logP (G−1
θ (x; z)) can be computed in closed form

with the Gaussian prior.

5.2. Flow­based prior over shapes

Although it is possible to use a simple Gaussian prior
over shape representations, it has been shown that a re-
stricted prior tends to limit the performance of VAEs [6]. To
alleviate this problem, we use another CNF to parametrize
a learnable prior. Formally, we rewrite the KL divergence
term in Equation 3 as

DKL(Qφ(z|x)||Pψ(z)) = −EQφ(z|x) [logPψ(z)]−H[Qφ(z|X)] ,

(6)

where H is the entropy and Pψ(z) is the prior distribution
with learnable parameters ψ, obtained by transforming a
simple Gaussian P (w) = N (0, I ) with a CNF:

z = Fψ(w(t0)) , w(t0) +

∫ t1

t0

fψ(w(t), t)dt, w(t0) ∼ P (w) ,

where fψ defines the continuous-time dynamics of the flow

Fψ . Similarly as described above, the inverse of Fψ is given

by F−1
ψ (z) = z +

∫ t0

t1
fψ(w(t), t)dt with w(t1) = z. The

log probability of the prior distribution can be computed by:

logPψ(z) = logP
(

F−1
ψ (z)

)

−

∫ t1

t0

Tr

(

∂fψ

∂w(t)

)

dt .

(7)

5.3. Final training objective

Plugging Equation 4, 5, 6, 7 into Equation 3, the ELBO
of a point set X can be finally written as

L(X;φ, ψ, θ) = EQφ(z|x) [logPψ(z) + logPθ(X|z)] +H[Qφ(z|X)]

= EQφ(z|X)[logP
(

F
−1
ψ (z)

)

−

∫ t1

t0

Tr

(

∂fψ

∂w(t)

)

dt

+
∑

x∈X

(logP (G−1
θ (x; z))−

∫ t1

t0

Tr

(

∂gθ

∂y(t)

)

dt)]

+H[Qφ(z|X)] . (8)

Our model is trained end-to-end by maximizing the ELBO

of all point sets in the dataset

φ∗, ψ∗, θ∗ = arg max
φ,ψ,θ

∑

X∈X

L(X;φ, ψ, θ). (9)

We can interpret this objective as the sum of three parts:
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σ
<latexit sha1_base64="g8T4WcLesrKA4mT0aEyV13q2WP0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexqQI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDy6p/X6vUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnQmPJQ==</latexit>

⊗
<latexit sha1_base64="w1Zt4E5sISIg3ZnTgM60EC0CHrA=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDy6r/cFWp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPhpWPrw==</latexit>

⊕
<latexit sha1_base64="F674BsqWs9ED99S0hBN3ATSRl70=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9lVQY9FLx4r2A9ol5JNs21oNglJVihLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61jUw1oS0iudTdCBvKmaAtyyynXaUpTiJOO9HkLvc7T1QbJsWjnSoaJngkWMwItk7q9KXiqakMqjW/7s+BVklQkBoUaA6qX/2hJGlChSUcG9MLfGXDDGvLCKezSj81VGEywSPac1TghJowm587Q2dOGaJYalfCorn6eyLDiTHTJHKdCbZjs+zl4n9eL7XxTZgxoVJLBVksilOOrET572jINCWWTx3BRDN3KyJjrDGxLqE8hGD55VXSvqgHl3X/4arWuC3iKMMJnMI5BHANDbiHJrSAwASe4RXePOW9eO/ex6K15BUzx/AH3ucPB1yPWw==</latexit>

……

F−1
ψ

<latexit sha1_base64="ygpg9Jly7i8S6MHpdoLEb2hmRus=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4sSQq6LEoiMcK9gPSWjbbTbt0kw27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfztLyyuraemGjuLm1vbNb2ttvGJVqxutMSaVbATVcipjXUaDkrURzGgWSN4PhzcRvPnFthIofcJTwTkT7sQgFo2gl/7bbTox4zE69cbdUdivuFGSReDkpQ45at/TV7imWRjxGJqkxvucm2MmoRsEkHxfbqeEJZUPa576lMY246WTTk8fk2Co9EiptK0YyVX9PZDQyZhQFtjOiODDz3kT8z/NTDK86mYiTFHnMZovCVBJUZPI/6QnNGcqRJZRpYW8lbEA1ZWhTKtoQvPmXF0njrOKdV9z7i3L1Oo+jAIdwBCfgwSVU4Q5qUAcGCp7hFd4cdF6cd+dj1rrk5DMH8AfO5w/IaJDr</latexit>

G−1
θ

<latexit sha1_base64="JFigNe0busnCiXL8XopTYO7Cy8o=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBC8GHZV0GPQgx4jmAcka5idzCZDZmfXmd5AWPIdXjwo4tWP8ebfOHkcNLGgoajqprsrSKQw6LrfztLyyuraem4jv7m1vbNb2NuvmTjVjFdZLGPdCKjhUiheRYGSNxLNaRRIXg/6N2O/PuDaiFg94DDhfkS7SoSCUbSSf9tuYY8jfcxOvVG7UHRL7gRkkXgzUoQZKu3CV6sTszTiCpmkxjQ9N0E/oxoFk3yUb6WGJ5T1aZc3LVU04sbPJkePyLFVOiSMtS2FZKL+nshoZMwwCmxnRLFn5r2x+J/XTDG88jOhkhS5YtNFYSoJxmScAOkIzRnKoSWUaWFvJaxHNWVoc8rbELz5lxdJ7azknZfc+4ti+XoWRw4O4QhOwINLKMMdVKAKDJ7gGV7hzRk4L8678zFtXXJmMwfwB87nD08Xkco=</latexit>

(a) Training (Auto-encoding) (a) Test (Sampling)

w̃ ∼ N (0, I )
<latexit sha1_base64="Ove51phUQ4am0er8mggA/mI4fLU=">AAACEXicbVDLSgMxFM3UV62vqks3wSJUkDKjgi6LbnQjFewDOqVkMpk2NJkZkjtKGeYX3Pgrblwo4tadO//G9LHQ1gOBk3Pu5d57vFhwDbb9beUWFpeWV/KrhbX1jc2t4vZOQ0eJoqxOIxGplkc0EzxkdeAgWCtWjEhPsKY3uBz5zXumNI/COxjGrCNJL+QBpwSM1C2WXeDCZ+lD5mousSsJ9CkR6U1Wto8mXw7pdXbYLZbsij0GnifOlJTQFLVu8cv1I5pIFgIVROu2Y8fQSYkCTgXLCm6iWUzogPRY29CQSKY76fiiDB8YxcdBpMwLAY/V3x0pkVoPpWcqRyvqWW8k/ue1EwjOOykP4wRYSCeDgkRgiPAoHuxzxSiIoSGEKm52xbRPFKFgQiyYEJzZk+dJ47jinFTs29NS9WIaRx7toX1URg46Q1V0hWqojih6RM/oFb1ZT9aL9W59TEpz1rRnF/2B9fkDVSidTA==</latexit>

(

<latexit sha1_base64="I+B4U+oKg6eEmdI37SAFks1M5q8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Ac0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuhdRwKRRvo0DJe6nmNA4l74aT27nffeTaiEQ94DTlQUxHSkSCUbRS12+K0cjPB9WaW3cXIH+JV5AaFGgNqp/+MGFZzBUySY3pe26KQU41Cib5rOJnhqeUTeiI9y1VNOYmyBfnzsiZVYYkSrQthWSh/pzIaWzMNA5tZ0xxbFa9ufif188wuglyodIMuWLLRVEmCSZk/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC81Zf/ks5F3busu/dXtUaziKMMJ3AK5+DBNTTgDlrQBgYTeIIXeHVS59l5c96XrSWnmDmGX3A+vgEi6Y9u</latexit>

(

<latexit sha1_base64="I+B4U+oKg6eEmdI37SAFks1M5q8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GOpF48V7Ac0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1Bqw8GHu/NMDMvTKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuhdRwKRRvo0DJe6nmNA4l74aT27nffeTaiEQ94DTlQUxHSkSCUbRS12+K0cjPB9WaW3cXIH+JV5AaFGgNqp/+MGFZzBUySY3pe26KQU41Cib5rOJnhqeUTeiI9y1VNOYmyBfnzsiZVYYkSrQthWSh/pzIaWzMNA5tZ0xxbFa9ufif188wuglyodIMuWLLRVEmCSZk/jsZCs0ZyqkllGlhbyVsTDVlaBOq2BC81Zf/ks5F3busu/dXtUaziKMMJ3AK5+DBNTTgDlrQBgYTeIIXeHVS59l5c96XrSWnmDmGX3A+vgEi6Y9u</latexit>

z ∼ Qφ(z|X)
<latexit sha1_base64="UPijVxZlOx0JdMpIxSlRAgB7I+s=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBHqpiQq6LLoxmUL9gFNCJPppB06MwkzE6VN+yluXCji1i9x5984bbPQ1gMXDufcy733hAmjSjvOt7W2vrG5tV3YKe7u7R8c2qWjlopTiUkTxyyWnRApwqggTU01I51EEsRDRtrh8G7mtx+JVDQWD3qUEJ+jvqARxUgbKbBLY09RDhuBlwxoZTzpnAd22ak6c8BV4uakDHLUA/vL68U45URozJBSXddJtJ8hqSlmZFr0UkUShIeoT7qGCsSJ8rP56VN4ZpQejGJpSmg4V39PZIgrNeKh6eRID9SyNxP/87qpjm78jIok1UTgxaIoZVDHcJYD7FFJsGYjQxCW1NwK8QBJhLVJq2hCcJdfXiWti6p7WXUaV+XabR5HAZyAU1ABLrgGNXAP6qAJMHgCz+AVvFkT68V6tz4WrWtWPnMM/sD6/AGFcZOC</latexit>

Gθ
<latexit sha1_base64="/QWYaTH1XeFxydKb9Bg+e8EgFzg=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0lU0GPRgx4r2A9oQ9lsJ+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqOTR4LGPdDpgBKRQ0UKCEdqKBRYGEVjC6mfqtJ9BGxOoBxwn4ERsoEQrO0Ert214Xh4CsV664VXcGuky8nFRIjnqv/NXtxzyNQCGXzJiO5yboZ0yj4BImpW5qIGF8xAbQsVSxCIyfze6d0BOr9GkYa1sK6Uz9PZGxyJhxFNjOiOHQLHpT8T+vk2J45WdCJSmC4vNFYSopxnT6PO0LDRzl2BLGtbC3Uj5kmnG0EZVsCN7iy8ukeVb1zqvu/UWldp3HUSRH5JicEo9ckhq5I3XSIJxI8kxeyZvz6Lw4787HvLXg5DOH5A+czx/uUY/k</latexit>

X̃ = {x̃j}
M̃
j=1

<latexit sha1_base64="e0REoBw8eTJhZhdzUfdANQHAo5o=">AAACFnicbZDLSsNAFIYn9VbrLerSzWAR3FgSFXRTKLpxI1SwF2himEwm7djJhZmJWEKewo2v4saFIm7FnW/jpI2grQdm+Pj/c5g5vxszKqRhfGmlufmFxaXycmVldW19Q9/caoso4Zi0cMQi3nWRIIyGpCWpZKQbc4ICl5GOOzzP/c4d4YJG4bUcxcQOUD+kPsVIKsnRDyxJmUfSbla30oLvMye9zaz8rpvZzY98mWWOXjVqxrjgLJgFVEFRTUf/tLwIJwEJJWZIiJ5pxNJOEZcUM5JVrESQGOEh6pOewhAFRNjpeK0M7inFg37E1QklHKu/J1IUCDEKXNUZIDkQ014u/uf1Eumf2ikN40SSEE8e8hMGZQTzjKBHOcGSjRQgzKn6K8QDxBGWKsmKCsGcXnkW2oc186hmXB1XG2dFHGWwA3bBPjDBCWiAC9AELYDBA3gCL+BVe9SetTftfdJa0oqZbfCntI9vr7ig8Q==</latexit>

X = {xj}
M
j=1

<latexit sha1_base64="80EmBKcMKr2UPZDHHReiFdD59NY=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQq6KZQdONGqGAf0MQwmU7asZNJmJmIIcRfceNCEbd+iDv/xmmbhbYeuJfDOfcyd44fMyqVZX0bpaXlldW18nplY3Nre8fc3evIKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I1x9fTvzuAxGSRvxWpTFxQzTkNKAYKS15ZrXXcLJHL7vPnVz3hp3fXXtmzapbU8BFYhekBgq0PPPLGUQ4CQlXmCEp+7YVKzdDQlHMSF5xEklihMdoSPqachQS6WbT43N4qJUBDCKhiys4VX9vZCiUMg19PRkiNZLz3kT8z+snKjh3M8rjRBGOZw8FCYMqgpMk4IAKghVLNUFYUH0rxCMkEFY6r4oOwZ7/8iLpHNftk7p1c1prXhRxlME+OABHwAZnoAmuQAu0AQYpeAav4M14Ml6Md+NjNloyip0q+APj8wen+ZTD</latexit>

X = {xj}
M
j=1

<latexit sha1_base64="80EmBKcMKr2UPZDHHReiFdD59NY=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQq6KZQdONGqGAf0MQwmU7asZNJmJmIIcRfceNCEbd+iDv/xmmbhbYeuJfDOfcyd44fMyqVZX0bpaXlldW18nplY3Nre8fc3evIKBGYtHHEItHzkSSMctJWVDHSiwVBoc9I1x9fTvzuAxGSRvxWpTFxQzTkNKAYKS15ZrXXcLJHL7vPnVz3hp3fXXtmzapbU8BFYhekBgq0PPPLGUQ4CQlXmCEp+7YVKzdDQlHMSF5xEklihMdoSPqachQS6WbT43N4qJUBDCKhiys4VX9vZCiUMg19PRkiNZLz3kT8z+snKjh3M8rjRBGOZw8FCYMqgpMk4IAKghVLNUFYUH0rxCMkEFY6r4oOwZ7/8iLpHNftk7p1c1prXhRxlME+OABHwAZnoAmuQAu0AQYpeAav4M14Ml6Md+NjNloyip0q+APj8wen+ZTD</latexit>

{yj}
M
j=1

<latexit sha1_base64="MorK/rtmTum2R6Dp5kSzHnHvFrA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiQq6EYounEjVLAPaGKYTCft6GQSZiZKifkUNy4UceuXuPNvnLZZaOuBezmccy9z5wQJo1LZ9rdRWlhcWl4pr1bW1jc2t8zqdlvGqcCkhWMWi26AJGGUk5aiipFuIgiKAkY6wf3F2O88ECFpzG/UKCFehAachhQjpSXfrLrZyM/ucjfX/czJb698s2bX7QmseeIUpAYFmr755fZjnEaEK8yQlD3HTpSXIaEoZiSvuKkkCcL3aEB6mnIUEellk9Nza18rfSuMhS6urIn6eyNDkZSjKNCTEVJDOeuNxf+8XqrCUy+jPEkV4Xj6UJgyS8XWOAerTwXBio00QVhQfauFh0ggrHRaFR2CM/vledI+rDtHdfv6uNY4L+Iowy7swQE4cAINuIQmtADDIzzDK7wZT8aL8W58TEdLRrGzA39gfP4AcyOUGw==</latexit>

M<latexit sha1_base64="/ISTe8cor13/4N7T8tfJ6AenqYc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKeix68SK0YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqd+6wmV5rF8MOME/YgOJA85o8ZK9fteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1Fx65fl6k0eRwGO4QTOwIMrqMId1KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AKW3jNM=</latexit>

M̃
<latexit sha1_base64="EOo3Qtcm/gv2acfnyEBNkWXe8uA=">AAAB8HicbVBNS8NAEN3Ur1q/qh69BIvgqSQq6LHoxYtQwX5IG8pmM22X7m7C7kQoob/CiwdFvPpzvPlv3LY5aOuDgcd7M8zMCxPBDXret1NYWV1b3yhulra2d3b3yvsHTROnmkGDxSLW7ZAaEFxBAzkKaCcaqAwFtMLRzdRvPYE2PFYPOE4gkHSgeJ8zilZ67CIXEWR3k1654lW9Gdxl4uekQnLUe+WvbhSzVIJCJqgxHd9LMMioRs4ETErd1EBC2YgOoGOpohJMkM0OnrgnVoncfqxtKXRn6u+JjEpjxjK0nZLi0Cx6U/E/r5Ni/yrIuEpSBMXmi/qpcDF2p9+7EdfAUIwtoUxze6vLhlRThjajkg3BX3x5mTTPqv551bu/qNSu8ziK5Igck1Pik0tSI7ekThqEEUmeySt5c7Tz4rw7H/PWgpPPHJI/cD5/AAKwkIk=</latexit>

{ỹj}
M̃
j=1 ∼ N (0, I )

<latexit sha1_base64="MGdIxXHpbQPYtRQqWD3b54EjhxQ="></latexit>

z̃
<latexit sha1_base64="fWr+IcWEzp3XLQxdJNn3+l9KO+Q=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6LHoxWMF+yFtKJvNtF26uwm7G6GG/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9o6jhVFBs05rFqh0QjZxIbhhmO7UQhESHHVji6mfqtR1SaxfLejBMMBBlI1meUGCs9dA3jEWZPk1654lW9Gdxl4uekAjnqvfJXN4ppKlAayonWHd9LTJARZRjlOCl1U40JoSMywI6lkgjUQTY7eOKeWCVy+7GyJY07U39PZERoPRah7RTEDPWiNxX/8zqp6V8FGZNJalDS+aJ+yl0Tu9Pv3YgppIaPLSFUMXurS4dEEWpsRiUbgr/48jJpnlX986p3d1GpXedxFOEIjuEUfLiEGtxCHRpAQcAzvMKbo5wX5935mLcWnHzmEP7A+fwBRxGQtg==</latexit>

Lent
<latexit sha1_base64="BCKsRuvOCPix6Pf+HNcGzTQ38Zc=">AAACAXicbVDLSsNAFJ34rPUVdSO4CRbBVUlU0GXRjQsXFewDmhAm00k7dDIJMzdiCXHjr7hxoYhb/8Kdf+OkzUJbDwwczrmHufcECWcKbPvbWFhcWl5ZraxV1zc2t7bNnd22ilNJaIvEPJbdACvKmaAtYMBpN5EURwGnnWB0VfideyoVi8UdjBPqRXggWMgIBi355r4bYRgSzLOb3M9coA+QUQF57ps1u25PYM0TpyQ1VKLpm19uPyZppNOEY6V6jp2Al2EJjHCaV91U0QSTER7QnqYCR1R52eSC3DrSSt8KY6mfAGui/k5kOFJqHAV6sthXzXqF+J/XSyG88DImkhSoINOPwpRbEFtFHVafSUqAjzXBRDK9q0WGWGICurSqLsGZPXmetE/qzmndvj2rNS7LOiroAB2iY+Sgc9RA16iJWoigR/SMXtGb8WS8GO/Gx3R0wSgze+gPjM8f4R2Xzg==</latexit>

Figure 2: Model architecture. (a) At training time, the encoder Qφ infers a posterior over shape representations given an

input point cloud X , and samples a shape representation z from it. We then compute the probability of z in the prior

distribution (Lprior) through a inverse CNF F−1
ψ , and compute the reconstruction likelihood of X (Lrecon) through another

inverse CNF G−1
θ conditioned on z. The model is trained end-to-end to maximize the evidence lower bound (ELBO), which

is the sum of Lprior, Lrecon, and Lent (the entropy of the posteriorQφ(z|X)). (b) At test time, we sample a shape representation

z̃ by sampling w̃ from a Gaussian prior and transforming it with Fψ . To sample points from the shape represented by z̃, we

first sample points from the 3-D Gaussian prior and then move them according to the CNF parameterized by z̃.

1. Prior: Lprior(X;ψ, φ) , EQφ(z|x)[logPψ(z)] encour-

ages the encoded shape representation to have a high

probability under the prior, which is modeled by a CNF

as described in Section 5.2. We use the reparameteri-

zation trick [26] to enable a differentiable Monte Carlo

estimate of the expectation:

EQφ(z|x)[logPψ(z)] ≈
1

L

L
∑

l=1

logPψ(µ+ ǫl ⊙ σ) ,

where µ and σ are mean and standard deviation of the

isotropic Gaussian posterior Qφ(z|x) and L is simply

set to 1. ǫi is sampled from the standard Gaussian dis-

tribution N (0, I ).

2. Reconstruction likelihood: Lrecon(X; θ, φ) ,

EQφ(z|x)[logPθ(X|z)] is the reconstruction log-

likelihood of the input point set, computed as de-

scribed in Section 5.1. The expectation is also esti-

mated using Monte Carlo sampling.

3. Posterior Entropy: Lent(X;φ) , H[Qφ(z|X)] is the

entropy of the approximated posterior:

H[Qφ(z|X)] = d
2 (1 + ln (2π)) +

∑d

i=1 lnσi .

All the training details (e.g., hyper-parameters, model ar-

chitectures) are included in the supplementary materials.

5.4. Sampling

To sample a shape representation, we first draw w̃ ∼
N (0, I ) then pass it through Fψ to get z̃ = Fψ(w̃). To gen-
erate a point given a shape representation z̃, we first sample
a point ỹ ∈ R

3 from N (0, I ), then pass ỹ throughGθ condi-
tioned on z̃ to produce a point on the shape : x̃ = Gθ(w̃; z).

To sample a point cloud with size M̃ , we simply repeat it for

M̃ times. Combining these two steps allows us to sample a

point cloud with M̃ points from our model:

X̃ = {Gθ(ỹj ;Fψ(w̃))}1≤j≤M̃ , w̃ ∼ N (0, I ), ∀j, ỹj ∼ N (0, I ) .

6. Experiments

In this section, we first introduce existing metrics for

evaluating point cloud generation, discuss their limitations,

and introduce a new metric that overcomes these limita-

tions. We then compare the proposed method with previ-

ous state-of-the-art generative models of point clouds, using

both previous metrics and the proposed one. We addition-

ally evaluate the reconstruction and representation learning

ability of the auto-encoder part of our model.

6.1. Evaluation metrics

Following prior work, we use Chamfer distance (CD)

and earth mover’s distance (EMD) to measure the similarity
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between point clouds. Formally, they are defined as follows:

CD(X,Y ) =
∑

x∈X

min
y∈Y

‖x− y‖22 +
∑

y∈Y

min
x∈X

‖x− y‖22,

EMD(X,Y ) = min
φ:X→Y

∑

x∈X

‖x− φ(x)‖2,

where X and Y are two point clouds with the same number

of points and φ is a bijection between them. Note that most

previous methods use either CD or EMD in their training

objectives, which tend to be favored if evaluated under the

same metric. Our method, however, does not use CD or

EMD during training.

Let Sg be the set of generated point clouds and Sr be

the set of reference point clouds with |Sr| = |Sg|. To eval-

uate generative models, we first consider the three metrics

introduced by Achlioptas et al. [1]:

• Jensen-Shannon Divergence (JSD) are computed be-

tween the marginal point distributions:

JSD(Pg, Pr) =
1

2
DKL(Pr||M) +

1

2
DKL(Pg||M) ,

where M = 1
2 (Pr + Pg). Pr and Pg are marginal dis-

tributions of points in the reference and generated sets,

approximated by discretizing the space into 283 vox-

els and assigning each point to one of them. However,

it only considers the marginal point distributions but

not the distribution of individual shapes. A model that

always outputs the “average shape” can obtain a per-

fect JSD score without learning any meaningful shape

distributions.

• Coverage (COV) measures the fraction of point

clouds in the reference set that are matched to at least

one point cloud in the generated set. For each point

cloud in the generated set, its nearest neighbor in the

reference set is marked as a match:

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y )|X ∈ Sg}|

|Sr|
,

where D(·, ·) can be either CD or EMD. While cover-

age is able to detect mode collapse, it does not eval-

uate the quality of generated point clouds. In fact, it

is possible to achieve a perfect coverage score even if

the distances between generated and reference point

clouds are arbitrarily large.

• Minimum matching distance (MMD) is proposed to

complement coverage as a metric that measures qual-

ity. For each point cloud in the reference set, the dis-

tance to its nearest neighbor in the generated set is

computed and averaged:

MMD(Sg, Sr) =
1

|Sr|

∑

Y ∈Sr

min
X∈Sg

D(X,Y ) ,

where D(·, ·) can be either CD or EMD. However,

MMD is actually very insensitive to low-quality point

clouds in Sg , since they are unlikely to be matched to

real point clouds in Sr. In the extreme case, one can

imagine that Sg consists of mostly very low-quality

point clouds with one additional point cloud in each

mode of Sr, yet has a reasonably good MMD score.

As discussed above, all existing metrics have their limi-

tations. As will be shown later, we also empirically find all

these metrics sometimes give generated point clouds even

better scores than real point clouds, further casting doubt

on whether they can ensure a fair model comparison. We

therefore introduce another metric that we believe is better

suited for evaluating generative models of point clouds:

• 1-nearest neighbor accuracy (1-NNA) is proposed

by Lopez-Paz and Oquab [31] for two-sample tests,

assessing whether two distributions are identical. It

has also been explored as a metric for evaluating

GANs [48]. Let S−X = Sr ∪ Sg − {X} and NX
be the nearest neighbor of X in S−X . 1-NNA is the

leave-one-out accuracy of the 1-NN classifier:

1-NNA(Sg, Sr)

=

∑

X∈Sg
I[NX ∈ Sg] +

∑

Y ∈Sr
I[NY ∈ Sr]

|Sg|+ |Sr|
,

where I[·] is the indicator function. For each sample,

the 1-NN classifier classifies it as coming from Sr or

Sg according to the label of its nearest sample. If Sg
and Sr are sampled from the same distribution, the

accuracy of such a classifier should converge to 50%
given a sufficient number of samples. The closer the

accuracy is to 50%, the more similar Sg and Sr are,

and therefore the better the model is at learning the

target distribution. In our setting, the nearest neigh-

bor can be computed using either CD or EMD. Unlike

JSD, 1-NNA considers the similarity between shape

distributions rather than between marginal point distri-

butions. Unlike COV and MMD, 1-NNA directly mea-

sures distributional similarity and takes both diversity

and quality into account.

6.2. Generation

We compare our method with three existing generative

models for point clouds: raw-GAN [1], latent-GAN [1], and

PC-GAN [29], using their official implementations that are

either publicly available or obtained by contacting the au-

thors. We train each model using point clouds from one of

the three categories in the ShapeNet [3] dataset: airplane,

chair, and car. The point clouds are obtained by sam-

pling points uniformly from the mesh surface. All points

in each category are normalized to have zero-mean per axis
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Table 1: Generation results. ↑: the higher the better, ↓: the lower the better. The best scores are highlighted in bold. Scores

of the real shapes that are worse than some of the generated shapes are marked in gray. MMD-CD scores are multiplied by

103; MMD-EMD scores are multiplied by 102; JSDs are multiplied by 102.

# Parameters (M)
JSD (↓)

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

Category Model Full Gen CD EMD CD EMD CD EMD

Airplane

r-GAN 7.22 6.91 7.44 0.261 5.47 42.72 18.02 93.58 99.51

l-GAN (CD) 1.97 1.71 4.62 0.239 4.27 43.21 21.23 86.30 97.28

l-GAN (EMD) 1.97 1.71 3.61 0.269 3.29 47.90 50.62 87.65 85.68

PC-GAN 9.14 1.52 4.63 0.287 3.57 36.46 40.94 94.35 92.32

PointFlow (ours) 1.61 1.06 4.92 0.217 3.24 46.91 48.40 75.68 75.06

Training set - - 6.61 0.226 3.08 42.72 49.14 70.62 67.53

Chair

r-GAN 7.22 6.91 11.5 2.57 12.8 33.99 9.97 71.75 99.47

l-GAN (CD) 1.97 1.71 4.59 2.46 8.91 41.39 25.68 64.43 85.27

l-GAN (EMD) 1.97 1.71 2.27 2.61 7.85 40.79 41.69 64.73 65.56

PC-GAN 9.14 1.52 3.90 2.75 8.20 36.50 38.98 76.03 78.37

PointFlow (ours) 1.61 1.06 1.74 2.42 7.87 46.83 46.98 60.88 59.89

Training set - - 1.50 1.92 7.38 57.25 55.44 59.67 58.46

Car

r-GAN 7.22 6.91 12.8 1.27 8.74 15.06 9.38 97.87 99.86

l-GAN (CD) 1.97 1.71 4.43 1.55 6.25 38.64 18.47 63.07 88.07

l-GAN (EMD) 1.97 1.71 2.21 1.48 5.43 39.20 39.77 69.74 68.32

PC-GAN 9.14 1.52 5.85 1.12 5.83 23.56 30.29 92.19 90.87

PointFlow (ours) 1.61 1.06 0.87 0.91 5.22 44.03 46.59 60.65 62.36

Training set - - 0.86 1.03 5.33 48.30 51.42 57.39 53.27

and unit-variance globally. Following prior convention [1],

we use 2048 points for each shape during both training and

testing, although our model is able to sample an arbitrary

number of points. We additionally report the performance

of point clouds sampled from the training set, which is con-

sidered as an upper bound since they are from the target

distribution.

In Table 1, we report the performance of different mod-

els, as well as their number of parameters in total (full) or in

the generative pathways (gen). We first note that all the pre-

vious metrics (JSD, MMD, and COV) sometimes assign a

better score to point clouds generated by models than those

from the training set (marked in gray). The 1-NNA metric

does not seem to have this problem and always gives a bet-

ter score to shapes from the training set. Our model outper-

forms all baselines across all three categories according to

1-NNA and also obtains the best score in most cases as eval-

uated by other metrics. Besides, our model has the fewest

parameters among compared models. In the supplementary

materials, we perform additional ablation studies to show

the effectiveness of different components of our model. Fig-

ure 3 shows some examples of novel point clouds generated

by our model. Figure 4 shows examples of point clouds

reconstructed from given inputs.

Figure 3: Examples of point clouds generated by our model.

From top to bottom: airplane, chair, and car.

6.3. Auto­encoding

We further quantitatively compare the reconstruction

ability of our flow-based auto-encoder with l-GAN [1] and

AtlasNet [17]. Following the setting of AtlasNet, the state-

of-the-art in this task, we train our auto-encoder on all

shapes in the ShapeNet dataset. The auto-encoder is trained

with the reconstruction likelihood objective Lrecon only. At
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Figure 4: Examples of point clouds reconstructed from in-

puts. From top to bottom: airplane, chair, and car. On each

side of the figure we show the input point cloud on the left

and the reconstructed point cloud on the right.

Table 2: Unsupervised feature learning. Models are first

trained on ShapeNet to learn shape representations, which

are then evaluated on ModelNet40 (MN40) and Model-

Net10 (MN10) by comparing the accuracy of off-the-shelf

SVMs trained using the learned representations.

Method MN40 (%) MN10 (%)

SPH [23] 68.2 79.8

LFD [4] 75.5 79.9

T-L Network [14] 74.4 -

VConv-DAE [40] 75.5 80.5

3D-GAN [46] 83.3 91.0

l-GAN (EMD) [1] 84.0 95.4

l-GAN (CD) [1] 84.5 95.4

PointGrow [42] 85.7 -

MRTNet-VAE [13] 86.4 -

FoldingNet [49] 88.4 94.4

l-GAN (CD) [1] † 87.0 92.8

l-GAN (EMD) [1] † 86.7 92.2

PointFlow (ours) 86.8 93.7

† We run the official code of l-GAN on our pre-

processed dataset using the same encoder ar-

chitecture as our model.

test time, we sample 4096 points per shape and split them

into an input set and a reference set, each consisting of 2048
points. We then compute the distance (CD or EMD) be-

tween the reconstructed input set and the reference set 1.

1We use a separate reference set because we expect the auto-encoder

to learn the point distribution. Exactly reproducing the input points is ac-

ceptable behavior, but should not be given a higher score than randomly

sampling points from the underlying point distribution.

Table 3: Auto-encoding performance evaluated by CD and

EMD. AtlasNet is trained with CD and l-GAN is trained on

CD or EMD. Our method is not trained on CD or EMD. CD

and EMD scores are multipled by 104 and 102 respectively.

Model # Parameters (M) CD EMD

l-GAN (CD) [1] 1.77 7.12 7.95

l-GAN (EMD) [1] 1.77 8.85 5.26

AtlasNet [17] 44.9 5.13 5.97

PointFlow (ours) 1.30 7.54 5.18

Although our model is not directly trained with EMD, it ob-

tains the best EMD score, even higher than l-GAN trained

with EMD and AtlasNet which has more than 40 times more

parameters.

6.4. Unsupervised representation learning

We finally evaluate the representation learning ability of

our auto-encoders. Specifically, we extract the latent repre-

sentations of our auto-encoder trained in the full ShapeNet

dataset and train a linear SVM classifier on top of it on Mod-

elNet10 or ModelNet40 [47]. Only for this task, we normal-

ize each individual point cloud to have zero-mean per axis

and unit-variance globally, following prior works [53, 1].

We also apply random rotations along the gravity axis when

training the auto-encoder.

A problem with this task is that different authors have

been using different encoder architectures with a differ-

ent number of parameters, making it hard to perform an

apples-to-apples comparison. In addition, different authors

may use different pre-processing protocols (as also noted by

Yang et al. [49]), which could also affect the numbers.

In Table 2, we still show the numbers reported by previ-

ous papers, but also include a comparison with l-GAN [1]

trained using the same encoder architecture and the exact

same data as our model. On ModelNet10, the accuracy of

our model is 1.5% and 0.9% higher than l-GAN (EMD)

and l-GAN (CD), respectively. On ModelNet40, the per-

formance of the three models is very close.

7. Conclusion and future works

In this paper, we propose PointFlow, a generative model

for point clouds consisting of two levels of continuous nor-

malizing flows trained with variational inference. Future

work includes applications to other tasks such as point cloud

reconstruction from a single image.
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