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Abstract

This paper presents a scene agnostic neural architec-

ture for camera localization, where model parameters and

scenes are independent from each other. Despite recent ad-

vancement in learning based methods, most approaches re-

quire training for each scene one by one, not applicable

for online applications such as SLAM and robotic naviga-

tion, where a model must be built on-the-fly. Our approach

learns to build a hierarchical scene representation and pre-

dicts a dense scene coordinate map of a query RGB image

on-the-fly given an arbitrary scene. The 6D camera pose of

the query image can be estimated with the predicted scene

coordinate map. Additionally, the dense prediction can be

used for other online robotic and AR applications such as

obstacle avoidance. We demonstrate the effectiveness and

efficiency of our method on both indoor and outdoor bench-

marks, achieving state-of-the-art performance.

1. Introduction

Camera localization amounts to determining the orienta-

tion and position of a camera from the image it captures.

It is a critical component for many applications such as

SLAM, location recognition, robot navigation, and aug-

mented reality. Conventionally [30, 26, 25, 16, 15, 7], this

problem is solved by first finding a set of feature correspon-

dences between the input image and a reference scene (ei-

ther represented by a point cloud or a set of reference im-

ages), and then estimating the camera pose by minimizing

some energy function defined over these correspondences.

This approach is often brittle due to the long pipeline of

hand-crafted components, i.e., image retrieval, feature cor-

respondence matching, and camera pose estimation.

Recently, learning based approaches [18, 4, 11, 3] have

advanced the performance of camera localization with

random forests (RFs) and convolutional neural networks

(CNNs). Some works [11, 10, 32, 2] directly regress the

camera poses using CNNs; while others [9, 31, 27, 3, 5]

∗These authors contributed equally to this work.

first estimate a scene coordinate map, defining the xyz co-

ordinates of each pixel in the query image, then compute

camera pose accordingly, which is a well posed optimiza-

tion problem. These methods often enjoy better robustness

than the conventional pipeline. However, the RFs or CNNs

are typically learned from images for a specific scene and

require retraining or adaptation before they can be applied

to a different scene. While online adaptation is possible, it

has been only demonstrated with RGBD query images and

a RF [6]. CNNs typically produce higher localization accu-

racy, but it is unknown how a CNN can be quickly adapted

to a different scene, which limits their applications.

We follow this learning based approach for camera lo-

calization and aim to build a scene agnostic network that

works on unseen scenes without retraining or adaptation.

This capability is important for online applications such as

SLAM and robotic navigation where retraining is impos-

sible. We focus on the problem of scene coordinate map

estimation, and adopt a similar method as [5] to compute

the camera pose from the estimated scene coordinate map,

while striving to make this process scene agnostic. The esti-

mated dense scene coordinate map might be further applied

for other applications such as robot obstacle avoidance.

To achieve this goal, we design a network, SANet, to ex-

tract a scene representation from some reference scene im-

ages and 3D points, instead of encoding specific scene in-

formation in network parameters, so that our network can be

applied to different scenes without any retraining or adapta-

tion. Specifically, our scene representation is a hierarchical

pyramid of features at different resolutions. At querying

time, this scene representation is combined with features

from the query image to predict a dense scene coordinate

map from coarse to fine. Intuitively, the network learns to

fit the query image onto the 3D scene surfaces in a visually

consistent manner. In order to fuse query image features

and scene features, we adopt a similar structure as the Point-

Net [21, 22], which can handle unordered point clouds, to

predict the scene coordinate features.

To demonstrate the effectiveness of the proposed

method, we have evaluated our method on several bench-

mark datasets including indoor scenes (7Scenes [27]) and
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outdoor scenes (Cambridge [11]). We have achieved

state-of-the-art performance, while our method works

for arbitrary scenes without retraining or adaptation.

The code is available at https://github.com/

sfu-gruvi-3dv/sanet_relocal_demo.

2. Related Work

Feature Matching & Camera Fitting: In conventional

methods, a few neighboring images are first retrieved, a

set of 2D-3D correspondences are then matched between

the query image and 3D scene points based on some hand-

crafted descriptors, and camera poses are finally recov-

ered by the PnP algorithms [8, 13]. These works focus

on making the hand-crafted descriptor either more effi-

cient [17, 26], more robust [24, 29], or more scalable to

large outdoor scenes [15, 23, 26]. However, the hand-

crafted feature detectors and descriptors only work with

well textured images. Recently, InLoc [30] pushed for-

ward this direction by replacing the hand-crafted features by

CNNs, i.e. NetVLAD [1] for image retrieve and VGG [28]

for feature matching. While achieving strong performance,

it is still based on the conventional pipeline of correspon-

dence matching and camera model fitting. In comparison,

learning based methods (including our work) can regress a

scene coordinate map from the query image directly, which

has the advantages of exploiting global context information

in the image to recover 3D structures at textureless regions.

Besides better robustness, the dense scene coordinate map

as a dense 3D reconstruction might be used for robot obsta-

cle avoidance or other applications.

Random Forests: Shotton et al. [27] proposed to regress

the scene coordinates using a Random Forest, and this

pipeline was extended in several following works. Guzman-

Rivera et al. [9] trained a random forest to predict diverse

scene coordinates to resolve scene ambiguities. Valentin et

al. [31] trained a random forest to predict multi-model dis-

tributions of scene coordinates for increased pose accuracy.

Brachmann et al. [4] addressed camera localization from an

RGB image instead of RGB-D, utilizing the increased pre-

dictive power of an auto-context random forest. None of

these works are scene agnostic. A recent work [6] has gen-

eralized this approach to unseen scenes with an RGBD cam-

era and online adaptation. Compared with these works, our

method is scene agnostic and only requires an RGB image

for camera localization, which is appliable in both indoor

and outdoor scenes.

Convolutional Neural Networks: CNN based meth-

ods have brought major advancements in performance.

PoseNet [11] solved camera localization as a classifica-

tion problem, where the 6 DOF camera poses are regressed

directly. Several follow-up works further improved the

training losses [10] or utilized the temporal dependency

of videos to improve localization accuracy [32]. The re-

cent work [2] learned a continuous metric to measure over-

lap between images, and the relative camera pose was re-

gressed between the query image and its closest neighbor.

Instead of direct camera pose regression, more recent works

use CNNs to regress the scene coordinates as intermediate

quantities [14, 3, 5] because the following camera pose es-

timation from a scene coordinate map is a well-behaved op-

timization problem. Our method belongs to this categories

and use CNNs to predict the scene coordinate of an image.

However, our network extracts hierarchical features from

scenes rather than learn a set of scene-specific network pa-

rameters. In this way, our method is scene agnostic and can

be applied to unknown scenes.

3. Overview

The overview of our pipeline is illustrated in Figure 1.

The inputs to our method are a set of scene images {Is}all
with its associated 3D point cloud {Xs}all and a query im-

age q captured in the same scene. The output is an estimated

6D camera pose Θq = [Rq|tq] of the query image.

To narrow down the input space for better efficiency and

performance, we first use NetVLAD [1] to retrieve n nearest

neighbors of the query image from all scene images. Then,

we propose a network to regress the scene coordinate map

of the query by interpolating the 3D points associated with

the retrieved scene images (Section 4). The interpolation is

done by firstly constructing hierarchical representations of

the scene and the query image respectively through our net-

work, named as scene pyramid and query feature pyramid

(Section 4.1). With two constructed pyramids, we design

two modules: Query-Scene Registration (QSR) and Fusing,

and apply them iteratively to regress the scene coordinate

map in a coarse-to-fine manner (Section 4.2). The ar-

chitecture is End-To-End trainable to perform both tasks of

constructing the pyramids and predicting dense scene coor-

dinate map. In the end, the camera pose of query image can

be estimated by RANSAC+PnP as in [5] (Section 4.3).

4. Method

4.1. Constructing Pyramids

Scene Pyramid: A scene retrieved by NetVLAD [1] con-

tains a collection of n reference RGB images {Is|s =
1, ..., n}vlad (256×192 pixels in our implementation), each

of which is associated with a scene coordinate map Xs ∈
{Xs}vlad (either dense or sparse) defined in the world co-

ordinate system. We represent a scene as a pyramid that

encodes both geometry and appearance information at dif-

ferent scales. Each pyramid level consists of a set of 3D

point coordinates appended with their image features ex-

tracted by a CNN.

To construct such a scene pyramid, we first extract fea-

tures from each scene image Is by a convolutional neural
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Figure 1: Pipeline of our system. The top branch constructs the scene pyramid, while the bottom branch predict a scene

coordinate map for the query image.

network. Specifically, we use the Dilated Residual Network

(DRN38) [34] as our feature extractor and obtain feature

maps at different resolutions by removing all dilations and

applying stride-2 down-sampling at the 1st ResBlock of

each resolution level. We extract the feature maps {Fl
s|l =

1, ..., 5} from DRN38 with resolution from 4 × 3 up to

64 × 48 by a factor of 2. The weights of the network are

shared by all scene frame images.

In addition, the scene coordinate maps Xs are scaled

to match the resolution of feature maps at different levels.

Here, we reduce their resolution by applying the Average

Pooling filter with a 2×2 kernel, and ignore non-existing

points when inputs are sparse. The scaled scene coordinate

maps are denoted as {X̃l
s|l = 1, ..., 5}.

Finally, at each level l, we extract all pixels with valid

scene coordinates {x̃l
i} and concatenate them with corre-

sponding feature vectors {f li}. This way, we get the scene

pyramid S = {Sl|l = 1, ..., 5} = {(f li , x̃
l
i)|l = 1, ..., 5; i =

1, ...,ml}, which is a multi-scale point clouds equipped

with image feature vectors, where ml is the number of

points at level l.

Query Feature Pyramid: The feature pyramid of query

image {El|l = 1, ..., 5} is extracted by the same DRN38

network used for constructing the scene pyramid S, thus

with identical feature dimensions as {Fl
s|l = 1, ..., 5}.

4.2. Predicting Scene Coordinate

Given these two types of pyramids S and E, we predict

the scene coordinate map Ŷ for the query image q. To bet-

ter encode the global scene context and speedup computa-

tion, we take a coarse-to-fine strategy to predict the scene

coordinate map. The network first produces a coarse scene

coordinate map at resolution of 4× 3 as a rough estimation,

then finer maps are refined iteratively level by level to yield

more detailed predictions.

At each iteration, we sequentially apply two modules to

predict the scene coordinate map: (1) The Query-Scene

Registration (QSR) module learns to register each query

feature pixel into the 3D scene space by interpolating the

scene coordinates of scene pyramid points based on visual

similarity; (2) The Fusing module fuses cross-pixel image

context information to regularize the pixel-wise registration

given by the QSR. For simplification, we will treat the QSR

module as a black box for now to explain the iterative scene

coordinate map prediction. We will discuss the QSR mod-

ule in detail later. The iterative pipeline is illustrated in Fig-

ure 2.

At the initial level l = 1, we predict the coarsest scene

coordinate map Ŷ1 from the query image feature E1 and

the scene point clouds S1. First, we register the feature E1

of each pixel to the 3D scene space by feeding E1 and S1

into the QSR module. The registration results are encoded

into a scene reference feature R1. Second, since each pixel

of R1 is computed independently and may contain erro-

neous predictions (e.g. featureless area), we further regu-

larize the QSR registration by fusing with query image fea-

ture E1 that encodes the cross-pixel contextual information

as the additional geometry constraint. Specifically, R1 is

concatenated with the query image feature E1, and send to

a ResBlock to yield a combined feature C1, which is de-

coded by a 1× 1 Conv to get the prediction Ŷ1. Note that

both Ŷ1 and C1 will be utilized by the next level.

The finer levels l > 1 share a similar process as the initial

one but taking in additional inputs, i.e., the combined fea-

ture Cl−1 and prediction Ŷl−1 from previous level, which

are up-sampled by nearest neighbor interpolation yielding

up(Cl−1) and up(Ŷl−1) to match the resolution of cur-

rent level. The QSR module takes the query image feature
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Figure 2: Iterative scene coordinates prediction from level 1

to level 2. For level l > 2, the operation is identical to level

2, please refer to main text for details.

El, the point cloud Sl, as well as the previous prediction

up(Ŷl−1) as inputs to produce a scene reference feature

Rl. Then, we fuse El with up(Cl−1) from previous level

to better leverage high-level image context. The resulting

feature map is further fused with Rl and decoded by 1 × 1
Conv, producing the current level combined feature Cl and

prediction Ŷl.

Query-Scene Registration (QSR): In QSR, the query im-

age feature El is processed per pixel. For each pixel p in

El, the QSR module learns to register the feature vector

El[p] into the 3D scene point cloud Sl, and encodes the

registration result as a scene reference feature Rl[p]. Two

sub-steps are involved in this module: (1) sample a subset of

the scene point cloud Sl
sub = {(f li , x̃

l
i)|i = 1, ..., kl} ⊆ Sl,

where kl is the number of samples; (2) execute the regis-

tration through a PointNet [21]-like architecture with El[p]
and Sl

sub as inputs; see Figure 3 for illustration.

At the level l, to narrow down the solution space and

let the network focus on local details, we sample a sub-

set of scene points Sl
sub ⊆ Sl from the neighbourhood of

previous prediction up(Ŷl−1)[p], which is inspired by the

Sampling & Grouping strategy in PointNet++ [22].

The neighbourhood is defined as a sphere with radius rl.

When l = 1, we simply have S1

sub = S1, namely all scene

points are used.

Given the query image feature El[p] and scene points

Sl
sub, we design a network based on PointNet [21] to pro-

cess the query-to-scene registration. PointNet only pro-

cesses the positional information encoded in the xyz co-

ordinates. However, our network needs to filter the posi-

tional information according to the appearance correlation

between the query pixel and the 3D scene. To do so, we

adopt an MLP to extract the appearance correlation between

the query image feature El[p] and the scene appearance

feature f l of each scene point. The resulting features are

appended with the 3D coordinates x̃l and fed into a Point-
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Figure 3: Query-Scene Registration(QSR) at level l.

Net [21] (without Spatial Transform) to produce the scene

reference feature Rl[p] that encodes the registration result.

Please refer to the supplementary for detail configurations.

Training Loss: We train the network for scene coordinate

prediction by supervised training with ground truth scene

coordinate maps of query images. Here, we apply the L2-

norm loss [5] averaged over all pixel p and pyramid levels l

as bellow,

L =
∑

l

∑

p

vl[p]
∥

∥

∥
Yl[p]− Ŷl[p]

∥

∥

∥
, (1)

where Yl, Ŷl are the ground truth and predicted scene co-

ordinate map respectively; vl[p] = 1 if the ground-truth

exists for pixel p at level l, otherwise vl[p] = 0.

4.3. Query Pose Estimation

Given a predicted scene coordinate map Ŷ at the high-

est resolution, the 6D camera pose Θq of the query image

can be estimated by the PnP algorithm [8, 13]. Since the

scene coordinate map contains outliers, a collection of k 4-

point tuples are randomly sampled from predicted coordi-

nates. The hypothesis pose set H = {hj |j = 1, ..., k} can

be estimated by solving the PnP problem for each 4-point

tuple. We then find the best hypothesis h∗ that is most co-

herent with the predicted scene coordinate map. The final

camera pose Θq is obtained by further refining h∗ using all

inliers. Interested readers are referred to DSAC++ [5] for

more details.

5. Experiments

Datasets: We train and evaluate our method on both indoor

and outdoor scenes. For indoor scenes, we train and evalu-

ate our pipeline on SUN3D [33] and 7Scenes [27] datasets,

both capturing raw indoor RGB-D video sequences with the

ground-truth camera poses provided. SUN3D contains more

than 300 scene sequences, while 7Scenes consists of 7 dif-

ferent indoor scenes. For 7Scenes, each scene is divided

into multiple train and test sequences with a thousand
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of frames each. We train our model with SUN3D sequences,

and evaluate on the 7Scenes dataset. For each test scene, we

build the scene pyramid with the train frames and use the

frames in the test sequences as queries.

The Cambridge Landmarks [11] is used for evaluating

our pipeline on outdoor scenes. The dataset contains 6 dif-

ferent outdoor scenes with only RGB video frames avail-

able. To obtain 3D point clouds, we use the dense MVS

reconstruction provided by [5]. Before testing on a spe-

cific scene, we finetune our network, which is pre-trained on

SUN3D, with the remaining 5 scenes. When testing, similar

to 7Scenes, the scene pyramid is constructed with train

frames of the testing scene, and the test frames are used

as queries for evaluating the trained model.

Comparison: We compare estimated camera poses,

method efficiency, and predicted scene geometry against

various scene-independent and scene-specific methods. Ac-

tive Search [26] and InLoc [30] are scene independent,

which takes a 3D point cloud and some reference images

as input, and utilize traditional hand-crafted or pre-trained

deep features for matching query patches to the scene points

respectively. Random Forest based approaches [18, 4],

DSAC [3], and DSAC++ [5] are scene specific, which train

their model and predict scene coordinate maps on the same

scene. The pose regression based method [11] that trained

with 3D geometry loss is also compared.

5.1. Implementation Details

Training Samples: In order to train our network, we need

to construct training samples beforehand. Each training

sample consists of 5 scene frames for building scene pyra-

mid, and 1 query image.

From the SUN3D indoor dataset, we randomly select 388

video sequences. For each sequence, we randomly choose

10% of all frames as anchors. For each anchor frame, we

collect 4 other scene frames in the sequence, where each

new frame either shares more than 20% pixels with the pre-

vious frame, or translates less than 2 meters from the previ-

ous frame. In the final step, 50 query frames are randomly

collected between the first and the fifth frame. In the end,

we have more than 200K training samples.

As for the Cambridge Landmarks outdoor dataset, we

finetune the network using 5 out 6 scenes, and test on the

remaining one. All frames in training scenes are used as

query frames, and for each query we run NetVLAD [1] to

retrieval 100 closest candidate frames. Among these 100

candidates, we randomly choose 5 scene frames with rela-

tive translation less than 2 meters and relative rotation less

than 45◦. This way, we obtain in total 15K-30K training

samples for each test scene.

Training: Our network is implemented with PyTorch [20],

and trained on 1080Ti with 11G memory. When train-

ing the network, we set the sampling radius r =

0% 20% 40% 60% 80% 100%

RF1 [4]

RF2 [18]

DSAC [3]

DSAC++ [5]

Ours (Baseline)

InLoc (Skip10) [30]

Ours (Skip10)

Ours

55.2%

64.5%

62.5%

76.1%

63.8%

66.3%

67.9%

68.2%

Figure 4: Percentage of predicted camera poses falling

within the threshold of (5◦, 5cm) on 7Scenes indoor

dataset by RF1 [4], RF2 [18], DSAC++ [5], DSAC [3],

InLoc(Skip10) [30], and our approaches.

[1.5m, 0.75m, 0.5m, 0.25m] for sampling local scene

points (Section 4.2) at level 2 to 5 respectively. For lev-

els l > 1, the number of sampled points in QSR is set to

kl = 64. For each training sample, we normalize their

scene coordinates by subtracting the scene center, which is

computed by averaging all scene coordinates in 3D space.

Due to different scales of outdoor scenes in the Cambridge

Landmark dataset, we scale their scene coordinates into a

5m × 5m × 5m cube. To augment the data, we add ran-

dom rotation around the up direction to scene coordinates,

and brightness jittering to scene RGB images. The opti-

mizer Adam [12] with initial learning rate of 2.0× 10−4 is

applied, and the batch size is set to 6.

Inference: Limited by the size of GPU memory, for

each query image, we retrieve 10 nearest scene frames by

NetVLAD [1] to build the scene pyramid. The retrieval step

is accelerated with knncuda library. We set the sampling

radius with r = [0.75m, 0.5m, 0.25m, 0.125m] for both in-

door and outdoor scenes1 and set the number of sampled

points kl = 64 for levels l > 1. Note that we uniformly

scale all scene coordinates into a 5m × 5m × 5m cube for

outdoor scenes.

5.2. Localization Accuracy

We first measure localization accuracy in terms of per-

centage of predicted poses falling within the threshold of

(5◦, 5cm). Figure 4 shows comparison results with other

methods on 7Scenes. Our method outperforms the Random

Forest based methods [18, 4], and DSAC [3]. Since the in-

ference of InLoc [30] takes a considerable amount of time

for all query frames, we only run InLoc algorithm on 1 out

of every 10 testing frames, whose performance is denoted

as InLoc (Skip10). Under the same setting, our method Our

(Skip10) outperforms InLoc (Skip10) by 1.6%. Note that

1Except for Street and Great Court, for which we use r =
[1.5m, 0.75m, 0.5m, 0.25m].
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Table 1: Indoor and Outdoor localization accuracy on 7Scenes and Cambridge.

Scene Specific Scene Independent

PoseNet

(Geo) [10]

DSAC [3] DSAC++ [5] Active

Search [26]

InLoc [30] Ours

7Scenes

Chess 4.5◦ 0.13m 0.7◦ 0.02m 0.5◦ 0.02m 1.96◦ 0.04m 1.05◦ 0.03m 0.88◦ 0.03m

Fire 11.3◦ 0.27m 1.0◦ 0.03m 0.9◦ 0.02m 1.53◦ 0.03m 1.07◦ 0.03m 1.08◦ 0.03m

Heads 13.0◦ 0.17m 1.3◦ 0.02m 0.8◦ 0.01m 1.45◦ 0.02m 1.16◦ 0.02m 1.48◦ 0.02m

Office 5.6◦ 0.19m 1.0◦ 0.03m 0.7◦ 0.03m 3.61◦ 0.09m 1.05◦ 0.03m 1.00◦ 0.03m

Pumpkin 4.8◦ 0.26m 1.3◦ 0.05m 1.1◦ 0.04m 3.10◦ 0.08m 1.55◦ 0.05m 1.32◦ 0.05m

Kitchen 5.4◦ 0.23m 1.5◦ 0.05m 1.1◦ 0.04m 3.37◦ 0.07m 1.31◦ 0.04m 1.40◦ 0.04m

Stairs 12.4◦ 0.35m 49.4◦ 1.9m 2.6◦ 0.09m 2.22◦ 0.03m 2.47◦ 0.09m 4.59◦ 0.16m

Cambridge

Great Court 3.7◦ 7.0m 1.5◦ 2.80m 0.2◦ 0.40m - - 0.62◦ 1.20m 1.95◦ 3.28m

King’s College 1.1◦ 0.99m 0.5◦ 0.30m 0.3◦ 0.18m 0.6◦ 0.42m 0.82◦ 0.46m 0.54◦ 0.32m

Old Hospital 2.9◦ 2.17m 0.6◦ 0.33m 0.3◦ 0.20m 1.0◦ 0.44m 0.96◦ 0.48m 0.53◦ 0.32m

Shop Facade 4.0◦ 1.05m 0.4◦ 0.09m 0.3◦ 0.06m 0.4◦ 0.12m 0.50◦ 0.11m 0.47◦ 0.10m

St. Mary’s Church 3.4◦ 1.49m 1.6◦ 0.55m 0.4◦ 0.13m 0.5◦ 0.19m 0.63◦ 0.18m 0.57◦ 0.16m

Street 25.7◦ 20.7m - - - - 0.8◦ 0.85m 2.16◦ 0.75m 12.64◦ 8.74m

DSAC++ [5] still performs the best as it is trained for each

scene specifically. Ours(Baseline) is a conventional

feature matching approach utilizing features from our net-

work, which will be discussed in Section 5.5.

Secondly, localization accuracy is measured in terms of

median translation and rotation error. Comparison results

on the 7Scenes indoor dataset are listed in the top half of

Table 1, where reported numbers are from original papers.

Comparing with scene specific methods, our approach out-

performs PoseNet [10] on most scenes, while is slightly in-

ferior to the state-of-the-art method DSAC/DSAC++ [3, 5].

Comparing with online methods, we outperform Active

Search [26] on most scene except for Stairs, as our net-

work is trained with the SUN3D indoor dataset that is lack

of such extremely repetitive pattern. Our method yields

comparable results to the InLoc [30] algorithm, especially

slightly better on Chess, Office, and Pumpkin.

Table 1 also shows the localization accuracy on out-

door scenes. Comparing with scene specific model, our

performance is inferior to DSAC [3] and DSAC++ [5]

while still better than PoseNet [11]. Comparing with scene

independent methods, our method yields comparable re-

sults with Active Search [26], and slightly better results

than InLoc [30] on 4 scene, i.e., King’s College,

Old Hospital, Shop Facade and St. Mary’s

Church. We produce inferior results on Great Court

and Street, due to the ambiguous patterns in large-scale

scenes and sharp illumination changes in query images.

Note that we resize the input scene frame resolution to

480× 270 to speed up the InLoc algorithm.

5.3. Scene Coordinate Accuracy

We compare the accuracy of scene coordinate maps

against InLoc [30] and DSAC/DSAC++ [3, 5] on the

7Scenes dataset. Figure 6 shows the cumulative distribu-

tion function (CDF) of errors in the estimated scene co-

ordinate maps. For a given error threshold, this CDF

gives the percentage of pixels whose estimated scene co-

ordinates are within the error threshold (i.e., the recall

rate). We outperform the DSAC [3] after the 4cm thresh-

old, even though DSAC [3] is specifically trained for each

scene. Note that while DSAC++[5] demonstrates the best

localization accuracy, its scene coordinate is comparable to

DSAC[3], as the DSAC++[5] is trained with the less ac-

curate rendered depth from a fused mesh. In addition, it

indicates that the scene coordinate precision may not re-

flect the final pose accuracy, since the outliers are filtered by

RANSAC. InLoc [30] removes invalid matchings by consis-

tency check and produces highest precision over remaining

pixels InLoc (pred. pixels), but those predicted

pixels are limited to semi-dense level, as the CDF of errors

over all pixels InLoc (all pixels) quickly saturates

at around 38%.

Figure 5 visualizes several predicted scene maps as color

coded coordinates as well as triangle meshes. In constrast

to InLoc [30], our method produces dense predictions and

is even robust at featureless areas, because our network ex-

ploit global context in the query image when decoding the

scene coordinate map. For example, InLoc [30] cannot pro-

duce reasonable results on the wall and the ceiling, while

our method can. The dense prediction enables applications

other than localization, such as robotic obstacle avoidance.
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Query Inloc[30] Ours G.T. Inloc (Geo.) Ours (Geo.) G.T. (Geo.)

Figure 5: Scene coordinate map comparison with InLoc [30] and the ground truth (G.T.) on 7Scenes, the scene coordinate

positions xyz are encoded in rgb channels for visualization. The last three columns show the geometry (Geo.) comparison

by reconstructing the mesh from the scene coordinate map. More examples are found in supplementary document.
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Figure 6: Cumulative Distribution Function of scene co-

ordinate error compared with InLoc [30], DSAC [3] and

DSAC++ [5] on 7Scenes.

5.4. Efficiency

Our system is efficient enough for real-time scene update

and query pose estimation, enabling SLAM applications.

Time Costs: Table 2 lists the time of each step w.r.t 7000

scene images in 7Scenes, with comparisons to DSAC++ [5]

and InLoc [30]. Taking the ORB-SLAM[19] as an exam-

ple, it creates a new keyframe for approximately every 0.7s

for TUM RGB-D SLAM indoor sequences. Our method

and InLoc [30] can index an incoming keyframe on-the-

fly by a NetVLAD [1] forward pass (avg. 0.06s), while

DSAC++ [5] runs multiple epochs to train the model, taking

several days as reported in their paper. When the loop de-

tection or the re-localization are activated, assuming 7000

keyframes are indexed, our method takes only 0.54s to lo-

calize a query frame (faster than the keyframe creation),

which meets the real-time requirement of SLAM, while In-

Loc [30] takes several seconds based on its public imple-

mentation (CPU version, using 6 threads in parallel).

Memory Costs: For each scene image, our method re-

quires an RGBD image (256×192), its pose, and its VLAD

feature, whose memory cost is 248kB.2 With 7000 scene

images, total 2.66GB (including 1GB for the SANet for-

ward pass) is used. InLoc [30] has a similar memory con-

sumption with ours as both methods rely on NetVLAD [1].

DSAC++ [5] only needs a small amount of constant mem-

ory since the whole scene is compressed into network

weights, but cannot handle novel scenes without retraining.

Table 2: Time for each step w.r.t 7000 scene images.

Steps Ours DSAC++ [5] InLoc [30]

Training CNN or Index. VLAD feat

(all scene imgs.)
427s > 1 day 427s

Retrieval (per query) 171ms - 171ms

Estimate Pose (per query) 0.37s 0.2s 9.38s

Total (per query) 0.54s 0.2s 9.55s

5.5. Detailed Analysis

Compare with Explicit Matching: We evaluate the ef-

fectiveness of our network against the conventional feature

matching pipeline. Specifically, we design a baseline ap-

proach, where features El[p] from the query image are di-

rectly matched to sampled features f li ∈ Sl
sub in the scene

pyramid by their angular similarity. Such baseline approach

has two drawbacks comparing with our network: firstly,

it processes pixels independently thus cannot take advan-

tages of the global image context during the scene coor-

dinate prediction; secondly, the distance metric of angu-

lar similarity might not be optimal. We report the accu-

racy of the estimated camera pose in Figure 4 and that of

the scene coordinate map in Figure 6, both are denoted as

Ours (Baseline). It is clear that our proposed method

2120kB for PNG compressed RGBD frame, 128kB for VLAD feat.
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Figure 7: (a) A pixel Que in the query image is marked in Green. (b) The ground truth corresponding pixel Pos in a scene

reference image is marked in Red, while a randomly selected pixel Neg is marked in Blue. (c) Two sets of scene reference

features from Experiment-1 are projected in 2D space by PCA. (d) Four channels (i.e., the i-th chanels) of scene reference

features from Experiment-2 are plotted w.r.t. a 1m × 1m × 1m cube, where drak blue stands for high channel activation.

Please refer to the main text for details.

surpasses this baseline approach with unnegligible margins

on both evaluation metrics.

Scene Reference Feature: We further design two experi-

ments to explore physical meanings of the scene reference

feature Rl.

Experiment-1: Rl encodes the scene coordinates of

corresponding pixels. We randomly select a pixel Que from

the query image feature map, whose location is marked by

the green dot in Figure 7 (a). Its ground truth corresponding

pixel Pos in the scene image feature map is marked by a

red dot in Figure 7 (b), while Neg is a random irrelevant

pixel marked by the blue dot. Now, we encode only two

points, Pos and Neg, in our scene pyramid, and pass the

query pixel Que through the network to generate its scene

reference feature R3[Que]. Here, we choose l = 3 with

resolution of 16× 12 for experiment, and each feature pixel

has 256 channels.

We add noise to the xyz coordinates of the Pos or Neg

pixel while fixing the other to see how the scene reference

feature R3[Que] will be affected. Specifically, we first fix

Pos while varying the position of Neg within an unit cube,

which is centered at its original location with an edge length

of 1m. This way, we obtain a set of scene reference features

{R3[Que]}fix-pos. Accordingly, fixing Neg and varying the

position of Pos generates another set of scene reference

features {R3[Que]}fix-neg.

Figure 7 shows both sets of scene reference fea-

tures by projecting them in 2D space via PCA, where

{R3[Que]}fix-pos and {R3[Que]}fix-neg are visualized as red

and blue dots respectively. It is clear that the red dots vary

much less than the blue dots. In other words, changing the

position of the ground truth scene point leads to much larger

variation of the scene reference feature. This is a strong ev-

idence that our scene reference feature encodes scene coor-

dinates of the corresponding pixels.

Experiment-2: Each channel of Rl is responsible for

a particular region in 3D space. In the second experi-

ment, we encode one single point Pos in the scene pyra-

mid. We uniformly sample a set of positions X within the

1m× 1m× 1m cube centered at Pos. Given the pixel Pos

at position x and the query pixel Que as input, the QSR

module generates a scene reference feature R3[Que]pos(x).
This way, we can collect a set of scene reference features

{R3[Que]pos(x)|x ∈ X}. In the top row of Figure 7(d), we

plot 4 channels of these features w.r.t. the set of positions

X in a cube. The values are normalized for visualization,

where the darker blue color stands for higher channel value.

As we can see, each channel is correlated to a particular spa-

tial region, for example, the 68th channel has high response

on eight corners of the cube. We run the same experiment

for the Neg sample, and plot the same four channels in the

bottom row of Figure 7 (d). Comparing with the positive

sample Pos, it shows similar activation patterns but with

different magnitude. This further verifies that our scene ref-

erence feature encodes spatial information.

6. Conclusion

This paper presents a scene agnostic network architec-

ture that predicts the dense scene coordinate map of a query

RGB image on-the-fly in an arbitrary environment. The co-

ordinates prediction is then used for estimating the camera

pose. Our network learns to not only encode the scene en-

vironment into a hierarchical representation, but also pre-

dict the scene coordinate map with query-scene registration.

In particular, we design a learnable module that iteratively

registers a query image to the scene at different levels, and

yields the dense coordinate map regularized by contextual

image information. Our network is validated on both in-

door and outdoor dataset, and achieves state-of-the-art per-

formance.
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