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Abstract

Understanding the spatial relations between objects in

images is a surprisingly challenging task (Fig. 1). A chair

may be “behind” a person even if it appears to the left of the

person in the image (depending on which way the person is

facing). Two students that appear close to each other in the

image may not in fact be “next to” each other if there is a

third student between them.

We introduce SpatialSense, a dataset specializing in spa-

tial relation recognition which captures a broad spectrum

of such challenges, allowing for proper benchmarking of

computer vision techniques. SpatialSense is constructed

through adversarial crowdsourcing, in which human an-

notators are tasked with finding spatial relations that are

difficult to predict using simple cues such as 2D spatial

configuration or language priors. Adversarial crowdsourc-

ing significantly reduces dataset bias and samples more

interesting relations in the long tail compared to exist-

ing datasets. On SpatialSense, state-of-the-art recogni-

tion models perform comparably to simple baselines, sug-

gesting that they rely on straightforward cues instead of

fully reasoning about this complex task. The SpatialSense

benchmark provides a path forward to advancing the spa-

tial reasoning capabilities of computer vision systems. The

dataset and code are available at https://github.

com/princeton-vl/SpatialSense.

1. Introduction

Visual understanding of space is essential for an intelli-

gent agent. Such an understanding is the basis for describ-

ing scenes and referring to objects [7]; it is also the foun-

dation required for tasks such as navigation and manipula-

tion [32]. To understand space it is important to understand

spatial relations, that is, how different spatial entities are

configured relative to each other to compose a scene. Con-

sider the following description: “Inside the living room, un-

der the window next to the wall is a table, on top of which

lies a vase with flowers”. The sentence may be structured in

dog in water ball in front of kid

truck on chair cloud above mountain

glasses on man

soldier above forest

Figure 1: Spatial relation recognition in images is a chal-

lenging task which requires a deep understanding of all the

objects in the image, their 3D configuration, and their in-

teractions. Understanding that the dog is not in the water

(top left) requires reasoning about the pier in addition to the

dog and the water. Understanding that the ball is in fact in

front of the kid despite being off to the right in the image

space (top center) requires inferring the 3D spatial configu-

ration. Properly evaluating computer vision abilities on this

task is difficult because it requires collecting a benchmark

covering the full spectrum of such challenges. We introduce

SpatialSense, a novel dataset collected through adversarial

crowdsourcing, which provides a diverse and challenging

testbed for the task of spatial relation recognition.

many different ways, but its meaning is determined by the

objects (room, window, table, vase, flowers) and their spa-

tial relations (table in room, table under window, table next

to wall, vase on table, flowers in vase).

This raises the problem of spatial relation recognition:

given two objects in a scene, what is their spatial relation?

This problem is important, interesting, and challenging be-

cause the semantics of spatial relations are rich and com-

plex. The spatial semantics between objects depend not

only on geometric properties such as location, pose, and

shape, but also the frame of reference (e.g. “left of the car”

can be relative to the observer or the car) and object-specific

common sense knowledge (e.g. “hand over bed” does not
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imply physical contact while “blanket over bed” does).

Benchmarking spatial relations. Despite the importance

of this problem, there is no benchmark dataset special-

izing in spatial relations. Large datasets such as Visual

Genome [11] and Visual Relationship Detection [19] pro-

vide annotations for generic visual relations and thus in-

clude a significant number of spatial relations (51.5% and

66.0% respectively). But several characteristics make them

less suitable for evaluating spatial relation recognition.

One issue is that Visual Genome and the recent Open Im-

ages [12], for example, do not provide negative examples

in its annotations. Each image in Visual Genome comes

with a set of human annotated relations (subject-predicate-

object triplets such as “person-riding-bike”), but the an-

notations are not exhaustive and many valid relations are

left unannotated. While the Recall@K metric (evaluating

the recall of ground truth relations given K predicted rela-

tions) has been used as a proxy to avoid exhaustive annota-

tion [19, 33, 14, 17, 5, 34, 22, 35, 31, 37, 29, 30], it remains

impossible to distinguish between a good system producing

valid albeit unannotated predictions and a bad system pro-

ducing false positives, or to fully evaluate the system’s abil-

ity to distinguish between positive and negative relations.

Another issue in current visual relation datasets is sig-

nificant language bias—the examples are dominated by re-

lations that can be guessed without an actual spatial under-

standing. For example, 66% of all spatial relations in Vi-

sual Genome consist of one object “on” another. Among

relations involving a table, 89.37% of them define an object

“on” the table. This means that a system can take advantage

of such priors to do well without even looking at the image.

This is undesirable because evaluating on these examples

will not provide a proper gauge of an algorithm’s ability to

visually understand spatial relations.

Contributions. In this paper we introduce SpatialSense, a

dataset specializing in spatial relation recognition. A key

feature of the dataset is that it is constructed through ad-

versarial crowdsourcing: a human annotator is asked to

come up with adversarial examples to confuse a robot. This

yields two desirable properties. First, the dataset includes

negative examples as some human annotators are explicitly

tasked with choosing spatial relations that are false. Sec-

ond, the dataset focuses on questions that require more ad-

vanced reasoning and cannot be answered by simple spatial

and language priors.

SpatialSense has 17,498 relations on 11,569 images.

Given two objects (names and bounding boxes), the task

is to classify whether a particular spatial relation holds.

We provide the object names and localizations to decou-

ple object detection from spatial relation recognition, such

that a successful relation recognition system can be directly

placed on top of any object detection system. The dataset

contains relations between 3,679 unique object classes, with

2,139 of these object classes appearing only once, providing

a challenging long-tail distribution of concepts.

SpatialSense provides a rigorous testbed for spatial re-

lation reasoning that is not easily amenable to simple pri-

ors. First, each predicate (“on”, “under”, etc.) has an equal

number of positive and negative relations. Second, simple

baselines using only 2D or language cues are significantly

less effective on SpatialSense than on other existing spa-

tial reasoning benchmarks. SpatialSense is complementary

to large-scale datasets such as Visual Genome or Open Im-

ages, in that it enables testing spatial relation recognition

models with challenging examples in the long tail.

We evaluate multiple state-of-the-art visual relationship

detection models on SpatialSense. Experimental results re-

veal that these models rely too much on dataset bias and

now perform comparably to simple baselines. This demon-

strates that adversarial crowdsourcing is effective for reduc-

ing dataset bias, and showcases that SpatialSense is an im-

portant step towards improving spatial reasoning capabili-

ties of computer vision systems.

2. Related Work

Visual relationship recognition. Recognition of visual re-

lations has recently emerged as a frontier of high-level com-

puter vision moving beyond object recognition. Sadeghi &

Farhadi [23] studied detecting visual phrases from images.

A visual phrase can be a spatial relation (e.g. “person next

to bicycle”). But their dataset contains only 17 unique vi-

sual phrases, 9 of which are spatial relations. This means

that each spatial predicate only occurs with a small number

of object categories: e.g. “next to” only occurs with “per-

son”,“car”, and “bicycle”. Thus the dataset is unsuitable

for evaluating a general understanding of “next to” that is

agnostic to object categories.

Lu et al. [19] introduced the task of visual relation-

ship detection —given an image, the algorithm predicts

subject-predicate-object triplets as well as the object bound-

ing boxes. In contrast, our task is classification rather than

detection, the object pairs are given, and there are both pos-

itive and negative relations. Our task setup leads to a proper

evaluation of relation understanding.

The VRD dataset introduced by Lu et al. [19] includes

spatial relations, but unlike our dataset, does not have nega-

tive examples. Thus evaluation using VRD has been based

on Recall@K, which is ill-suited for spatial relations be-

cause numerous valid spatial relations can hold in an image,

making it difficult to choose the appropriate K. In addition,

as we will show in Section 4, the spatial relations in VRD

are significantly easier to predict using simple priors. Vi-

sual Genome [11] is another dataset that is larger and has

extensive annotations of visual relations. Similar to VRD,

it covers a significant number of spatial relations but has no
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negative examples, and the spatial relations are easily pre-

dictable from simple priors.

VRD and Visual Genome have spurred the development

of new approaches for visual relationship detection. Suc-

cessful methods typically build on top of an object detec-

tion module, and reason jointly over language and visual

features [14, 33, 17, 5, 37, 31]. Multiple independent di-

rections have been proven fruitful, including learning fea-

tures that are agnostic to object categories [29], facilitating

the interaction between object features and predicate fea-

tures [29, 5, 14], overcoming the scarcity of labeled data

through weakly supervised learning [22, 34], and detect-

ing the relationships among multiple objects jointly as scene

graphs [28, 16, 27, 15]. We benchmark some of the state-

of-the-art approaches on our dataset and compare them with

simple baselines based on language or 2D cues.

Peyre et al. introduced a dataset of unusual relations (Un-

Rel) [22] sharing similar motivation to ours. To address

the problem of missing annotations, the relations in Un-

Rel are annotated exhaustively. Annotating every instance

is made feasible by having a small predefined list of rela-

tions that are carefully designed to be unusual (such as “car

under elephant”). This method is not scalable to a large

number of relations. First, it is difficult to manually pick a

large set of unusual relations. Second, for annotating ev-

ery single instance, the amount of crowdsourcing efforts

grows linearly with the number of relations. Our method

samples interesting relations by encouraging crowd work-

ers to discover them in images, and thus circumvents the

scalability problem. As a result, UnRel has 76 unique rela-

tion triplets formed by 18 predicates while SpatialSense has

13,229 unique relations with 9 predicates.

Dataset bias. Instead of studying the misaligned distri-

butions between data and the visual world [25], we focus

on a specific aspect of dataset bias, which allows mod-

els to take shortcuts leading to a superficial impression of

good performance. Extensive research on such bias has

been conducted in the context of visual question answering

(VQA) [36, 6, 3, 9, 1, 20]. Many VQA datasets suffer from

language bias; the questions can be answered well simply

by using language priors while ignoring images. Zhang et

al. [36] balance the data for yes/no questions on abstract

scenes. They show a question-image pair and ask the anno-

tator to compose a new scene on which the answer for the

question is different. Goyal et al. [6] applied the same idea

to real images. Instead of asking annotators to create new

scenes, they provide a few semantically similar images for

the annotator to choose from.

Our adversarial crowdsourcing approach addresses the

same issue (ensuring the input image is required to answer

questions) in a substantially different way. Spatial relation

recognition can be understood as a special case of VQA,

where the questions are restricted to verifying spatial rela-

tions. In this sense, Zhang et al. [36] and Goyal et al. [6] ask

the crowd to select hard images—images that defy the ex-

pected answers from language priors—with the questions

fixed, whereas we ask the crowd to select hard questions

with the images fixed. One potential advantage of select-

ing hard questions is that humans can easily compose new

questions but cannot easily synthesize photorealistic im-

ages, and it can also be hard to find images that defy lan-

guage priors—those images are by definition less common

because language priors reflect common occurrences.

Adversarial crowdsourcing. Our approach for adversarial

crowdsourcing is inspired by the “Beat the Machine” frame-

work by Attenberg et al. [2], in which a crowd worker is

challenged to find cases that will cause an AI system to fail.

Adversarial crowdsourcing is related to active learning (e.g.

[10, 26]) in that in both cases we seek difficult examples

to improve learning. The key difference, however, is that

in active learning it is the machine’s task to identify hard

examples whereas in adversarial crowdsourcing it is on the

human annotator.

3. Dataset Collection through Adversarial

Crowdsourcing

Datasets are meant to evaluate the performance of al-

gorithms under challenging and varied conditions. How-

ever, one weakness observed in many datasets is a strong

language bias, allowing algorithms to perform well by ex-

ploiting language priors even while ignoring the visual in-

put [36, 6, 3, 9, 1]. Further, in the context of spatial reason-

ing, algorithms may exploit simple 2D cues, circumventing

a true 3D understanding of spacing [8]. We address both

issues in our adversarial crowdsourcing framework.

Adversarial crowdsourcing protocol. In our data collec-

tion pipeline (Fig. 2), we ask annotators to propose spatial

relations to make a robot fail. Given an image and a request

for a positive or negative spatial relationship, the annotator

comes up with a proposed example by clicking on two ob-

jects, entering their names and selecting a spatial predicate

corresponding to the relationship between them (a true rela-

tionship if the request was for a positive one, and a false re-

lationship otherwise). The robot then tries to guess whether

the relationship is positive or negative using only the object

names and the 2D coordinates given by the clicks. The task

is completed if the robot is wrong, i.e., it predicts that the

relationship is positive but in fact it was negative, or vice

versa. Otherwise, if the robot is able to guess correctly, the

robot provides feedback to the annotator about how the cor-

rect guess was made, and the annotator tries again. Addi-

tional crowdsourcing is used to verify the collected relations

and annotate the object bounding boxes.

To reduce language bias and promote true 3D spatial

understanding, we need the annotators to pick relations
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Figure 2: When collecting negative examples, the annotator picks a pair of objects and lies about their spatial relation (“stove

on fridge”) with the goal of making it believable enough for the robot. However, here the robot catches the annotator in the lie

and explains how the correct guess was made (from language or 2D cues, or both). The UI for positive examples is similar,

in which the annotator tells the robot a spatial relation that is valid but unbelievable.

that are difficult to predict given object names and 2D

cues. The robot is therefore an ensemble of two models: a

language-only model and a 2D-only model. The language-

only model takes two object names along with the pred-

icate, and outputs the probability that the relation holds.

The object names are converted to word embeddings us-

ing Word2Vec [21], which are then encoded into a fixed-

length feature vector by a gated recurrent unit (GRU) [4].

The one hot encoding of the predicate is mapped to a vector

of the same size by a linear layer. The three feature vectors

are fused by element-wise addition, on top of which a 2-

layer fully connected network outputs the probability. For

the 2D-only model, linear layers map the object coordinates

to feature vectors, and the prediction is made following the

same procedure of the language-only model. The final out-

put of the robot is the average of these two models. Initially,

we trained the robot on a dataset of 7,850 relations collected

without adversarial crowdsourcing; during the collection of

SpatialSense, we occasionally re-trained the robot using all

currently available data in order to prevent the annotators

from exploiting the failing modes of a particular robot.

Concept vocabulary. We restrict the spatial predicate to

a predefined list (above, behind, in, in front of,

next to, on, to the left of, to the right

of, under) instead of letting human annotators enter free-

form text. Spatial relations can be encoded using a surpris-

ingly small set of prepositions [13]. Our list of 9 predi-

cates covers the coarse-grained semantics of most spatial

relations. Although it is possible to extend the vocabu-

lary to represent more fine-grained spatial semantics (such

as lean on and sit on), fewer predicates ensures suf-

ficient training samples for each predicate. Nevertheless,

our adversarial crowdsourcing method is scalable to more

predicates as the effort grows linearly w.r.t. the number of

relations, but is independent of the number of predicates.

In contrast, for object names we allow the human anno-

tator to enter free-form text. The vocabulary of objects is

vast and it would be cumbersome for the human annotator

to choose from a long list of objects. In addition, a limited

vocabulary of objects would restrict the annotator’s ability

to pick the objects that form interesting spatial relations. In

general, an image is rarely completely predictable, so there

will be an unusual or surprising spatial relation that beats

the robot’s simple intuition. This setup thus provides an ef-

ficient way of obtaining spatial relations in the long tail.

Image collection. We annotated 11, 569 images in total. Of

these, 10,180 are RGB images from Flickr and 1, 389 are

RGB-D images from NYU Depth [24] which we include

to make it possible to test the utility of depth information

for spatial understanding. When querying Flickr images,

we use combinations of two keywords rather than a single

keyword, following the approach adopted by COCO [18] to

obtain images with diverse objects. Additionally, annotators

can pick an image to annotate from a set of 8 images, so as

to avoid images that do not have enough objects (e.g. a close

up shot of a single foreground object). These techniques en-

sure that the images are complex scenes containing multiple

objects necessary for relation reasoning.

We annotated 13, 156 relations on Flickr images and

4, 342 on NYU images. Each relation consists of a spa-

tial predicate, the names of two objects, and their bounding

boxes. Importantly, there is an equal number of positive

and negative relations for each of the 9 predicate. 20% of

the relations are reserved for testing and 15% for validation.
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table street tree sky grass building

VRD

VG

SpatialSense

above behind

to the left of to the right of

in in front of next to

on under

Figure 3: (Left) The predicate distributions of frequent objects in VRD-Spatial, VG-Spatial and SpatialSense-Positive. For

example, the bottom-left bar shows the frequency distribution of predicates on, under, behind, etc. for the object “table”

in SpatialSense. SpatialSense contains less language bias than other datasets since the distribution is more balanced. (Right)

The predicate distributions of the top-50 objects in the three datasets, further showing the wider distribution in SpatialSense.

4. Analysis of the Dataset

The SpatialSense dataset has two key advantages com-

pared to existing benchmarks. First, it contains positive

as well as negative relations. Second, it is constructed to

be challenging; due to adversarial crowdsourcing, simple

language and 2D priors are not enough to do well on this

dataset. We now perform an in-depth analysis, comparing

SpatialSense to VRD [19], Visual Genome [11] and a ver-

sion of itself without adversarial crowdsourcing.

4.1. Comparison to Existing Datasets

Setup. Since VRD and Visual Genome contain generic

relations and no negative examples, we preprocess the data

to allow for fair comparison: (1) Only the positive exam-

ples in SpatialSense are considered; the resulting dataset is

referred to as SpatialSense-Positive; (2) We filter out non-

spatial relations in VRD and Visual Genome; the resulting

datasets are referred to as VRD-Spatial and VG-Spatial. In

addition to discarding non-spatial relations, we also map the

predicates in VRD and Visual Genome to their equivalents

in our list of 9 spatial predicates. For example, rest on,

park on and lying on in VRD are all mapped to on.

For Visual Genome, since there is no closed vocabulary, we

examined the top-100 most frequent predicates to figure out

the mapping (supplementary material).

Predicate distribution. Compared to VRD and VG, the

predicate distribution in SpatialSense is less biased. Fig. 3

visualizes the distribution of predicates corresponding to

different objects in the three datasets. For VG-Spatial, ob-
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Figure 4: The 2D locations of subjects relative to objects

for the predicates to the left/right of, normal-

ized by image size. SpatialSense is less biased in 2D cues

since the points are less separable. Each figure contains 400

randomly sampled relations for each predicate.

jects are frequently dominated by a single predicate, such as

something on table or something on street. VRD-Spatial,

which was annotated in-house rather than via crowdsourc-

ing, looks more balanced; there are nevertheless a large

number of objects on street and or under sky. This

confirms that many spatial relations in VRD and VG can

be predicted without even looking at the image. In con-

trast, SpatialSense-Positive has a more balanced distribu-

tions, which reduces language bias, making it more difficult

to guess the relation from the object names alone. There

are plenty of unexpected or difficult to predict relations in

any scene, and the key of our adversarial crowdsourcing ap-

proach is to encourage the annotators to reveal these.

2D Spatial distribution. SpatialSense is also less biased

in 2D cues. As an example, we evaluate whether the

2055



Train

Test
VRD VG SpatialSense average drop

VRD 66.9 / 59.6 45.2 / 53.2 30.6 / 39.9 29.0 / 13.1

VG 50.8 / 38.2 76.0 / 65.3 36.1 / 33.8 32.6 / 29.3

SpatialSense 40.3 / 44.6 42.8 / 52.5 39.8 / 43.4 -1.8 / -5.2

Table 1: Accuracies of the language-only model / 2D-only

model for predicting the spatial predicate from an object

pair. Note two observations: (1) These simple baselines

achieve low accuracy on SpatialSense compared to other

datasets, demonstrating that SpatialSense is less susceptible

to simple cues and requires more advanced reasoning. (2)

SpatialSense is less biased than other datasets as evidenced

by better cross-dataset generalization [25].

predicates to the left of and to the right of

can be predicted from spatial cues alone, without relying

on pixel-level information. Concretely, for each subject-

predicate-object relationship, let (xs, ys) be the center of

the subject bounding box, (xo, yo) be the center of the ob-

ject bounding box, and w, h be the image width and height.

We compute the normalized relative location between the

object and subject as ((xs−xo)/w, (ys−yo)/h). These are

2D points within [−1, 1]× [−1, 1] representing the 2D loca-

tion of the subject relative to object. For VRD-Spatial and

VG-Spatial, an algorithm can easily distinguish between the

predicates to the left of and to the right of

based on these 2D locations alone, as shown in Fig. 4. For

SpatialSense-Positive, however, these two predicates have

similar distribution, making it difficult to tell them apart

from 2D cues alone. Under our adversarial crowdsourcing

framework, the annotators make extensive use of relative

frame of references; a person standing to the left of a car

can actually be on the right side of an image (when the car is

facing towards the camera). Among other things, this rela-

tive frame of references makes SpatialSense less predictable

from 2D cues and necessitates deeper spatial understanding.

Language and 2D baselines. To quantitatively show that

SpatialSense is less biased in language and 2D locations, we

examine the extent to which predicates can be determined

from these cues alone, without pixel-level image informa-

tion. For each relation, given the two object names (e.g.,

bed, floor) and their bounding boxes, a model has to pre-

dict the correct predicate (e.g., on). We train and evalu-

ate on the three datasets and compare the accuracies. For

the comparison to be fair, VRD-Spatial and VG-Spatial are

randomly sampled to have the same size as SpatialSense-

Positive. We adopt the official train/test split for VRD-

Spatial and SpatialSense-Positive; for VG-Spatial, 20% of

the images are reserved for testing.

The model architectures are similar to those used in data

collection: For the language-only model, object names are

encoded to fixed-length vectors using Word2Vec followed

by a GRU. The two vectors are fused into one by element-

wise addition, which is then classified by a 2-layer fully

connected network. For the 2D-only model, bounding box

coordinates are encoded by linear layers, and then fused and

classified following the same procedure. The models are

trained with cross-entropy loss.

The results verify our intuition that SpatialSense is much

more difficult to tackle using simple language and 2D cues

than prior datasets (Table 1). Concretely, the language-

only model achieves strong predicate prediction accuracy of

66.9% on VRD-Spatial and 76.0% on VG-Spatial, signifi-

cantly higher than 39.8% on SpatialSense-Positive. Sim-

ilarly, the 2D-only baseline is able to achieve impressive

accuracies of 59.6% on VRD-Spatial and 65.3% on VG-

Spatial without ever seeing pixel information; in contrast,

this simple model again struggles on SpatialSense-Positive

and yields only 43.4% accuracy.

Cross-dataset generalization. Finally, we evaluate the

generality of our collected dataset using the method pro-

posed by Torralba and Efros [25]. Models trained on

one dataset are evaluated on other datasets, and the result-

ing drop in accuracy is used as a metric for dataset bias

(more drop corresponds to more bias). Table 1 shows the

results of cross-dataset predicate classification using the

language-only and 2D-only model described above. Mod-

els trained on SpatialSense generalize impressively well to

other datasets. The language-only model trained on Spa-

tialSense but evaluated on VRD or VG (instead of on Spa-

tialSense) achieves a 1.8% average increase in accuracy;

similarly, the 2D model achieves a 5.2% average increase as

well. In contrast, models trained on VRD or VG are not able

to generalize well and experience a average 26.0% drop in

accuracy when evaluated on a different dataset.

4.2. The Effect of Adversarial Crowdsourcing

The bias reduction demonstrated in Section 4.1 is a result

of adversarial crowdsourcing. To verify, we compare with a

dataset constructed without adversarial crowdsourcing. The

dataset is collected by annotators who propose positive spa-

tial relations freely (without the need to beat a robot), and

the negative relations are randomly generated and verified

by humans. The resulting dataset is SpatialNaive and con-

tains 3,015 images with 3,925 positive and 3,925 negative

relations. Just like in SpatialSense, each predicate has an

equal number of positive and negative relations.

We quantify the amount of bias in SpatialSense and Spa-

tialNaive by comparing the performance on the task of spa-

tial relation recognition. Given two object names, their

bounding boxes and a predicate, a model classifies whether

or not the relation holds. Since SpatialNaive is smaller, we

randomly sample a subset of SpatialSense, enforcing the

two datasets to have exactly the same number of relations

for each predicate. The model architectures are the same

as those used for collecting data (described in section 3),
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Dataset Language 2D Locations

SpatialNaive 69.2 71.3

SpatialSense 56.4 65.2

Table 2: SpatialSense, constructed with adversarial crowd-

sourcing, is significantly more challenging (lower accuracy

of baselines) than the ablation dataset SpatialNaive.

except that now the 2D locations are represented by object

bounding boxes rather than coordinates. 20% of the images

in SpatialNaive are used for testing and another 15% of the

images are for hyperparameters tuning.

The results are in Table 2. The models performs much

worse on SpatialSense than SpatialNaive: 12.8% accuracy

drop for the language-only model, 6.1% for the 2D-only,

confirming the effectiveness of adversarial crowdsourcing

for reducing dataset bias, especially the language bias.

5. Baselines for Spatial Relation Recognition

Having verified that SpatialSense is an effective bench-

mark for spatial relation recognition, we evaluate multiple

methods on SpatialSense, including simple baselines based

on language and 2D cues as well as state-of-the-art models

for visual relationship detection. Experimental results re-

veal the difficulty for state-of-the-art models to go beyond

simple priors and learn to reason about visual content; a

simple baseline based on 2D cues performs competitively

with state-of-the-art models. We also conduct a human eval-

uation quantifying the level of ambiguity in the task.

Model architectures. The task is spatial relation recogni-

tion: given the image, two objects (their names and bound-

ing boxes) and a spatial predicate, the model classifies

whether the relation holds. Two simple baselines are eval-

uated: a language-only model and a 2D-only model. Their

architectures are the same as in section 4.2. We also re-

port the performance of combining their predictions by a

weighted average. We evaluate five state-of-the-art models:

Vip-CNN [14], Peyre et al. [22], PPR-FCN [37], DRNet [5]

and VTransE [33]. They were created for visual relation-

ship detection but can be adapted to our task straightfor-

wardly: First, object detectors are replaced by ground truth

objects. Second, object names are encoded using word em-

beddings rather than one hot encoding, since SpatialSense

has unconstrained object categories. Third, for each rela-

tion subject-predicate-object, the model takes subject and

object as input, and generates scores for all predicates; the

score for that particular predicate is the final binary classi-

fication score. Details are in the supplementary material.

Implementation details. Object names are encoded to

fixed-length vectors using Word2Vec followed by a GRU.

When combining the language and 2D baselines by a

weighted average, we find 80% from 2D and 20% from lan-

guage to perform well (measured by validation accuracy).

For state-of-the-art models, we crop the union bounding

box of the two objects, resize it to 280 × 280 and normalize

the pixel values by the mean and standard deviation of all

training images. During training, we then crop it randomly,

resize to 224 × 224 and apply color jittering; during testing,

we simply take a 224 × 224 crop at the center.

Analyzing the results. Table 3 summarizes the testing ac-

curacies. Due to the challenging nature of SpatialSense, the

best models perform around 70%, which is quite low for a

binary classification task. DRNet is the best model without

ensemble, closely followed by other state-of-the-art models,

which confirms that models for visual relationship detection

can be well adapted to our task. Notably, the 2D baseline

performs closely to state-of-the-art models and is on a par

with DRNet when combined with the language baseline.

This suggests state-of-the-art models might rely too much

on 2D cues and fail to develop deeper visual reasoning.

To validate this conjecture, we examine the correlations

between the errors. For each model, consider an error vector

of length N where N is the size of the testing data. The val-

ues in the vector are 1 when the model predicts incorrectly

and 0 otherwise. Table 4 shows the correlation matrix be-

tween these error vectors. The language baseline does not

correlate well with the 2D baseline, suggesting that they

make rather different kinds of errors. However, all state-

of-the-art models have high correlation with the 2D-only

baseline, which implies they make similar predictions to a

2D-only model and supports our conjecture.

Some random failing examples for the language and 2D

baselines are shown in Fig. 5. Models based solely on 2D

cues struggle in scenarios that involves the relative frame of

reference or require depth-based reasoning. Language cues

fall short when a common spatial relation does not appear

or, in contrast, an unusual spatial relation is present. These

observations indicate that neither language nor 2D cues are

sufficient for spatial relation recognition. Beyond these sim-

ple cues, it is crucial to learn visual reasoning that elude the

current state-of-the-art. Our benchmark takes a step towards

that goal by providing a more accurate gauge of a model’s

visual reasoning ability.

Human evaluation. Finally, recognizing spatial relations

is inherently noisy; it is not always clear whether a relation

holds. We conduct a human evaluation, in which annota-

tors are asked to make predictions on the testing data. Mul-

tiple human responses on the same relation is merged by

majority vote. For quality control purpose, the annotators

who answer “yes” more than 80% of the time are consid-

ered outliers, and their responses are excluded. We collect

10,205 predictions and the accuracies are in the last row of

Table 3. Although not perfect, humans perform very well on

this task, reaching an accuracy of 94.6%. The gap between

humans and algorithms provides a large room for future im-

provement on this benchmark.
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Model Overall above behind in in front of next to on to the left of to the right of under

Language-only 60.1 60.4 62.0 54.4 55.1 56.8 63.2 51.7 54.1 70.3

2D-only 68.8 58.0 66.9 70.7 63.1 62.0 76.0 66.3 74.7 67.9

Language + 2D 71.1 61.1 67.5 69.2 66.2 64.8 77.9 69.7 74.7 77.2

Vip-CNN [14] 67.2 55.6 68.1 66.0 62.7 62.3 72.5 69.7 73.3 66.6

Peyre et al. [22] 67.5 59.0 67.1 69.8 57.8 65.7 75.6 56.7 69.2 66.2

PPR-FCN [37] 66.3 61.5 65.2 70.4 64.2 53.4 72.0 69.1 71.9 59.3

DRNet [5] 71.3 62.8 72.2 69.8 66.9 59.9 79.4 63.5 66.4 75.9

VTransE [33] 69.4 61.5 69.7 67.8 64.9 57.7 76.2 64.6 68.5 76.9

Human 94.6 90.0 96.3 95.0 95.8 94.5 95.7 88.8 93.2 94.1

Table 3: The testing accuracies of baseline methods on spatial relation recognition. The 2D baseline performs closely to

state-of-the-art models, which suggests state-of-the-art models might learn to exploit simple priors and fail to develop deeper

visual reasoning capabilities.

Language-only

bulletin board above wall cat on tree glass next to pillow handles in front of wheel blanket under paper

2D-only

wall to the right of bike cellphone behind man light lamp next to sofa water above ipod chair under cupboard

bulletin board above wall cat on tree glass next to pillow handles in front of wheel blanket under paper

wall to the right of bike cellphone behind man light lamp next to sofa water above ipod chair under cupboard

pred gtpred gtpred gtpred gt pred gt

pred gt pred gt pred gt pred gt pred gt

Figure 5: Failing examples of the language and 2D baselines (pred: prediction, gt: ground truth). The language baseline fails

when a frequent spatial relation does not occur in a particular image (e.g., “cat on tree”), or a technically valid spatial relation

is expressed in an unusual way (e.g., “blanket under paper”). The 2D baseline fails to consider the relative frame of reference

(e.g., “wall to the right of bike”) and depth information (e.g., “light lamp next to sofa” and “chair under cupboard”).

L 2D Vi Pe PP D VT

Language-only – 0.04 0.05 0.09 0.05 0.22 0.33

2D-only 0.04 – 0.60 0.35 0.46 0.43 0.31

Vip-CNN [14] 0.05 0.60 – 0.30 0.46 0.25 0.20

Peyre et al. [22] 0.09 0.35 0.30 – 0.30 0.27 0.20

PPR-FCN [37] 0.05 0.46 0.46 0.30 – 0.24 0.21

DRNet [5] 0.22 0.43 0.25 0.27 0.24 – 0.44

VTransE [33] 0.33 0.31 0.20 0.20 0.21 0.44 –

Table 4: The correlation matrix between errors of the mod-

els, with low correlation in green and high correlation in

red. The 2D and language baselines make independent er-

rors (low correlation). DRNet [5] and VTransE [33] corre-

late strongly with both baselines, suggesting that their pre-

dictions are very similar to a combination of 2D and lan-

guage cues. The other models are also highly correlated

with the 2D baseline (they do not utilize language cues).

6. Conclusion

We introduced a novel dataset SpatialSense for the chal-

lenging task of spatial relation recognition. SpatialSense

was constructed through adversarial crowdsourcing, which

significantly reduced its dataset bias compared to alterna-

tive datasets. We evaluated multiple baselines on Spa-

tialSense, demonstrating e.g., that a simple 2D baseline per-

forms competitively with state-of-the-art models. This re-

veals that state-of-the-art models rely too much on dataset

bias in existing benchmarks, validating the need for Spa-

tialSense as a new challenging testbed for spatial relation

recognition.
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