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Abstract

It is always well believed that parsing an image into con-

stituent visual patterns would be helpful for understanding

and representing an image. Nevertheless, there has not been

evidence in support of the idea on describing an image with

a natural-language utterance. In this paper, we introduce a

new design to model a hierarchy from instance level (seg-

mentation), region level (detection) to the whole image to

delve into a thorough image understanding for captioning.

Specifically, we present a HIerarchy Parsing (HIP) archi-

tecture that novelly integrates hierarchical structure into

image encoder. Technically, an image decomposes into a

set of regions and some of the regions are resolved into finer

ones. Each region then regresses to an instance, i.e., fore-

ground of the region. Such process naturally builds a hi-

erarchal tree. A tree-structured Long Short-Term Memory

(Tree-LSTM) network is then employed to interpret the hier-

archal structure and enhance all the instance-level, region-

level and image-level features. Our HIP is appealing in

view that it is pluggable to any neural captioning models.

Extensive experiments on COCO image captioning dataset

demonstrate the superiority of HIP. More remarkably, HIP

plus a top-down attention-based LSTM decoder increas-

es CIDEr-D performance from 120.1% to 127.2% on CO-

CO Karpathy test split. When further endowing instance-

level and region-level features from HIP with semantic rela-

tion learnt through Graph Convolutional Networks (GCN),

CIDEr-D is boosted up to 130.6%.

1. Introduction

Automatic image captioning is the task of generating a

natural sentence that correctly reflects the visual content of

an image. Practical automatic image description systems

have a great potential impact for instance on robotic vision,

or helping visually impaired people by transforming visu-

al signals into information that can be communicated via

text-to-speech technology. The recent state-of-the-art im-

age captioning methods use to perform “encoder-decoder”

translation [6, 14, 29]. A Convolutional Neural Network (C-
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Figure 1. Examples of (a) the hierarchal tree structure in an image,

(b) regions and (c) instances in the image.

NN) first encodes an image into a feature vector, and a cap-

tion is then decoded from this vector, one word at each time

step using a Long Short-Term Memory (LSTM) Network.

There are variants of approaches arisen from this method-

ology, for instance, conducting attention on the feature map

[32] or leveraging attributes to augment image features [35].

Regardless of these different versions, today’s neural cap-

tioning models tend to leverage correlations from training

data and produce generic plausible captions, but lack visual

understanding on the compositional patterns in images.

We propose to mitigate the problem from the viewpoint

of parsing an image into a hierarchical structure of con-

stituent visual patterns to better represent the image. The

key idea is to build a top-down hierarchical tree from the

root of the whole image to the middle layers of regions and

the leaf layer of instances. Each instance in the leaf layer

emphasizes the discriminative foreground of a region. Fig-

ure 1 (a) conceptualizes the typical development of a tree

structure on an image. Figure 1 (b) and (c) illustrates the

regions and foreground/instances in the image, respective-

ly. In this case, we could strengthen visual interpretations of

image structure in a bottom-up manner and the learning of

all the image-level, region-level and instance-level features

does benefit from tree-structured topologies. We expect our

design to be a feature refiner or bank, that outputs rich and

multi-level representations of the image. Such multi-level

representations could be utilized separately or jointly, de-

pending on the particular task. It is also flexible to further

integrate the reasoning of semantic relation between regions

or instances to further endow region-level or instance-level

features with more power.
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By consolidating the exploitation of structure hierar-

chy in an image, we present a new HIerarchy Parsing

(HIP) architecture for boosting image encoder in caption-

ing. Specifically, we devise a three-level hierarchy, in which

an image is first decomposed into a set of regions and one

region is represented either at that level or by further split

into finer ones. Each region then corresponds to an instance,

that models foreground of the region. A tree-structured L-

STM is then executed on the hierarchy from the bottom up

to upgrade the features throughout all the levels. After that,

a hybrid of features on three levels output by HIP could be

easily fed into a general attention-based LSTM decoder to

produce the sentence, one word at each time step. More-

over, our HIP, as a feature optimizer, would further aug-

ment the features by propagating and aggregating semantic

relation. On the hierarchy, we build semantic graph with

directed edges on region or instance level, where the vertex

represents each region or instance and the edge denotes the

relation between each pair of regions or instances. Graph

Convolutional Networks (GCN) are exploited to enrich re-

gion/instance features with visual relation in the semantic

graph. The enhanced features eventually improve image

captioning. Please also note that HIP is flexible to gener-

alize to other vision tasks, e.g., recognition.

The main contribution of this work is the parse of hier-

archical structure in an image for captioning. The solution

also leads to the elegant view of how to build and interpret

the hierarchy of an image, and how to nicely integrate such

hierarchy into typical neural captioning frameworks, which

are problems not yet fully understood in the literature. Our

design is viewed as a feature refiner in general and is readily

pluggable to any neural captioning models.

2. Related Work

Image Captioning. The recent works for image cap-

tioning [3, 6, 29, 32, 35, 36] are mainly sequence learn-

ing based methods which utilize CNN plus RNN to gen-

erate sentences word-by-word, enabling the flexible mod-

eling of syntactical structure within sentence. Specifically,

[29] is one of the early attempts to cast the sentence gen-

eration task as a sequence learning problem and leverages

LSTM to model the dependency among words for sentence

generation conditioning on the input image. [32] further

extends [29] by integrating soft and hard attention mecha-

nism into LSTM-based decoder, which learns to focus on

image regions to facilitate the generation of the correspond-

ing word at each decoding stage. [31, 35, 36] demonstrate

the effectiveness of semantic attributes in image captioning,

where the attributes are taken as additional inputs of CNN

plus RNN to emphasize them in output sentence. Later on,

[24] develops a self-critical sequence training strategy to a-

mend the discrepancy between training and inference for

sequence modeling and thus boost image captioning. Fur-

thermore, instead of measuring attention over a pre-defined

uniform grid of image regions as in [32], [3] especially de-

vises the bottom-up mechanism to enable the measurement

of attention at object level, and the top-down mechanism

to associate the salient image regions and the output word-

s for sentence generation. Most recently, [34] models the

relations between objects in the context of image caption-

ing, which will be further incorporated into the top-down

attention model [3] to enhance captions. In addition, im-

age captioning could be extended to novel object caption-

ing [17, 33] which leverages unpaired image/text data to

describe novel objects or image paragraph generation [30]

which produces a coherent paragraph to depict an image.

In our work, we exploit the hierarchal structure in images

from instance level, region level, to the whole image, to fa-

cilitate a thorough image understanding for captioning. To

do this, we design a novel hierarchy parsing architecture to

integrate hierarchical structure into image encoder, which is

pluggable to any neural captioning models.

Structured Scene Parsing. The task of structured scene

parsing goes beyond the general recognition of scene type

(classification) or localization of objects in a scene (seman-

tic labeling or segmentation) and considers a deeper and

structured understanding on scene. An early pioneering

work [27] devises a Bayesian framework for parsing im-

ages into the constituent visual patterns over a hierarchical

parsing graph. Later on, Han et al. leverage an attributed

grammar model to hierarchically parse the man-made in-

door scene [8]. A connected segmentation tree is proposed

in [1] to capture canonical characteristics of the object in

terms of photometric and geometric properties, and con-

tainment and neighbor relationships between its constituen-

t image regions. [37] designs a hierarchical image model

for image parsing, which represents image structures with

different levels of contextual information. In [20], a hier-

archical shape parsing strategy is proposed to partition and

organize image components into a hierarchical structure in

the scale space. Sharma et al. devise the recursive con-

text propagation network [25] for semantic scene labeling

by recursively aggregating contextual information from lo-

cal neighborhoods up to the entire image and then dissem-

inating the aggregated information back to individual local

features over a binary parse tree.

The hierarchy parsing architecture in our method is al-

so a type of structured scene parsing for images. Unlike

the aforementioned methods that are developed for image

parsing or semantic scene labeling, our hierarchy parsing

architecture acts as an image encoder to interpret the hier-

archal structure in images and is applicable to image cap-

tioning task. As such, all the instance-level, region-level

and image-level features are enhanced with tree-structured

topologies, which will be injected into captioning model to

further boost sentence generation.
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Figure 2. An overview of (a) our HIerarchy Parsing (HIP) architecture for integrating hierarchical structure into image encoder, and its

applications for image captioning task by plugging HIP in (b) Up-Down [3] and (c) GCN-LSTM [34]. For HIP, Faster R-CNN and Mask

R-CNN are first leveraged to detect and segment the set of object regions and instances, respectively. Next, we construct a three-level

hierarchy, where the whole image is first decomposed into a set of regions and one region is represented either at that level or by further

split into finer ones. Each region in the middle layers is naturally associated with the corresponding instance in the leaf layer. After that,

a Tree-LSTM is executed on the hierarchy from the bottom up with enhanced region/instance features and the outputs are image-level

features. A hybrid of features on three levels output by HIP could be easily fed into a general attention-based LSTM decoder in Up-Down

for sentence generation. Moreover, it is also flexible to plug our HIP into GCN-LSTM by further enriching the multi-level features with

semantic relations in semantic graph via Graph Convolutional Networks (GCN).

3. Our Approach

In this paper, we devise a HIerarchy Parsing (HIP) ar-

chitecture to integrate hierarchical structure into image en-

coder, pursuing a thorough image understanding to facili-

tate image captioning. HIP firstly constructs a three-level

hierarchy from the root of the whole image to the middle

layers of regions and the leaf layer of instances, leading to a

deep and structured modeling of image. Tree-LSTM is then

leveraged to contextually enhance features at instance level,

region level, and image level. In this sense, HIP acts as a

feature refiner, that outputs rich and multi-level representa-

tions of an image. Hence HIP is pluggable to any neural

captioning models, including the general attention-based L-

STM decoder or a specific relation-augmented decoder. An

overview of our HIP architecture and its applications in two

different captioning models is illustrated in Figure 2.

3.1. Overview

Notation. The target of image captioning task is to de-

scribe the given image I with a textual sentence S . Note

that the textual sentence S = {w1, w2, ..., wNs
} is a word

sequence containing Ns words. Each word in sentence is

represented as a Ds-dimensional textual feature, e.g., wt ∈
R

Ds , which denotes the feature of t-th word in sentence S .

Since our ultimate hierarchy consists of compositional pat-

terns at instance level, region level and image level, we first-

ly leverage object detection method (Faster R-CNN [23])

and instance segmentation approach (Mask R-CNN [9]) to

produce the basic elements (i.e., regions and instances) of

the hierarchy. The set of regions and instances in image I is

denoted as R = {ri}
K
i=1 and M = {mi}

K
i=1 respectively,

which corresponds to the regions and foregrounds/instances

of detected K objects. Each image region and its instance

are denoted as the Dr-dimensional features ri ∈ R
Dr and

mi ∈ R
Dr . Accordingly, the image I is parsed into a hi-

erarchal tree T = (I,R,M, Etree) consisting of layers at

three levels: the root layer corresponds to entire image I ,

the middle layers of regions R, and the leaf layer of in-

stances M. Etree represents the connections. More details

about how we represent regions & instances and construct

the hierarchal tree will be elaborated in Section 3.2.

Problem Formulation. The key idea behind our formu-

lation is to frame the hierarchical structure modeling of im-

age in the context of image captioning task. To start, given

the sets of regions and instances decomposed from input im-

age, we holistically characterize an image with a three-level

hierarchy. Derived from the idea of tree-structured LSTM

[26], we further leverage a Tree-LSTM module to contex-

tually refine the representation of each instance/region in

a bottom-up manner along the hierarchical tree and finally

acquire the image-level feature. As such, by taking the hi-

erarchy parsing architecture (i.e., the construction of hierar-

chical tree and the feature enhancement via a Tree-LSTM)

as a process of image encoding, the output multi-level rep-

resentations are endowed with more power. After that, the

contextually refined features on three levels from the hier-

archy parsing architecture are fed into a general attention-

based LSTM decoder [3] to facilitate sentence generation.

Therefore, the image captioning problem here is generally

formulated as the minimization of energy loss function:

E(T ,S) = − log Pr (S|T ), (1)

which is the negative log probability of the correct sentence

S given the hierarchal tree T . Moreover, since the hierar-

chy parsing architecture is designed to be a feature refin-
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Figure 3. Feature extraction of regions and instances. Mask R-

CNN augments the pre-trained Faster R-CNN with an additional

mask branch and is adopted to extract region feature ri and predict

the instance-level foreground mask of each region. Next, a blend

of each region and its binary via element-wise multiplication is fed

into another Faster R-CNN to produce instance feature mi.

er or bank, we could further augment the output enhanced

features by propagating and aggregating semantic relations.

That is, our hierarchy parsing architecture can be applied in

the relation-based captioning model [34] which endows the

region-level or instance-level features with relations.

3.2. Hierarchy Parsing in Images

Next we describe the details of our HIerarchy Parsing

(HIP) architecture, which strengthens all the instance-level,

region-level and image-level features with tree-structured

topologies as a feature optimizer. In particular, we begin

this section by presenting the extraction of regions and in-

stances within images. Then, we provide how to construct

the three-level hierarchy by associating all regions and in-

stances in an image. Finally, an image encoder equipped

with Tree-LSTM for interpreting the hierarchal structure

and enhancing multi-level features is presented.

Regions and Instances of Image. Given an input image,

we firstly apply Faster R-CNN trained on Visual Genome

[16] to detect the image regions of objects. Note that

only the top K = 36 regions with highest confidences

R = {ri}
K
i=1 are selected to represent the image. We

represent each region as the 2,048-dimensional output (ri)

of pool5 layer after RoI pooling from the feature map of

Faster R-CNN (backbone: ResNet-101 [10]). In addition,

to emphasize the discriminative knowledge of objects im-

plicit in each image region, we separate the foreground &

background of each region and take the foreground of re-

gion as the associated instance. Specifically, Mask R-CNN

augments the pre-trained Faster R-CNN with an addition-

al mask branch and predicts the instance-level foreground

mask of each region. As such, the foreground/instance is

obtained by blending each region and its binary mask via

element-wise multiplication, leading to the set of instances

M = {mi}
K
i=1. Next, we train another Faster R-CNN over

the foreground images and the 2,048-dimensional output
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Input 
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Figure 4. A diagram of a memory cell cj with two children (sub-

scripts k and k + 1) in Tree-LSTM. We omit the dependencies of

four gates for compactness.

(mi) of this Faster R-CNN is taken as the representation

of each instance mi. Note that the inputs to the two Faster

R-CNN models are different (one is original image and the

other is foreground image) and the two models don’t share

any parameters. Figure 3 details the pipeline for the feature

extraction of regions and instances.

Hierarchy Structure of an Image. Recent advances

on visual relationship [34] have demonstrated that model-

ing the structure in an image (e.g., a semantic graph built

based on relations between regions) does enhance image

captioning. Our work takes a step forward and constructs

a hierarchical structure of constituent visual patterns, i.e.,

hierarchal tree, to fully exploit a hierarchy from instance

level, region level to the whole image and learn the connec-

tions across each level for image captioning. Specifically,

the hierarchal tree T = (I,R,M, Etree) organizes all the

regions and instances of input image I in a top-down three-

level hierarchy, including the root layer, the middle layers

of regions, and the leaf layer of instances.

Concretely, only one root node is initially established in

the upper root layer, which denotes the entire image I . Such

image-level root node is decomposed into a set of regions,

which in turn resolve into a number of finer regions, result-

ing in multiple middle layers of regions. Here the existence

of dependency between pairs of root node and regions is

assigned depending on their Intersection over Union (IoU).

More precisely, given the K image regions R, we firstly

rank all the regions in order of descending area of region

and then integrate each region into the hierarchal tree in

turn. For each region ri, we measure IoU between ri and

each object node in current hierarchal tree. If the maximum

IoU is larger than a threshold ǫ, ri is incorporated into the

hierarchal tree as a child of the existing region node with

maximum IoU, which indicates that ri can be treated as the

finer region within the region of its parent. Otherwise, ri
is directly taken as the child node of the image-level root

node. Once the construction of middle layers of region-

s completes, we attach each instance to the corresponding

region node as a child in the bottom leaf layer.

Image Encoder with Tree-LSTM. One natural way

to model the contextual relationship across samples in a

set/sequence is to adopt LSTM based models as in [4].

However, such kind of chain-structured LSTM is typical-
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ly order-insensitive and thus insufficient to fully capture the

differences in order or dependency structure. Taking the in-

spiration from the success of Tree-LSTM [26] for modeling

tree-structured topologies in several NLP tasks, we leverage

Tree-LSTM in image encoder to facilitate contextual infor-

mation mining within hierarchy and thus enrich image-level

features with holistic hierarchical structure.

A diagram of the Tree-LSTM unit is illustrated in Figure

4. Similar to the standard LSTM, Tree-LSTM unit consists

of a memory cell cj indexed by j, hidden state hj , input

gate ij , and output gate oj . Unlike LSTM updates memory

cell depending on only previous hidden state, the updating

of Tree-LSTM unit relies on the multiple hidden states of it-

s children. Moreover, Tree-LSTM unit includes forget gate

fjk for each child (indexed by k). In particular, the vector

formulas for a Tree-LSTM unit forward pass are given be-

low. For the node indexed by j in a tree, xj and hj denote

the input and output vector, respectively. The set of chil-

dren of this node is denoted as C(j). W are input weights

matrices, U are recurrent weight matrices and b are biases.

Sigmoid σ and hyperbolic tangent φ are element-wise non-

linear activation functions. ⊙ represents the dot product of

two vectors. Hence the Tree-LSTM unit updates are:

h̃j =
∑

k∈C(j)

hk

uj = φ(Wuxj +Uuh̃j + bu) cell input

ij = σ(Wixj +Uih̃j + bi) input gate

fjk = σ(Wfxj +Ufhk + bf ) forget gate

oj = σ(Woxj +Uoh̃j + bo) output gate

cj = uj ⊙ ij +
∑

k∈C(j)

ck ⊙ fjk cell state

hj = φ(cj)⊙ oj cell output

. (2)

Specifically, for our hierarchal tree T , we take the original

extracted region/instance features ({ri}
K
i=1 and {mi}

K
i=1)

as the input vectors of region nodes in the middle layers

and instance nodes in the leaf layer. The input vector of

image-level root node is set as the linear fusion of image-

level mean-pooled features of regions (r = 1
K

∑K

i=1 ri) and

instances (m = 1
K

∑K

i=1 mi): I = Wrr+Wmm. Accord-

ingly, by operating Tree-LSTM over our hierarchal tree in a

bottom-up manner, the region-level features of each region

node are further strengthened with the contextual informa-

tion mined from its instance and even finer regions, which

are denoted as {rhi }
K
i=1. In addition, the outputs of root n-

ode in hierarchal tree are treated as the image-level features

I
h, which are endowed with the inherent hierarchal struc-

ture from instance level, region level to the whole image.

3.3. Image Captioning with Hierarchy Parsing

Since we design our HIP architecture to be a feature re-

finer or bank that outputs rich and multi-level representa-

tions of the image, it is feasible to plug HIP into any neural

captioning models. We next discuss how to integrate hier-

archy parsing into a general attention-based LSTM decoder

in Up-Down [3] or a specific relation-augmented decoder in

GCN-LSTM [34]. Please also note that our HIP is flexible

to generalize to other vision tasks, e.g., recognition.

Up-Down with Hierarchy Parsing. Given a hybrid of

features on three levels output by HIP (i.e., the image-level

features (Ih, r, m) and region-level/instance-level features

({rhi }
K
i=1, {ri}

K
i=1, {mi}

K
i=1), we directly feed them into

a general attention-based decoder with two-layer LSTM in

Up-Down, as depicted in Figure 2 (b). Specifically, at each

time step t, the input of the first-layer LSTM unit is set as

the concatenation of the input word wt, the previous output

of the second-layer LSTM unit h2
t−1 and all image-level

features (Ih, r, m). Such design can collect the maximum

contextual information for the first-layer LSTM to model

dependency among words. After that, we represent each

image region by concatenating all region-level and instance-

level features belonging to it, denoted as vi =
[

r
h
i , ri,mi

]

.

Next, a normalized attention distribution λt ∈ R
K over all

regions {vi}
K
i=1 is calculated conditioning on the output h1

t

of the first-layer LSTM unit, resulting in the attended image

feature v̂t =
∑K

i=1 λt,ivi. Note that λt,i is the i-th element

in λt which represents the attention probability of i-th re-

gion. Therefore, we feed the concatenation of the attended

image feature v̂t and h
1
t into the second-layer LSTM unit,

aiming to trigger the generation of next word wt+1.

GCN-LSTM with Hierarchy Parsing. When applying

the hierarchy parsing into GCN-LSTM [34], the instance-

level and region-level features from HIP are further en-

hanced with visual relation learnt through GCN and thus

improve the captions, as shown in Figure 2 (c). In partic-

ular, we firstly build semantic graph with directed edges

on region or instance level of the hierarchy. GCN is then

leveraged to enrich the region-level/instance-level features

({rhi }
K
i=1, {ri}

K
i=1, {mi}

K
i=1) with visual relations in the

semantic graph. All of the enhanced region-level/instance-

level features ({r̃hi }
K
i=1, {r̃i}

K
i=1, {m̃i}

K
i=1) from GCN are

further fed into a two-layer LSTM for sentence generation.

Extension to Recognition Task. The image-level fea-

tures from our HIP can be further utilized to other vision

tasks, e.g., recognition. The spirit behind follows the phi-

losophy that the hierarchy parsing integrates hierarchical

structure of image into encoder, making the learnt image-

level features more representative and discriminative.

4. Experiments

We empirically verify the merit of our HIP by conducting

experiments on COCO [19] for image captioning task.

4.1. Datasets and Settings

COCO is a standard benchmark in the field of image

captioning. The dataset contains 123,287 images (82,783

for training and 40,504 for validation) and each image is an-

notated with 5 descriptions. Given the fact that the human-
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Table 1. Performance (%) of our HIP and other methods on COCO Karpathy test split.

Cross-Entropy Loss CIDEr-D Score Optimization

BLEU@4 METEOR ROUGE-L CIDEr-D SPICE BLEU@4 METEOR ROUGE-L CIDEr-D SPICE

LSTM [29] 29.6 25.2 52.6 94.0 - 31.9 25.5 54.3 106.3 -

SCST [24] 30.0 25.9 53.4 99.4 - 34.2 26.7 55.7 114.0 -

ADP-ATT [21] 33.2 26.6 - 108.5 - - - - - -

LSTM-A [35] 35.2 26.9 55.8 108.8 20.0 35.5 27.3 56.8 118.3 20.8

RFNet [13] 37.0 27.9 57.3 116.3 20.8 37.9 28.3 58.3 125.7 21.7

Up-Down [3] 36.2 27.0 56.4 113.5 20.3 36.3 27.7 56.9 120.1 21.4

Up-Down+HIP 37.0 28.1 57.1 116.6 21.2 38.2 28.4 58.3 127.2 21.9

GCN-LSTM [34] 37.1 28.1 57.2 117.1 21.1 38.3 28.6 58.5 128.7 22.1

GCN-LSTM+HIP 38.0 28.6 57.8 120.3 21.4 39.1 28.9 59.2 130.6 22.3

annotated descriptions of the official testing set are not pro-

vided, we utilize Karpathy split (113,287 for training, 5,000

for validation and 5,000 for testing) as in [3]. Following

[14], all the training sentences are converted to lower case

and we omit rare words which occur less than 5 times. As

such, the final vocabulary includes 10,201 unique words.

Visual Genome is adopted to train Faster R-CNN for ob-

ject detection. Here we follow the setting in [3, 34] and take

98,077 images for training, 5,000 for validation, and 5,000

for testing. As in [3], 1,600 objects and 400 attributes are se-

lected from Visual Genome for training Faster R-CNN with

two branches for predicting object and attribute classes.

COCO-detect is a popular benchmark for instance seg-

mentation, containing the same images with COCO from 80

object categories. All object instances are annotated with a

detailed segmentation mask. Here we utilize the partially

supervised training paradigm [12] to train Mask R-CNN,

enabling instance segmentation over the entire 1,600 ob-

jects. In particular, the detection branch in Mask R-CNN

is initialized with the weights of learnt Faster R-CNN from

Visual Genome. Next, the mask branch and weight trans-

fer function in Mask R-CNN are further trained on COCO-

detect. Note that we adopt the same split of COCO for train-

ing Mask R-CNN on COCO-detect.

Implementation Details. We represent each word as

“one-hot” vector. The threshold ǫ for constructing hierar-

chy is set as 0.1. The hidden layer size in Tree-LSTM and

LSTM-based decoder is set as 500 and 1,000, respective-

ly. The captioning models with our HIP are mainly imple-

mented with PyTorch, optimized with Adam [15]. For the

training with cross-entropy loss, we set the learning rate as

5× 10−4 and the mini-batch size as 50. The maximum iter-

ation is set as 30 epoches. For the training with self-critical

training strategy, we follow [24] and select the model which

is trained with cross-entropy loss and achieves best CIDEr-

D score on validation set, as initialization. Next the cap-

tioning model is further optimized with CIDEr-D reward.

Here the learning rate is set as 5× 10−5 and the maximum

iteration is 30 epoches. At inference, beam search strategy

is adopted and we set the beam size as 3. Five popular met-

rics, i.e., BLEU@N [22], METEOR [5], ROUGE-L [18],

CIDEr-D [28] and SPICE [2], are leveraged for evaluation.

Compared Methods. (1) LSTM [29] only feeds image

into LSTM-based decoder at the initial time step for trigger-

ing sentence generation. The reported results are directly

drawn from [24]. (2) SCST [24] devises a self-critical se-

quence training strategy to train a modified attention-based

captioning model in [32]. (3) ADP-ATT [21] designs an

adaptive attention mechanism to decide whether to attend

to the image and which image regions to focus, for im-

age captioning. (4) LSTM-A [35] extends the common

encoder-decoder captioning model by additionally injecting

semantic attributes into LSTM-based decoder. (5) RFNet

[13] devises a recurrent fusion network to fuse multiple en-

coders and generate new informative features for decoder

with attention. (6) Up-Down [3] devises a bottom-up at-

tention mechanism to calculate attention at object level to

boost image captioning. (7) GCN-LSTM [34] extends [3]

by exploiting visual relationships between objects. (8) Up-

Down+HIP and GCN-LSTM+HIP are our proposals by

plugging the devised HIP into Up-Down and GCN-LSTM,

respectively. Please note that all the state-of-the-art meth-

ods and our models utilize ResNet-101 as the backbone of

image encoder, for fair comparison. Besides, we report the

results of each model trained with both cross-entropy loss

or CIDEr-D reward in self-critical strategy.

4.2. Performance Comparison and Analysis

Performance on COCO. The performances of differ-

ent models on COCO for image captioning task are sum-

marized in Table 1. Overall, the results across all met-

rics and two optimization methods (Cross-Entropy Loss

and CIDEr-D Score Optimization) consistently indicate that

our GCN-LSTM+HIP exhibits better performances than

other approaches, including non-attention models (LSTM,

LSTM-A) and attention-based approaches (SCST, ADP-

ATT, RFNet, Up-Down, and GCN-LSTM). Up-Down+HIP

and GCN-LSTM+HIP by integrating hierarchy parsing ar-

chitecture makes the absolute improvement over Up-Down

and GCN-LSTM by 3.1% and 3.2% in terms of CIDEr-D

respectively, optimized with cross-entropy loss. The results

generally highlight the key advantage of exploiting the hi-

erarchal structure in an image from instance level, region

level, to the whole image, pursuing a thorough image un-
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Table 2. Performance (%) of the top ranking published state-of-the-art image captioning models on the online COCO test server.

Model
BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr-D

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

GCN-LSTM+HIP 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2

GCN-LSTM [34] 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5

RFNet [13] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1

Up-Down [3] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5

LSTM-A [35] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0

SCST [24] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

derstanding for captioning. Specifically, by injecting the

high-level semantic attributes into LSTM-based decoder,

LSTM-A outperforms LSTM that trains decoder only de-

pending on the input image. Nevertheless, the attention-

based methods (SCST, ADP-ATT, Up-Down, and RFNet)

exhibit better performance than LSTM-A, which verifies the

merit of attention mechanism that dynamically focuses on

image regions for sentence generation. Furthermore, GCN-

LSTM by exploring the relations between objects to en-

rich region-level features, improves SCST, ADP-ATT, Up-

Down, and RFNet. However, the performances of GCN-

LSTM are lower than GCN-LSTM+HIP that additionally

exploits hierarchical structure in an image for enhancing al-

l the instance-level, region-level and image-level features

and eventually boosting image captioning. In addition, by

optimizing the captioning models with CIDEr-D score in-

stead of cross-entropy loss, the CIDEr-D score of GCN-

LSTM+HIP is further boosted up to 130.6%. This con-

firms that self-critical training strategy is an effective way

to amend the discrepancy between training and inference,

and improve sentence generation regardless of image cap-

tioning approaches. Similar to the observations on the opti-

mization with cross-entropy loss, Up-Down+HIP and GCN-

LSTM+HIP lead to better performances than Up-Down and

GCN-LSTM when optimized with CIDEr-D score.

Ablation Study. Next, we examine how captioning per-

formance is affected when capitalizing on different features.

Table 3 details the performances by exploiting different

features in Up-Down sentence decoder. The use of origi-

nal region-level features in general achieves a good perfor-

mance. As expected, only utilizing original instance-level

features is inferior to region-level features. The result indi-

cates that the context in the background of a region is stil-

l a complement to the foreground. On a throughout hier-

archy parsing of an image, the finer features produced by

Tree-LSTM lead to better performance. The concatenation

of every two features constantly outperforms the individu-

al one. The integration of all three features, i.e., our HIP,

reaches the highest performance for captioning. The results

basically demonstrate the complementarity in between.

Qualitative Analysis. Figure 5 showcases a few image

examples with instances, regions, the hierarchy structure,

ground truth sentences and captions produced by LSTM,

GCN-LSTM and GCN-LSTM+HIP, respectively. As illus-

Table 3. An ablation study on the use of different features.

Regions Instances Tree-LSTM BLEU@4 METEOR CIDEr-D

X 36.2 27.0 113.5

X 36.1 27.0 113.3

X 36.3 27.4 113.7

X X 36.6 27.5 114.9

X X 36.8 27.9 115.5

X X 36.7 27.9 115.2

X X X 37.0 28.1 116.6

trated in the exemplar results, the sentences output by GCN-

LSTM+HIP are more descriptive. For example, compared

to the phrase “a group of zebras” in the captions produced

by LSTM and GCN-LSTM for the first image, the words

of “two zebras” depict the image content more accurately

in GCN-LSTM+HIP. We speculate that the results are ben-

efited from the segmentation of two “zebra” instances and

the integration of such information into hierarchy structure.

The results again indicate the advantage of guiding sentence

generation through holistically interpreting and parsing the

structure of an image in our HIP.

Performance on COCO Online Testing Server. We al-

so submitted the run of GCN-LSTM+HIP optimized with

CIDEr-D score to online COCO testing server. Table 2

shows the performance Leaderboard on official testing im-

age set with 5 reference captions (c5) and 40 reference cap-

tions (c40). Note that here we utilize SENet-154 [11] as

the backbone of Faster R-CNN and Mask R-CNN in our fi-

nal submission. The latest top-5 performing systems which

have been officially published are included in the table. Our

GCN-LSTM+HIP leads to performance boost against all

the other top-performing systems on the Leaderboard.

Human Evaluation. As the automatic sentence evalua-

tion metrics do not necessarily correlate with human judge-

ment, we additionally conducted a human study to evalu-

ate GCN-LSTM+HIP against two baselines, i.e., LSTM and

GCN-LSTM. We invite 12 labelers and randomly select 1K

images from testing set for human evaluation. All the la-

belers are grouped into two teams. We show the first team

each image with three auto-generated sentences plus three

human-annotated captions and ask the labelers: Do the sys-

tems produce human-like sentences? Instead, we show the

second team only one sentence at a time, which could be

generated by captioning methods or human annotation (Hu-

man). The labelers are asked: Can you distinguish human
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GT: a man cooking hot dogs on a grill

LSTM: a man and a woman sitting at a table with a grill

GCN-LSTM: a man is cooking food on a grill

GCN-LSTM+HIP: a man is cooking hot dogs on a grill

Grill

Hot dogs

PeopleMan

Shirt

GT: two zebras and a giraffe standing by a tree

LSTM:  a group of zebras are standing next to a giraffe

GCN-LSTM: a group of zebras and a giraffe standing next to a tree

GCN-LSTM+HIP: two zebras and a giraffe standing next to a tree

Tree

Giraffe

Zebra Zebra

Ground

Figure 5. Two image examples from COCO dataset with instances, regions, hierarchy structure, and sentence generation results. The output

sentences are generated by 1) Ground Truth (GT): One ground truth sentence, 2) LSTM, 3) GCN-LSTM and 4) GCN-LSTM+HIP.
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Figure 6. The effect of the threshold parameter ǫ for constructing

hierarchy in Up-Down+HIP with cross-entropy loss over (a) ME-

TEOR (%) and (b) CIDEr-D (%) on COCO.

annotation from that by a system? Based on labelers’ feed-

back, we calculate two metrics: 1) M1: percentage of cap-

tions that are as well as or even better than human anno-

tation; 2) M2: percentage of captions that pass the Turing

Test. The M1 scores of GCN-LSTM+HIP, GCN-LSTM and

LSTM are 76.5%, 73.9% and 50.7%, respectively. In terms

of M2, Human, GCN-LSTM+HIP, GCN-LSTM, and LST-

M achieve 91.4%, 85.2%, 81.5%, and 57.1%. Apparently,

our GCN-LSTM+HIP is the winner on both criteria.

Effect of the threshold ǫ. To clarify the effect of the

threshold parameter ǫ for constructing hierarchy, we illus-

trate the performance curves over METEOR and CIDEr-D

with different threshold parameters in Figure 6. As shown

in the figure, we can see that both performance curves are

generally like the “∧” shapes when ǫ varies in a range from

0.05 to 0.5. Hence we set the threshold parameter ǫ as 0.1 in

our experiments, which can achieves the best performance.

Extension to Recognition. As a feature refiner, here we

test the generalizability of our HIP on recognition task. We

also experiment with COCO dataset on 80 object categories

and utilize object annotations as multiple labels of an im-

age. Multi-label softmax loss [7] is exploited for classifica-

tion. For each image, we predict top-3 ranked labels. Then,

we compute the precision and recall for each label separate-

ly, and report per-class precision (C-P) and pre-class recall

Table 4. Performance comparisons on recognition task when em-

ploying different features.

C-P C-R C-F1 O-P O-R O-F1

Up-Down [3] 65.32 62.24 63.74 64.37 66.48 65.41

HIP 66.18 65.30 65.74 67.53 69.74 68.61

(C-R). Furthermore, to alleviate the bias towards infrequent

labels, we also compute overall precision (O-P) and overall

recall (O-R). As the harmonic average of precision and re-

call, F1 (C-F1 and O-F1) scores are given as well. Table 4

details the performances of different features on recognition

task. We take image-level features from our HIP and com-

pare to mean-pooled image features in Up-Down [3]. By

delving into hierarchy parsing, image-level features from

HIP lead to 2% and 3.2% performance gain in C-F1 and

O-F1 over the features in Up-Down. The results basically

verify the generalizability of HIP on recognition task.

5. Conclusions

We have presented HIerarchy Parsing (HIP) architecture,

which integrates hierarchical structure into image encoder

to boost captioning. Particularly, we study the problem

from the viewpoint of interpreting the hierarchy in tree-

structured topologies from the root of the whole image to

the middle layers of regions and finally to the leaf layer of

instances. To verify our claim, we have built a three-level

hierarchal structure of constituent visual patterns (i.e., in-

stances, regions and the whole image) in an image. A Tree-

LSTM is employed on the hierarchy to enrich the features

throughout all the three levels. Extensive experiments con-

ducted on COCO image captioning dataset demonstrate the

efficacy of HIP in both cases of feeding a blend of features

directly from HIP or further enhanced version with relation

into an attention-based sentence decoder. More remarkably,

we achieve new state-of-the-art performances on this cap-

tioning dataset. The evaluations on HIP also validate its

potential of generalizing to recognition task.
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