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Abstract

We present an approach for pixel-level future predic-

tion given an input image of a scene. We observe that a

scene is comprised of distinct entities that undergo motion

and present an approach that operationalizes this insight.

We implicitly predict future states of independent entities

while reasoning about their interactions, and compose fu-

ture video frames using these predicted states. We over-

come the inherent multi-modality of the task using a global

trajectory-level latent random variable, and show that this

allows us to sample diverse and plausible futures. We em-

pirically validate our approach against alternate represen-

tations and ways of incorporating multi-modality. We ex-

amine two datasets, one comprising of stacked objects that

may fall, and the other containing videos of humans per-

forming activities in a gym, and show that our approach

allows realistic stochastic video prediction across these di-

verse settings. See project website for video predictions.

1. Introduction

A single image of a scene allows us humans to make a re-

markable number of judgments about the underlying world.

For example, consider the two images on the left in Fig 1.

We can easily infer that the top image depicts some stacked

blocks, and the bottom shows a human with his arms raised.

While these inferences showcase our ability to understand

what is, even more remarkably, we are capable of predict-

ing what will happen next. For example, not only do we

know that there are stacked blocks in the top image, we un-

derstand that the blue and yellow ones will topple and fall

to the left. Similarly, we know that the person in the bottom

image will lift his torso while keeping his hands in place.

In this work, we aim to build a model that can do the same

– from a single (annotated) image of a scene, predict at a

pixel level, what the future will be.

* The last two authors were equally uninvolved.

Figure 1. Given a still image with locations of entities (objects or

joints), we predict a sequence of future frames. We visualize two

frames from the predicted sequence for the given inputs.

A key factor in the ability to make these predictions is

that we understand scenes in terms of ‘entities’, that can

move and interact e.g. the blocks are separate objects that

move; the human body’s motion can similarly be under-

stood in terms of the correlated motion of the limbs. We

operationalize this ideology and present an approach that

instead of directly predicting future frames, learns to pre-

dict the future locations and appearance of the entities in

the scene, and via these composes a prediction of the future

frame. The modeling of appearance and the learned compo-

sition allows our method to leverage the benefits of indepen-

dent per-entity representations while allowing for reasoning

in pose changes or overlap/occlusions in pixel space.

Although our proposed factorization allows learning

models capable of predicting the future frames via entity-

based reasoning, this task of inferring future frames from a

single input image is fundamentally ill-posed. To allow for

the inherent multi-modality of the prediction space, we pro-

pose to use a trajectory-level latent random variable that im-

plicitly captures the ambiguities over the whole video and
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train a future predictor conditioned of this latent variable.

We demonstrate that modeling the ambiguities using this

single latent variable instead of per-timestep random vari-

ables allows us to make more realistic predictions as well

as sample diverse plausible futures.

We validate our approach using two datasets where the

‘entities’ either represent distinct objects, or human body

joints, and demonstrate that the same method allows for

predicting future frames across these diverse settings. We

demonstrate: (a) the benefits of our proposed entity-level

factorization; (b) ability of the corresponding learned de-

coder to generate future frames; (c) capability to sample

different futures.

2. Related Work

Modeling Physical Interaction. Many recent works [36,

21, 2, 28, 4, 15] study modeling multiple objects in physi-

cal systems. Similar to us, they reason using the relation-

ship between objects, and can predict the trajectories over

a long time horizon. However, these approaches typically

model deterministic processes under simple visual (or of-

ten only state based) input, while often relying on observed

sequences instead of a single frame. Although some recent

works take raw image as input [36, 10], they also only make

prediction in state, and not pixel space. In contrast to these

approaches, while we also use insights based on modeling

physical interaction, we show results for video frame gen-

eration in a stochastic setup, and therefore also need to (im-

plicitly) reason about other properties such as shape, light-

ing, color. Lastly, a related line of work is to predict stability

of configurations [25, 13, 24, 19, 23]. Our video forecasting

task also requires this understanding, but we do not pursue

this as the end goal.

Video Factorization. It is challenging to directly predict

pixels due to high dimensionality of the prediction space,

and several methods have been used to factorize this output

space [33, 31, 30, 7]. The main idea is to separate dynamic

foreground from static background and generate pixels cor-

respondingly. While these approaches show promising re-

sults to efficiently model one object motion, we show the

benefits of modeling multiple entities and their interactions.

Another insight has been to instead model the output

space differently, e.g. optical flow [34, 26], or motion trans-

formation [38, 5, 18, 9]. This enables generating more

photo-realistic images for shorter sequences, but may not

be applicable for longer generation as new content becomes

visible, and we therefore pursue direct pixel generation.

Another line of work proposes to predict future in a pre-

defined structured representation space, such as human pose

[35, 32]. While our approach also benefits from predicting

an intermediate structured representations, it is not our end

goal as we aim to generate pixels from this representation.

Object-centric video prediction. A line of work explic-

itly enumerates the state of each object as location, velocity,

mass, etc, then applies planning algorithm to unroll move-

ment under reward [22, 16], or leverage Newtonian dynam-

ics [40, 37]. However, these explicit representation based

methods may not be applicable when the state space is hard

to define, or pixel-wise predictions are not easily inferred

given such a state e.g. human motions on complex back-

ground.

Stochastic prediction. Predicting the future is an inher-

ently multi-modal task. Given a still image or a sequence of

frames, there are multiple plausible futures that could hap-

pen. The uncertainty is usually encoded as a sequence of

latent variables, which are then used in a generative model

such as GAN [12] based [27, 33, 5, 30], or, similar to ours,

VAE [20] based [34, 6]. These methods [11, 6, 39] often

leverage an input sequence instead of a single frame, which

helps reduce the ambiguities. Further, the latent variables

are either per-timestep [6], or global [1, 39] whereas our

model leverages a global latent variable, which in turn in-

duces per-timestep variables.

3. Approach

Given an input image along with (known or detected)

locations of the entities present, our goal is to predict a se-

quence of future frames. Formally, given a starting frame

f0 and the location of N entities {b0n}
N
n=1, we aim to gen-

erate T future frames f1, f2, ..., fT . This task is challeng-

ing mainly for two reasons: a) the scene may comprise of

multiple entities, making it necessary to account for their

different dynamics and interactions, and b) the inherently

multi-modal nature of the prediction task.

To overcome the first challenge, our insight is that in-

stead of modeling how the scene changes as a whole,

we should pursue prediction by modeling how the enti-

ties present change. We do so using an entity predic-

tor that predicts per-entity representations: {xt
n}

N
n=1 ≡

{(btn, a
t
n)}

N
n=1, where btn denotes the predicted location,

and atn denotes predicted features that implicitly capture ap-

pearance for each entity. While this factorization allows us

to efficiently predict the future in terms of these entities, an

additional step is required to infer pixels. We do so using

a frame decoder that is able to retain the properties of each

entity, respect the predicted location, while also resolving

the conflicts e.g. occlusions when composing the image.

To account for the fundamental multi-modality in the

task, we incorporate a global random latent variable u

that implicitly captures the ambiguities across the whole

video. This latent variable u, in turn deterministically (via

a learned network) yields per-timestep latent variables zt
which aid the per-timestep future predictions. Concretely,

the predictor P takes as input the per-entity representa-

tion {xt
n} along with the latent variable zt, and predicts
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Figure 2. Our model takes as input an image with known/detected location of entities. Each entity is represented as its location and an

implicit feature. Given the current entity representations and a sampled latent variable, our prediction module predicts the representations

at the next time step. Our learned decoder composes the predicted representations to an image representing the predicted future. During

training, a latent encoder module is used to infer the distribution over the latent variables using the initial and final frames.

the entity representations at the next timestep {xt+1
n } ≡

P({xt
n}, zt). The decoder D, using these predictions (and

the initial frame f0 to allow modeling background), com-

poses the predicted frame f t ≡ D({xt
n}, f

0).
We train our model to maximize the likelihood of the

training sequences, comprising of terms for both the frames

and the entity locations. As is often the case with optimiz-

ing likelihood in models with unobserved latent variable

models e.g. VAEs [20], directly maximizing likelihood is

intractable, and we therefore maximize a variational lower

bound. Towards this, we train another module, a latent en-

coder, which predicts a distribution over the latent variable

u using the target video. Note that the annotation of future

frames/locations, as well as the latent encoder, are all only

used during training. During inference, however, as illus-

trated in Fig 2, we take in input only a single frame along

with (predicted/known) locations of the entities present, and

can generate multiple plausible future frames. We first de-

scribe the predictor, decoder, and encoder modules in more

detail, and the present the overall training objective.

3.1. Entity Predictor

Given per-entity locations and implicit appearance fea-

tures {xt
n}

N
n=1 ≡ {(btn, a

t
n)}

N
n=1, the predictor outputs the

predictions for the next time step using the latent variable zt.

An iterative application of this predictor therefore allows us

to predict the future frames for the entire sequence using the

encodings from the initial frame. To obtain this initial input

to the predictor i.e. the entity encodings at the first time step

{x0
n}

N
n=1, we use the known/detected entity locations {b0n},

and extract the appearance features {a0n} using a standard

ResNet-18 CNN [14] on the cropped region from f0.

While the predictor P infers per-entity features, the pre-

diction mechanism should also allow for the interaction

among these entities rather than predicting each of them

independently e.g. a block may or may not fall depend-

ing on the other ones around it. To enable this, we lever-

age a model in the graph neural network family, in partic-

ular based on ‘Interaction Networks’ which take in a graph

G = (V,E) with associated features for each node, and

update these via iterative message passing and message ag-

gregation. See [3] for a more detailed review. Our pre-

dictor P that infers {xt+1
n } from ({xt

n}, zt) comprises of

4 interaction blocks, where the first block takes as input

the entity encodings concatenated with the latent feature:

{xt
n ⊕ zt}

N
n=1. Each of these blocks performs a message

passing iteration using the underlying graph, and the final

block outputs predictions for the entity features for the next

timestep {xt
n}

N
n=1 ≡ {(btn, a

t
n)}

N
n=1. This graph can either

be fully connected as with our synthetic data experiments,

or more structured e.g. skeleton in our human video pre-

diction experiments. See appendix for more details on the

message passing operations.

Although our prediction module falls under the same

umbrella as Interaction Networks(IN) [2], which are in turn

related to Graph Convolution Networks(GCN) [21], there

are subtle differences, both in the architecture and applica-

tion. While [2] use a single interaction block to update

node features, we found that stacking multiple interaction

blocks for each timestep is particularly helpful. In con-

trast to GCNs which use a predefined mechanism to com-

pute edge weights and use linear operations for messages,

we find that using non-linear functions as messages allows

better performance. Finally, while existing approaches do

apply variants of GNNs for future prediction, these are re-

stricted to predefined state-spaces as opposed to pixels, and

do not account for uncertainties using latent variables.

3.2. Frame Decoder

The decoder aims to generate pixels of the frame f t from

a set of predicted entity representations. While the entity

representations capture the moving aspects of the scene, we

also need to incorporate the static background, and addi-

tionally use the initial frame f0 to do so. Our decoder D,

as depicted in Fig 3, therefore predicts f t ≡ D({xt
n}, f

0).
To compose frames from this factored input representation,

there are several aspects that our decoder must consider: a)

the predicted location of the entities should be respected,

10355



Figure 3. Our frame decoder takes in the initial frame f0 and the

predicted entity representations at time t, and outputs the frame

corresponding to the predicted future f t.

b) the per-entity representations may need to be fused e.g.

when entities occlude each other, and c) different parts of

background may become visible as objects move.

To account for the predicted location of the entities when

generating images, we propose to decode a normalized spa-

tial representation for each entity, and warp it to the image

coordinates using the predicted 2D locations. To allow for

the occlusions among entities, we predict an additional soft

mask channel for each entity, where the value of masks are

supposed to capture the visibility of the entities. Lastly, we

overlay the (masked) spatial features predicted via the enti-

ties onto a canvas containing features from the initial frame

f0, and then predict the future frame pixels using this com-

posed feature.

More formally, let us denote by φbg the spatial features

predicted from the frame f0 (using a CNN with architecture

similar to UNet), and let {(φ̄n, M̄n) = g(an)}
N
n=1 denote

the features and spatial masks decoded per-entity using an

up-convolutional decoder network g. We first warp, using

the predicted locations bn, these features and masks into im-

age coordinates at same resolution as φbg . Denoting by W a

differentiable warping function e.g. in Spatial Transformer

Networks [17], we can obtain the entity features and masks

in the image space:

φn = W(φ̄n, bn); Mn = W(M̄n, bn) (1)

Note that the warped mask and features (φn,Mn) for each

entity are zero outside the predicted bounding box bn, and

the mask Mn can further have variable values within this re-

gion. Using these independent background and entity fea-

tures, we compose frame level spatial features φ by com-

bining these via a weighted average. Denoting by Mbg a

constant spatial mask (with value 0.1), we obtain the com-

posed features as:

φ =
φbg ⊙Mbg ⊕

∑
n φn ⊙Mn

Mbg ⊕
∑

n Mn

(2)

These composed features φ incorporate information from

all entities at the appropriate spatial locations, allow for oc-

Figure 4. Our encoder (a) and baseline encoder (b-d). At test time,

variables in blue are sampled randomly. At training, encoders

model the posterior by all xs connected with dotted lines.

clusions using the predicted masks, and incorporate the in-

formation from background. We then decode the pixels for

the future frame from these composed features. Note that

one has a choice over the spatial level where this feature

composition happens e.g. it can happen in feature space at

near the image resolution (late fusion), or even directly at

pixel level (where the variables φ all represent pixels), or

alternatively at a lower resolution (mid/early fusion). We

find that late fusion in implicit (and not pixel) space yields

most promising results, and also find that the inferred masks

end up correspond to instance segmentations.

3.3. Latent Representation

We described in Sec 3.1 how our prediction module is

conditioned on a latent variable u, which in turn generates

per-timestep conditioning variables zt that are used in each

prediction step – this is depicted in Fig 4(a). Intuitively,

the global latent variable would capture video-level ambi-

guities e.g. where the blocks fall, the variables zt resolve

the corresponding ambiguities in the per-timestep motions.

While previous approaches for future prediction similarly

use latent variables to resolve ambiguities (see Fig 4(c-d)),

the typical idea is to use independent per-timestep random

variables, whereas in our model the zt’s are all correlated.

During training, instead of marginalizing the likelihood

of the sequences over all possible values of the latent vari-

able u, we instead minimize the variational lower bound of

the log-likelihood objective. This is done via training an-

other module, a latent encoder, which (only during training)

predicts a distribution over u conditioned on the ground-

truth video. In practice, we find that simply conditioning on

the first and last frame of the video (using a feed-forward

neural network) is sufficient, and denote by q(u|f0, f̂T ) the

distribution predicted. Given a particular u sampled from

this distribution, we recover the {zt} via a one-layer LSTM

which, using u as the cell state, predicts the per-timestep

variables for the sequence.

3.4. Training Objective

Overall, our training objective can be viewed as max-

imizing the log-likelihood of the ground-truth frame se-

quence {f̂ t}Tt=1. We additionally use training-time supervi-

sion for the locations of the entities {{b̂tn}
N
n=1}

T
t=1. While

this objective has an interpretation of log-likelihood maxi-
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mization, for simplicity it is described as a loss L with dif-

ferent terms, where the first Lpred encourages the frame and

location predictions to match the ground-truth:

Lpred =
T∑

t=1

(‖D({xt
n}, f

0)− f̂ t‖1 + λ1

N∑

n=1

‖btn − b̂tn‖
2)

The second component corresponds to enforcing an infor-

mation bottleneck on the latent variable distribution:

Lenc = KL[q(u) ‖ N (0, I)]

Lastly, to further ensure that the decoder generates realis-

tic composite frames, we add an auto-encoding loss that

enforces it generates the correct frame when given entities

representations {x̂t
n} extracted from f̂ t (and not the ones

predicted) as input.

Ldec =
T∑

t=0

‖D({x̂t
n}, f

0)− f̂ t‖1

The total loss is therefore L = Ldec+Lpred+λ2Lenc with

hyper-parameter λ2 determining the trade-offs among accu-

rate predictions and information bottleneck in random vari-

able. See appendix for additional details. We will release

our code for reproducibility.

4. Experiments

We aim to show qualitative and quantitative results high-

lighting the benefits of various components (predictor, de-

coder, and latent representation) in our approach, and aim

to highlight that our approach is general to accommodate

various scenarios. See generated videos in supplementary.

4.1. Experiment Setup

Dataset. We demonstrate our results on both the synthetic

(ShapeStacks [13]) and real (Penn Action [42]) dataset.

Shapestacks is a synthetic dataset comprised of stacked ob-

jects that fall under gravity with diverse blocks and con-

figurations. The blocks can be cubes, cylinders, or balls

with different colors. In addition to evaluating generaliza-

tion ability, we further test with similar setups with videos

comprised of 4, 5 or 6 blocks.

Penn Action [42] is a real video dataset of people play-

ing various indoor and outdoor sports with annotations of

human joint locations. The Penn Action dataset is challeng-

ing because of a) diverse backgrounds, view angles, human

poses and scales b) noise in annotations, and c) multiple ac-

tivity classes with different dynamics. We use a subset of

the categories related to gym activities because most videos

in these classes do not have camera motion and their back-

grounds are similar within these categories. We adopt the

recommended train/test split in [42]. Beyond that, we argue

Figure 5. Error for location (Left) and frame (Right) prediction

using our entity predictor and baselines. For each sequence, the

best score of 100 random samples is drawn.

it is not impractical to assume known locations – we sub-

stitute ground truth annotation b̂tn with key-points location

from off-the-shelf detector [8] in both training and testing.

In both scenarios, we train our model to generate video

sequence of 1 second given an initial frame, using exactly

the same architecture despite the two diverse scenarios – en-

tities correspond to objects in Shapestacks and correspond

to joints of human body in Penn Action.

Evaluation Metrics. In both of these settings, we evalu-

ate the predicted entity locations using average mean square

error and the quality of generated frames using the Learned

Perceptual Image Patch Similarity (LPIPS) [41] metric. A

subtle detail in the evaluation is that at inference, the predic-

tion is dependent on a random variable u, and while only

a single ground-truth is observed, multiple predictions are

possible. To account for this, we draw 100 samples of la-

tents and record the best scores as in [6]. When we ablate

non-stochastic modules (e.g. decoders), we use the mean u

predicted by the latent encoder (after seeing the ‘ground-

truth’ video). Without further specification, the curves are

plotted in the ‘best of 100’ setup; the qualitative results vi-

sualize the best predictions in terms of LPIPS.

Baselines. There are three key components in our model,

i.e. the entity predictor, frame decoder, and latent repre-

sentation. Various baselines are provided to highlight our

choices in each of the components. Among them, some

variant specifically points to previous approaches as the fol-

lowing:

• No-Factor [23] only predicts on the level of frames.

Here we provide supervision from entity locations and

pixels instead of segmentation masks;

• LP [6] implements the stochastic encoder module in

SVG-LP to compare different dependency of latent

variables;

• Pose Knows [35] is most related to our Penn Action

setting which also predicts poses as intermediate repre-

sentation, but it predicts location jointly and generates

videos in a different way.

Besides the above which are strongly connected to previ-

ous works, we also present other baselines whose details

are discussed in Section 4.2.
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Figure 6. Video predictions using our predictor compared to baselines. We visualize the generated sequence after every 3 time steps.

Figure 7. Above: Quantitative evaluation of the entity predictor

when generalized to different number of blocks. The number in

the bracket indicates the number of blocks in the subset. Below:

Video predictions. The middle and last step are visualized.

4.2. Analysis using Shapestacks

We use Shapestacks to validate the different components

of the proposed approach i.e. the entity predictor, frame de-

coder, and the modeling choices for the latent variables.

Entity Predictor. We aim to show that our proposed pre-

dictor, which is capable of factorizing prediction over per-

entity locations and appearance, as well as allowing rea-

soning via GNNs, improves prediction. Towards this, we

compare against three alternate models: a) No-Factor [23],

b) No-Edge and c) Nearest Neighbor(NN). The No-Factor

model does not predict a per-entity appearance but simply

outputs a global feature that is decoded to foreground ap-

pearance and mask. To leverage the same supervision as

box locations, it also takes as input (and outputs) the per-

entity bounding boxes. The No-Edge does not allow for

interactions among entities when predicting the future. The

NN computes the features of the initial frame using a CNN.

During inference, it retrieves the training video that is most

similar in terms of those features. See appendix for details.

Figure 6 shows the prediction using our model and the

baselines. The No-Factor generates plausible frames at the

beginning and performs well for static entities. However,

at later time steps, entities with large range of motion dif-

fuse because of the uncertainty. In contrast, entities gener-

ated by ours have clearer boundary over time. The No-Edge

does not accurately predict block orientations as it requires

more information about relative configuration, and further

changes the colors over time. In contrast, blocks gener-

ated by our approach gradually rotate and fall over and are

learned to retain colors. The NN baseline shows our model

does not simply memorize the training set. Figure 5 reports

quantitative evaluations, and similarly observe the benefits

of our approach.

Figure 7 shows the results when the model generalizes

to different number of entities (4, 5, and 6) at test time. The

No-Factor uses fully connected layers to predict which can-

not be directly adapted to variable number of blocks. We

show methods that are able to accommodate the number of

entities changes, i.e. No-Edge and ours. Our method pre-

dicts locations closer to the truth with more realistic appear-

ance, and is able to retain the blocks color across time. Note

that we train all models with only three blocks.
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Figure 8. Qualitative results for composing entity representations

into a frame. We visualize the outputs from variants of the decoder

performing Late/Mid/Early fusion in feature space, or directly in

pixel space. The first row depicts decoding of the initial represen-

tation; the second row depicts decoding of the predicted entities at

a later time step.

Figure 9. Left: Average Perceptual error for predicted frames via

variants of the decoder. Right: Visualization of the composition of

the foreground masks predicted for the entities.

Primitive Decoder. While the No-Factor baseline shows

the benefits of composing features for each entity while ac-

counting for their predicted spatial location, we ablate here

whether this composition should directly be at a pixel-level

or at some implicit feature level (early, mid, or late). Across

all these ablations, the number of layers in the decoder re-

main the same; only the level at which features from entities

are composed differs.

The qualitative result are shown in Fig 8 where the first

row visualizes decodings from the initial frame, and the sec-

ond row demonstrates decoding from predicted features for

a later timestep. While both late/pixel-level fusion recon-

structs the initial frame faithfully, the pixel-level fusion in-

troduces artifacts for future frames. The mid/early fusion

alternates do not capture details well. We also observe sim-

ilar trends in the quantitative results visualized in Figure 9.

Note the latent u is encoded by the ground truth videos.

To further analyze the decoder, we visualize the gener-

ated soft masks in Figure 9. The values indicate the proba-

bility of the pixel belongs to a foreground of the entity. Note

that this segmentation emerges despite of no direct supervi-

sion, but only location and frame-level pixels.

Latent Representation. Our choice of the latent vari-

ables in the prediction model differs from the common

choice of using a per-timestep random variable zt. We

compare our approach (Figure 4a) with such other alterna-

tives (Figure 4 b-e). The No-Z baseline (Figure 4b) directly

Figure 10. Error for location (Left) and frame (Right) prediction

using our encoder and baselines. For each sequence, the best score

of 100 random samples is drawn.

Figure 11. Visualizing five randomly sampled predictions by our

method and other baselines. The predicted centers of entities over

time overlay on top of the initial frame.

uses u across every time step, instead of predicting a per-

timestep zt from it. In both Fixed Prior (FP) and Learned

Prior(LP) [6] baselines, the random variables are sampled

per time step, either independently (FP), or depending on

previous prediction (LP). During training, both FP and LP

models are trained using an encoder similar to ours, but this

encoder that predicts zt using the frames f t and f t+1 (in-

stead of our approach using f0 and fT to predict u).

We visualize using five random samples in form of tra-

jectories of entity locations in Figure 11. We notice that the

direction of trajectories from No-Z model do not change

across samples. The FP model has issues maintaining con-

sistent motions across time-steps as during each timestep,

an independent latent variable is sampled. The LP method

performs well compared to FP, but still has similar issues.

Compared to baselines, the use of a global latent variable

allows us to sample and produce consistent motions across

a video sequence, while also allowing diverse predictions

across samples. The quantitative evaluations in Figure 10

show similar benefits where our method does well for both

location error and frame perceptual distance over time.

4.3. Penn Action

Our model used in this dataset is exactly the same as

that in the Shapestacks. Only the graph in the predictor is

based on the human skeleton, instead of fully-connected.

See project page for generated videos.
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Figure 12. Video prediction results with best LPIPS latent using our approach compared to baselines. The last column visualizes results

when the entity (joints) locations are replaced by the detection in both training and testing. Videos are in supplementary.

Figure 13. Visualizing joint positions in three randomly sampled

predictions by our method. The initial skeletons are plotted as

white. Skeletons at time 0.25s, 0.5s, and 1s are plotted as yellow,

orange, and red, respectively.

Figure 14. Error for location (Left) and frame (Right) prediction

using our model and baseline methods. For each sequence, the

best score of 100 samples is drawn.

We compare with Pose-Knows [35] which leverages en-

tities as intermediate representation and generates pixel-

level prediction. However, they a) do not predict feature

for appearance but only location of each entity (joint); b) do

not involve interaction mechanism; c) adopt a different gen-

eration method (GAN) where they stick sequence of ren-

dered pose figures to the initial frame, and fuse them by a

spatial-temporal 3D convolution network [29]. In their pa-

per, the adversarial loss is posed to improve realism. We

present that our method also benefits from the adversarial

loss (Ours+Adv).

Figure 12 and Figure 14 show qualitative and quantita-

tive results using the best latent variable among 100 sam-

ples. The No-Factor cannot generate plausible foreground

while the No-Edge does not compose well. Our results im-

prove to be sharper if adversarial loss is added (Ours+Adv).

We also visualize predictions when, during both training

and inference, annotated key-points are replaced with de-

tected key-points using [8]. We note that the performance

is competitive to the setting using annotated key-point lo-

cations, indicating that our method is robust to annotation

noise. It also indicates that the requirement of entity loca-

tions is not a bottle-neck, since automatically inferred loca-

tion suffice in our experiment.

Figure 13 visualizes different sample futures using the

predicted joint locations across time. Our model learns the

boundary of the human body against the background as well

as how the entities compose the human body even when

they heavily overlap. More interestingly, the model learns

different types of dynamics for different sports. For exam-

ple, in pull ups, the legs move more while the hands are still;

in clean and jerk, the legs almost remain at the same place.

5. Discussion

In this work we proposed a method that leverages com-

positionality across entities for video prediction. However,

the task of video prediction in a general setting is far from

being solved, and many challenges still remain. In partic-

ular, we rely on supervision of the entity locations, either

from human or automatic annotations. It would be interest-

ing to relax this requirement and allow the entities to emerge

as pursued in some recent works [4, 15], although in simpler

settings. Additionally, GAN-based auxiliary losses have

been shown to improve image synthesis quality, and these

could be explored in conjunction with our model. Lastly,

developing metrics to evaluate the diversity and accuracy of

predictions is also challenging due to the multi-modal na-

ture of the task, and we hope some future efforts will also

focus on this aspect.
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