
Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local

Spatio-Temporal Correlations

Peng Yi1, Zhongyuan Wang∗1, Kui Jiang1, Junjun Jiang2,3, and Jiayi Ma1

1Wuhan University, Wuhan, China 2Harbin Institute of Technology, Harbin, China
3Peng Cheng Laboratory, Shenzhen, China

{yipeng, kuijiang}@whu.edu.cn, {wzy hope, junjun0595}@163.com, jyma2010@gmail.com

Abstract

Most previous fusion strategies either fail to fully utilize

temporal information or cost too much time, and how to ef-

fectively fuse temporal information from consecutive frames

plays an important role in video super-resolution (SR). In

this study, we propose a novel progressive fusion network

for video SR, which is designed to make better use of spatio-

temporal information and is proved to be more efficient and

effective than the existing direct fusion, slow fusion or 3D

convolution strategies. Under this progressive fusion frame-

work, we further introduce an improved non-local opera-

tion to avoid the complex motion estimation and motion

compensation (ME&MC) procedures as in previous video

SR approaches. Extensive experiments on public datasets

demonstrate that our method surpasses state-of-the-art with

0.96 dB in average, and runs about 3 times faster, while re-

quires only about half of the parameters.

1. Introduction

Super-resolution refers to the problem of reconstructing

a high-resolution (HR) output from a given low-resolution

(LR) input. For single image super-resolution (SISR), as the

input consists of only one single image, it is concentrated

on extracting spatial information. For video SR, where the

input is composed of several consecutive frames, it empha-

sizes exploiting the inter-frame temporal correlations. Thus,

it remains to be a non-trivial problem on making full use of

temporal correlations among multiple frames.

In general, most video SR methods adopt a time-based

way or space-based way for utilizing temporal information.

Time-based methods [11, 26, 31] consider frames as time-

series data, and send frames through the network one by

∗Corresponding author. Code will be available at http-

s://github.com/psychopa4/PFNL.

Figure 1: Differences of non-local operation and ME&MC.

Non-local operation tries to obtain the response at position

xi by computing the weighted average of relationships of

all possible positions xj [36]. ME&MC tries to compensate

neighboring frames to the reference frame.

one. However, this kind of approach may run slower as it

cannot process multiple frames in parallel.

Space-based methods [3, 13, 14] take multiple frames as

supplementary materials to help reconstruct the reference

frame. Compared to time-based methods, this kind of ap-

proach is able to retain full inter-frame temporal correla-

tions and enjoy the advantages of parallel computing. Most

existing space-based approaches adopt direct fusion, slow

fusion or 3D convolution [25, 29] for temporal information

fusion [3], which are shown in Figure 2.

Most traditional video SR methods [2, 7, 20, 22] con-

duct pixel-level motion and blur kernel estimation based on

image priors, trying to solve a complex optimization prob-

lem [23]. With recent development of deep learning, a lot of

video SR methods [3, 14, 23, 26, 31] based on convolutional

neural networks (CNNs) have emerged. They try to conduct

3106

Fr
am

e
Se

qu
en

ce
t-2

t-1

t

t+1

t+2

Aggregated
directly

2D convolutional
neural network

HR estimate of t

... ...

(a) Direct fusion.

Fr
am

e
Se

qu
en

ce

t-2

t-1

t

t+1

t+2

Aggregated
gradually

2D convolutional
neural network

HR estimate of t

... ...

(b) Slow fusion.

Fr
am

e
Se

qu
en

ce

t-2

t-1

t

t+1

t+2

3D convolutional neural network

HR estimate of t

...

(c) 3D convolution.

Figure 2: Different merging schemes for space-based video SR, when adopting five frames as input. (a) Direct fusion strategy

fuses multiple frames into one part in the beginning. (b) Slow fusion strategy fuses frames into smaller groups gradually and

into one piece. (c) A 3D convolution not only convolutes frames in the space dimension, but also in the time dimension.

explicit motion compensation on the input frames to make it

easier for the SR network to capture long-range dependen-

cies. Although these alignment methods are intended for

increasing the temporal coherence, they have two main dis-

advantages: 1) they introduce extra parameters, calculations

and training difficulty, and 2) incorrect ME&MC may cor-

rupt original frames and decrease the performance of SR.

We conduct experiments to find that these ME&MC [3, 31]

methods contribute little (about 0.01-0.04 dB) to the video

SR in Section 4.2.

Recently, Wang et al. proposed non-local neural net-

works [36] for capturing long-range dependencies, which

essentially shares similar purpose as the ME&MC in video

SR. As illustrated in Figure 1, non-local operation aims at

computing the correlations between all possible pixels with-

in and across frames, while ME&MC intends to compensate

other frames to the reference frame as close as possible.

In this study, we propose a novel progressive fusion net-

work by incorporating a series of progressive fusion resid-

ual blocks (PFRBs). The proposed PFRB is intended for

better utilization of spatio-temporal information from mul-

tiple frames. Besides, multi-channel design of the PFRB

makes it possible to behave well even under few parameter-

s by adopting a kind of parameter sharing strategy. More-

over, we introduce and improve the non-local residual block

(NLRB) to capture long-range spatio-temporal correlations

directly. We elaborate these two modules in Section 3.

2. Related Work

Since the pioneer’s works by Dong et al. [4, 5], a lot

of CNN-based SR methods [8, 24, 27, 33, 40] have been

proposed. Following time-based way, DRVSR [31] adopt-

s convolutional long short-term memory (ConvLSTM) [28]

module in the network, reserving information from the last

frame. Based on spatial transformer motion compensation

(STMC) [3], DRVSR also proposes a novel sub-pixel mo-

tion compensation (SPMC) layer, projecting LR frames on-

to HR image space. Another time-based method FRVSR

[26] first sends one LR frame through the network to obtain

a super-resolved HR output. This HR output is concatenat-

ed to the next LR frame, flowing through the network again

to obtain the corresponding HR estimate. By this way, as

frames go through the network, their outputs are sent back

to help reconstruct following frames. However, FRVSR can

only utilize one previous frame to help reconstruct current

LR frame, neglecting the potential of next LR frames.

Space-based methods [3, 13, 14, 23] try to merge tempo-

ral information in a parallel manner, and three main fusion

strategies are shown in Figure 2. Direct fusion and slow fu-

sion share a similar idea, except that the former fuses frames

into one part directly, while the latter does the same thing

gradually. A 3D CNN conducts convolution in both space

and time dimensions, extracting intra-frame spatial correla-

tions and inter-frame temporal correlations simultaneously.

VSRnet [14] adopts direct fusion, and DUFVSR [13] build-

s a 3D CNN, while VESPCN [3] has explored these three

strategies for video SR. Our proposed progressive fusion s-

trategy also follows the space-based way, thus, we have con-

ducted experiments to compare progressive fusion against

these three strategies, which are elaborated in Section 4.

3. Our Method

3.1. Progressive Fusion Network

We first introduce the designs of our whole network. As

illustrated in Figure 3, we first adopt a non-local block to

process LR frames. Then, after one 5×5 convolution layer,

we add a series of PFRBs to the network, which are sup-

posed to make full extraction of both intra-frame spatial

correlations and inter-frame temporal correlations among

multiple LR frames. At the end, we merge the informa-

tion from all channels in PFRB and enlarge it to obtain one

3107

I

0

t

I

0

t−2

I

0

t−1

O

t

O

t−1

O

t−2

O

t+1

O

t+2

LR frames

Non-local
resblock

Progress fusion
resblock

Merge and
magnification

HR estimate

Progress fusion
resblock

Concatenation Conv 3 × 3 Conv 1 × 1

...

Conv 5 × 5

Bi
cu

bi
c

m
ag

ni
fic

at
io

n

Input Output

I

0

t+1

I

0

t+2

~C

1

t−2

C

1

t+2

~C

3

t−2

C

3

t+2

~I

1

t−2

I

1

t+2

~I

3

t−2

I

3

t+2

I

1

I

2

C

2

Add

Figure 3: The architecture of our whole network (left) and the structure of one PFRB (right). Note that the input number of

the residual block can be arbitrary, and we show the case of taking five frames as input. The “
⊕

” represents element-wise

add. Black, blue and green arrows denote concatenation, convolution with 3× 3 and 1× 1 kernel respectively.

residual HR image, which is added to the bicubically mag-

nified image to obtain the HR estimate as in [15]. Merge

and magnification module applies sub-pixel magnification

layer from [27]. The whole processing procedure is quite s-

traightforward, nevertheless, we have designed two sophis-

ticated residual blocks for better performance.

We show the structure of a PFRB in the right of Figure

3, when taking five frames as input. Basically, we follow a

multi-channel design methodology, because the input con-

tains multiple LR frames. We first conduct 3 × 3 convolu-

tional layers with same certain number (N) of filters, which

can be described as:

I1t = C1
t (I

0
t), (1)

where t denotes the index of temporal dimension, I0t rep-

resents the input frames, and C1
t (·) is the first depth of

the convolutional layers. I1t denotes the feature map-

s extracted, which are supposed to contain rather self-

independent features from each input frame. Later, feature

maps {I1t−2, ..., I
1
t+2} are concatenated and merged into one

part, which contains information from all input frames, and

the depth of this merged feature maps is 5 × N when tak-

ing five frames as input. That is to say, this aggregated deep

feature map contains a large deal of temporal-correlated in-

formation. Naturally, we use one convolutional layer to fur-

ther utilize the temporal information from this feature map.

Because this feature map is rather deep, we set the kernel

size as 1× 1 to avoid involving too many parameters. Con-

sidering the fact that, the temporal correlations between two

frames is negatively correlated with the temporal distance,

we set the filter number as N to distillate this deep feature

map to a more concise one, intending to extract features

that is most temporal-correlated to the center frame. This

process can be described as:

I2 = C2(I1) = C2({I1t−2, ..., I
1
t+2}), (2)

where I1 denotes the aggregated feature map, C2(·) repre-

sents the second depth of the convolutional layer with 1× 1
kernel, and I2 is the distillated feature map. Later, this dis-

tillated feature map I2 is concatenated to all the previous

feature maps {I1t−2, ..., I
1
t+2}, becoming {I3t−2, ..., I

3
t+2}.

By this way, feature maps of all channels contain two kind-

s of information now: self-independent spatial information

and fully mixed temporal information. It is easily observed

that the depth of these feature maps is 2×N , and we further

adopt 3× 3 convolutional layers to extract both spatial and

temporal information from them:

Ot = C3
t (I

3
t) + I0t = C3

t ({I
2, I1t }) + I0t , (3)

where I3t denotes the merged feature maps {I2, I1t }, C3
t (·)

represents the third depth of the convolutional layers, and

Ot is the corresponding output. We use “+I0t ” to represent

residual learning [9], which means that the output and the

input are required to have the same size. Thus, the third

depth of convolutional layers have N filters, for the pur-

pose of obtaining N -depth outputs with more concise and

efficient information.

3108

Overall, we design a sophisticated residual block that

keeps the number and size of the input frames unchanged, in

which both intra-frame spatial correlations and inter-frame

temporal correlations are fully extracted progressively. Al-

though the parameter number of one PFRB can grow lin-

early with the number of input frames, we further adop-

t a parameter sharing scheme to reduce the parameters with

barely no loss in performance. Different from the schemes

in [16] and [30], where they share the parameters across dif-

ferent residual blocks, we conduct parameter sharing across

channels within one residual block. We also conduct exper-

iments comparing our network against direct fusion, slow

fusion and 3D convolution strategies with different param-

eter sharing schemes, which are shown in Section 4.3.

3.2. Non­Local Residual Block

Inspired from [34, 36], we introduce non-local neu-

ral networks to capture long-range dependencies through a

kind of non-local operation. Mathematically, the non-local

operation is described as follows:

yi =
1

C(x)

∑

∀j

f(xi, xj)g(xj), (4)

where x represents the input data (image, video, text, etc),

y denotes the output, which should be with the same size as

x. i is the index of an output position, and j is the index of

all possible positions. The function f(·) calculates a scalar

that represents a kind of relationship between two inputs,

while g(·) gives a representation of the input. C(x) is used

for normalization.

According to Equation (4), it can be inferred that this

non-local operation tries to obtain a representation at one

position by computing the correlations between it and al-

l possible positions, which is the exact reason we choose

it to replace traditional ME&MC. Wang et al. [36] pro-

vided some choices for function f(·) like Gaussian func-

tion, embedded Gaussian function and dot product function,

etc. To avoid involving too many extra parameters, we only

consider the Gaussian function f(xi, xj) = ex
T
i xj , where

xT
i xj represents the dot-product similarity, and C(x) =

∑

∀j f(xi, xj) is used for normalization.

As demonstrated in Figure 4, the output of a NLRB is

defined as zi = Wzyi + xi, where Wz is implemented by

1 × 1 convolution, and “+xi” is referred to as the residual

learning [9]. We first reshape X to X1, transforming the

temporal dimension into channel dimension. That is to say,

the temporal correlations is not calculated directly, but cap-

tured through the channel correlations. If not doing so, the

shape of feature map F would be TWH × TWH , which

is the same as [36]. However, non-local block is originally

proposed for tasks like classification and recognition, where

the input size H and W have been down-scaled quite small

and fixed, e.g. 28, 14 or even 7. Nevertheless, for generation

�� ×�� /�

2

�

2

�� / × ���

2

�

2 g:	 	conv1 × 1

�

1

�

�

2

�

3

�

4

�

�� / ×�� /�

2

�

2

softmax

�

�� / × ���

2

�

2

� ×� ×� × �

� ×� × (� × �)

(�/�) × (� /�) × (� × � ×)�

2

� ×� ×� × �

�

w:	 	conv1 × 1

�

�� / × ���

2

�

2

(�/�) × (� /�) × (� × � ×)�

2

Figure 4: Structure of one NLRB. We show the feature map-

s as their shapes like T × H × W × C, and they are re-

shaped if noted. The “
⊗

” represents matrix multiplication

and “
⊕

” represents element-wise add.

task like SR, the input size can be arbitrary and much bigger,

e.g. 480 × 270, where F could be too big to compute and

store. Thus, we have to redesign NLRB to make it suitable

for video SR. Further, based on [27], we reshape X1 to X2,

reducing the input size to deepen its channels, and r denotes

the down-scaling factor. By that means, the shape of feature

map F becomes HW/r2×HW/r2, which is not related to

number of frames T anymore. In this way, it can enable our

model to generate large-size video frames. For 4× video

SR, we choose r = 2 to make our network capable of re-

constructing full HD 1920× 1080 video frames (480× 270
LR frames as input). A NLRB does not change the input

shape, thus, it can be inserted into the existed models con-

veniently. We show the superiority of the NLRB against

ME&MC in Section 4.2.

4. Experiments

4.1. Implementation Details

For SISR, there are some datasets with high quality like

BSDS 500 [1] and DIV2K [32]. For video SR, a lot of

datasets [13, 14, 31] are not available, and we adopt a pub-

lic video dataset from [38] for training. This video dataset

contains 522 video sequences for training, which are col-

lected from 10 videos. Further, we have collected another

20 video sequences for evaluation during training. Follow-

ing [13], we first apply Gaussian blur to the HR frames,

where kernel size is set to 13 × 13 and the standard devi-

ation is set as 1.6, and then downscale them by sampling

every 4-th pixel to generate LR frames. During training, we

set the batch size as 16, and input LR frame size as 32×32.

We choose Charbonnier loss function (a differentiable vari-

3109

ant of L1 norm) [18] to train our network:

LSR =
√

(H − SR(I))2 + ε2, (5)

where I represents input LR frames, H is the corresponding

HR center frame, SR(·) denotes the function of the super-

resolution network, and ε is empirically set to 10−3. Using

Adam optimizer [17], we set initial learning rate at 10−3,

and follow polynomial decay to 10−4 after 120K iterations,

then further down to 10−5 gradually. We adopt a Leaky

ReLU activation [10] after each convolutional layer, with

parameter α = 0.2. We conduct experiments with an Intel

I7-8700K CPU and one NVIDIA GTX 1080Ti GPU.

4.2. Non­Local Operation vs Motion Estimation
and Compensation

NLRB is the preprocessing step of our proposed SR net-

work, and we first verify its effectiveness by comparing NL-

RB with ME&MC methods like STMC from [3] and SPM-

C from [31]. For simplicity, we build a network with 11

convolutional layers (not including merge and magnifica-

tion module in the tail), where the first convolutional layer

uses 5 × 5 kernel for a big receptive field, while the rest

use 3 × 3 kernel. Besides, residual learning is also adopt-

ed to make the training process more stable. Based on this

network called VSR, we adopt STMC and SPMC as prepro-

cessing step respectively, and train three models denoted as

VSR, VSR-STMC and VSR-SPMC. It is worth mention-

ing that, models involving ME&MC also introduce an ex-

tra sub-network for motion estimation, thus requiring extra

limitation. The total loss function can be described as:

L = LSR + λLME , (6)

where LSR is described in Equation (5), and LME denotes

the loss of motion estimation sub-network, which is specifi-

cally described in [3, 31], while λ is empirically set as 0.01.

0 20 40 60 80 100 120 140
Iterations / k

29.0

29.2

29.4

29.6

29.8

30.0

30.2

30.4

PS
NR

 /
dB

VSR-NLr1
VSR-NLr2
VSR-SPMC
VSR-STMC
VSR

Figure 5: Training processes for different models.

As illustrated in Figure 5, VSR-STMC performs very

close to the base model VSR, and VSR-SPMC outperforms

VSR little (about 0.04 dB). We further train models adopt-

ing one NLRB, where VSR-NLr1 and VSR-NLr2 set r = 1
and r = 2 respectively as shown in Figure 4. It is observed

that VSR-NLr1 surpasses the base model VSR (about 0.14

dB), which is superior to VSR-STMC and VSR-SPMC. It

is worth mentioning that these two ME&MC methods are

rather simple, compared to other sophisticated [6, 12, 35]

ones. However, these methods [6, 12, 35] are too complex,

for instance, Wang et al. [35] adopt 8 GPUs for training.

Still, sophisticated ME&MC methods may contribute more

to the SR task, but they also introduce more calculation

complexity. Both STMC and SPMC require extra 53 K pa-

rameters for motion estimation, while one NLRB only costs

about 14 K parameters. Compared to ME&MC methods,

NLRB requires little extra parameters and is easy to be in-

serted into the existed models, and we do not need extra loss

function to limit its behavior. Unfortunately, VSR-NLr1 is

not able to generate HD video frames on one GPU with on-

ly 11 GB memory due to the reasons discussed in Section

3.2, thus, we have to set r = 2 for large-size input frames.

Fortunately, VSR-NLr2 behaves quite close to VSR-NLr1

and is able to handle large-size inputs.

Ground Truth

VSR

VSR-STMC

VSR-SPMC

VSR-NLr2

Figure 6: Temporal profiles of calendar from Vid4 [3]

dataset.

We make visual comparison between these models in the

form of temporal consistency. A temporal profile is generat-

ed by taking the same horizontal row of pixels from consec-

utive frames and stacking them vertically into a new image

[26]. Following VESPCN [3] and FRVSR [26], we extract

the temporal profiles and show them in Figure 6. It can be

observed that, model VSR, VSR-STMC and VSR-SPMC

all generate results with flickering artifacts, while our VSR-

NLr2 is able to reconstruct temporal-consistent HR frames.

Note that although NLRB is not aiming at compensating

frames to the reference frame, it is able to generate consis-

tent results with good visual quality, which also proves its

strong ability to capture long-range dependencies.

4.3. Different Fusion Networks

After confirming the validity of NLRB, we compare the

performances and efficiencies of networks adopting various

fusion strategies. We first design a base network adopting

our proposed PFRBs, which is denoted as PFS. The main

3110

0 20 40 60 80 100 120 140
Iterations / k

29.0

29.5

30.0

30.5

31.0

PS
NR

 /
dB

PFS
3DFS
DFS
SFS

(a)

0 20 40 60 80 100 120 140
Iterations / k

29.0

29.5

30.0

30.5

31.0

PS
NR

 /
dB

PFS-PS
3DFS-PS
DFS-PS
SFS-PS

(b)

0 20 40 60 80 100 120 140
Iterations / k

29.0

29.5

30.0

30.5

31.0

PS
NR

 /
dB

PFS-PS7F
PFS-PS5F
PFS-PS3F

(c)

Figure 7: Various numerical results for different models. (a) Training processes for models without parameter sharing. (b)

Training processes for models with parameter sharing. (c) Training processes for models with different number of input

frames.

Table 1: Perfermances, parameters, calculation and testing time cost of different models.

Model DFS DFS-PS SFS SFS-PS 3DFS 3DFS-PS PFS (ours) PFS-PS (ours)

Parameter (M) 4.148 0.907 4.174 0.933 4.110 0.998 4.139 0.813

Calculation (Gflops) 4.535 4.535 4.718 4.718 28.261 28.261 4.502 4.502

Testing time (ms) 278 278 293 293 1331 1331 409 409

PSNR (dB) 30.98 30.75 30.86 30.73 31.18 30.82 31.21 31.17

body of PFS contains 20 PFRBs, in which every convo-

lutional layer has N = 32 filters. The parameter num-

ber of PFS is about 4.139 M, and for fairness, we design

other networks with similar number of parameters to com-

pare with PFS. As demonstrated in Figure 2, there are three

main fusion strategies: direct fusion, slow fusion and 3D

convolution. Thus, we train three networks adopting these

strategies, and they are denoted as DFS, SFS and 3DFS re-

spectively. Model DFS also contains 20 residual blocks,

and each one of which is similar to PFRB but is single-

channel. The basic number of convolutional layer filters

is set as N = 85, for the purpose of making PFS and DF-

S have similar number of parameters. Model SFS is based

on DFS, but with an extra merging process before. We stil-

l set 20 residual blocks for model 3DFS, each of which is

composed of two 3D convolutional layers with 3 × 3 × 3
kernel, and the basic number of convolutional layer filters

is set as N = 60, due to the same reason above. Note that

model PFS, DFS, SFS and 3DFS all adopt a NLRB before

and a merge and magnification module after their main bod-

ies. As demonstrated in Table 1, model PFS, DFS, SFS and

3DFS share similar number of parameters.

It can be observed from Figure 7(a) that, model SFS be-

haves worse than DFS, which accords with [3]. Our model

PFS surpasses all other three models, but only out performs

3DFS a little. However, although with similar number of

parameters, it is shown in Table 1 that the calculation cost

of 3DFS is about 28.261 Gflops, which is more than 6 times

that of ours (about 4.502 Gflops). We take seven 32 × 32

LR frames as input to compute the calculation cost. Be-

sides, we have tested their speeds for handling 480 × 270
LR frames under 4× SR. As shown in Table 1, DFS and SFS

take about 278 ms and 293 ms to generate one 1920× 1080
frame, while 3DFS needs about 1331 ms. Our model PFS

takes about 409 ms to reconstruct one frame with the best

performance and relatively fast speed.

As has been discussed before, the multi-channel design

of our proposed PFRB makes it possible to adopt a cross-

channel parameter sharing (CCPS) scheme. Based on PF-

S, we train a model adopting the CCPS scheme, which is

denoted as PFS-PS. For single-channel models like DFS

and SFS, we adopt a cross-block parameter sharing (CBP-

S) scheme from [16] and [30]. As 3DFS already shares the

parameters in the temporal dimension, we have to adopt the

CBPS scheme for 3DFS. In practice, as there are 20 residual

blocks in DFS, SFS and 3DFS, we consider every 4 residual

blocks as one recursive block, and share parameters across

these 5 recursive blocks. Although CCPS and CBPS can

reduce the number of parameters, they do not decrease the

calculation cost and testing time cost. Figure 7(b) shows

the training processes for different models adopting param-

eter sharing. It is obvious that DFS-PS, SFS-PS and 3DFS-

PS all decline a great deal in the performance, compared to

their original versions without parameter sharing. Howev-

er, our model PFS-PS performs only a little worse than PFS

(about 0.04 dB) but requires only about 22% the parameters

as PFS does.

3111

Table 2: PSNR (dB) / SSIM of different video SR models on Vid4 testing dataset, when upscaling factor is 4. Red and blue

indicate the best and second-best performance. ∗ in the last row denotes the performances reported in the original papers.

Sequences VESPCN [3] RVSR-LTD [23] MCResNet [19] DRVSR [31] FRVSR [26] DUF 52L [13] PFNL (ours)

calendar 22.21 / 0.7160 21.91 / 0.6915 22.42 / 0.7308 22.88 / 0.7586 23.44 / 0.7846 23.85 / 0.8052 24.37 / 0.8246

city 26.48 / 0.7257 26.32 / 0.7124 26.75 / 0.7456 27.06 / 0.7698 27.65 / 0.8047 27.97 / 0.8253 28.09 / 0.8385

foliage 25.07 / 0.6913 25.07 / 0.6922 25.31 / 0.7091 25.58 / 0.7307 25.97 / 0.7529 26.22 / 0.7646 26.51 / 0.7768

walk 28.40 / 0.8719 28.24 / 0.8663 28.74 / 0.8784 29.11 / 0.8876 29.70 / 0.8991 30.47 / 0.9118 30.65 / 0.9135

average 25.54 / 0.7512 25.38 / 0.7406 25.81 / 0.7660 26.16 / 0.7867 26.69 / 0.8103 27.13 / 0.8267 27.40 / 0.8384

average∗ 25.35 / 0.7557 - / - 25.45 / 0.7467 25.52 / 0.7600 26.69 / 0.8220 27.34 / 0.8327 27.40 / 0.8384

Table 3: PSNR (dB) / SSIM of different video SR models, when upscaling factor is 4. Red and blue indicate the best and

second-best performance.

Sequences VESPCN [3] RVSR-LTD [23] MCResNet [19] DRVSR [31] FRVSR [26] DUF 52L [13] PFNL (ours)

archpeople 35.37 / 0.9504 35.22 / 0.9488 35.45 / 0.9510 35.83 / 0.9547 36.20 / 0.9577 36.92 / 0.9638 38.35 / 0.9724

archwall 40.15 / 0.9582 39.90 / 0.9554 40.78 / 0.9636 41.16 / 0.9671 41.96 / 0.9713 42.53 / 0.9754 43.55 / 0.9792

auditorium 27.90 / 0.8837 27.42 / 0.8717 27.92 / 0.8877 29.00 / 0.9039 29.81 / 0.9168 30.27 / 0.9257 31.18 / 0.9369

band 33.54 / 0.9514 33.20 / 0.9471 33.85 / 0.9538 34.32 / 0.9579 34.53 / 0.9584 35.49 / 0.9660 36.01 / 0.9692

caffe 37.58 / 0.9647 37.02 / 0.9624 38.04 / 0.9675 39.08 / 0.9715 39.77 / 0.9743 41.03 / 0.9785 41.87 / 0.9809

camera 43.36 / 0.9886 43.58 / 0.9888 43.35 / 0.9885 45.19 / 0.9905 46.02 / 0.9912 47.30 / 0.9927 49.26 / 0.9941

clap 34.92 / 0.9544 34.54 / 0.9511 35.40 / 0.9578 36.20 / 0.9635 36.52 / 0.9646 37.70 / 0.9719 38.32 / 0.9756

lake 30.63 / 0.8257 30.62 / 0.8232 30.82 / 0.8323 31.15 / 0.8440 31.53 / 0.8489 32.06 / 0.8730 32.53 / 0.8865

photography 35.94 / 0.9582 35.57 / 0.9548 36.13 / 0.9592 36.60 / 0.9627 37.06 / 0.9656 38.02 / 0.9719 39.00 / 0.9770

polyflow 36.62 / 0.9490 36.38 / 0.9452 36.98 / 0.9520 37.91 / 0.9565 38.29 / 0.9581 39.25 / 0.9667 40.05 / 0.9735

average 35.60 / 0.9384 35.34 / 0.9348 35.87 / 0.9414 36.64 / 0.9472 37.17 / 0.9507 38.05 / 0.9586 39.01 / 0.9645

4.4. Influence of Input Frame Number

As has been shown in Figure 3, our proposed PFRB re-

mains to be a multi-channel design, whose number of chan-

nels is the same as the number of input frames. In Section-

s 4.2 and 4.3, we have explored different models taking 7

frames as input, and we here further explore the influence of

frame number. Since PFS-PS in Section 4.3 takes 7 frames

as input, we denote it as PFS-PS7F there. We have trained

another two networks adopting 5 and 3 frames as input, and

they are denoted as PFS-PS5F and PFS-PS3F respective-

ly. As illustrated in Figure 7(c), it can be observed that

the more frames as input, the better performance our net-

work can achieve. This phenomenon accords with common

sense, because more frames contain more supplementary in-

formation related to the center frame. Besides, since the

channel number of a PFRB is the same as the input frame

number, more frames also require more calculations, which

also contribute to increase the performance. Note that the

calculation cost of a PFRB basically grows linearly with the

input frame number.

4.5. Comparison with state­of­the­art Methods

Most previous methods [3, 23, 31] down-sample HR

frames bicubically to generate LR frames, while recen-

t methods [13, 26] adopt Gaussian blur and then down-

sampling scheme. Different down-sampling schemes can

affect the LR-to-HR mapping relationship the network tries

to learn, thus, it is unfair to compare two SR methods under

different down-sampling schemes. In order to make a fair

comparison with other state-of-the-art methods, we have re-

trained a lot of methods, e.g. VESPCN [3], DRVSR [31],

and DUF 52L [13] by their provided codes, using the same

training datasets, with same down-sampling scheme and

Tensorflow platform. Further, we carefully rebuild some

non-public methods [19, 23, 26], using the same training

datasets and different training strategies described in their

papers. Still, performances of these methods may be differ-

ent from that reported in their original papers. Table 2 gives

both the performances achieved by us and reported in thier

origianl papers. Based on PFS-PS, we set the basic convo-

lutional layer filter number as 64, and denote this network

as PFNL to compare with other methods. During training, a

data agumentation scheme (random flip and rotation) from

[21, 41] is adopted.

We first conduct experiments on Vid4 video testing

datasets from [3], which consists of 4 sequences: calendar,

city, foliage and walk. The PSNR and SSIM [37] are cal-

culated only on luminance channel of YCbCr colorspace,

skipping the first and last two frames and eliminating 8 pix-

3112

0 1 2 3 4 5 6
Number of parameters / M

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

PS
NR

 /
dB

DRVSR

VESPCN

RVSR-LTD

MCResNet

FRVSR

DUF-52L

PFNL (ours)

(a)

0 500 1000 1500 2000 2500 3000
Testing time / ms

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

PS
NR

 /
dB

DRVSR

VESPCN

RVSR-LTD

MCResNet

FRVSR

DUF-52L

PFNL (ours)

(b)

0 10 20 30 40 50 60 70 80
Training time / hours

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

PS
NR

 /
dB

DRVSR

VESPCN

RVSR-LTD

MCResNet

FRVSR

DUF-52L

PFNL (ours)

(c)

Figure 8: (a) Parameter numbers and performances of various methods. (b) Testing time cost (generating one 1920 × 1080
frame when upscaling factor is 4) and performances. (c) Training time cost and performances.

(a) This frame is from auditorium

(b) This frame is from photography

Figure 9: Visual results of different video SR methods, for 4× upscaling.

els on four borders of each frame [14]. Our model PFN-

L achieves the best performance, which is shown in Table

2. Because Vid4 dataset only contains 4 scenes under low

resolution (smaller than 720 × 576), we further collect 10

frame sequences (1272 × 720) from [26, 39] for testing.

As demonstrated in Table 3, our model PFNL outperforms

DUF 52L about 0.96 dB in average. Moreover, as shown

in Figure 8, we make full comparisons on parameter num-

bers, testing time and training time cost of these methods.

Our model PFNL requires about 3.003 M parameters while

DUF 52L needs about 5.829 M parameters. It takes about

741 ms for PFNL to generate one 1920 × 1080 frame un-

der 4× SR, while DUF 52L spends about 2754 ms. PFNL

spends about 17 hours for training, and DUF 52L needs 51

hours, while FRVSR can take 78 hours.

As illustrated in Figure 9(a), most other methods gener-

ate blurry or misleading numbers, while our method recov-

ers the right numbers with good visual quality. Also shown

in Figure 9(b), most other methods generate blurry texture

with wrong direction, while our method is able to recon-

struct clear and right texture.

5. Conclusion

In this paper, we propose a novel progressive fusion net-

work that is able to make full use of spatio-temporal infor-

mation among consecutive frames. We have introduced and

improved the NLRB suitable for video SR, capturing long-

range dependencies directly instead of adopting traditional

ME&MC. The proposed network is able to outperform the

state-of-the-art methods with fewer parameters and faster

speed.

Acknowledgements

This study is supported by National Key R&D

Project (2016YFE0202300), National Natural Science

Foundation of China (61671332, U1736206, 61971165),

Hubei Province Technological Innovation Major Project

(2017AAA123, 2019AAA049) and Natural Science Fund

of Hubei Province (2018CFA024).

3113

References

[1] Pablo Andres Arbelaez, Michael Maire, Charless C Fowlkes,

and Jitendra Malik. Contour detection and hierarchical im-

age segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 33(5):898–916, 2011.

[2] Stefanos P. Belekos, Nikolaos P. Galatsanos, and Aggelos K.

Katsaggelos. Maximum a posteriori video super-resolution

using a new multichannel image prior. IEEE Transactions on

Image Processing, 19(6):1451–1464, 2010.

[3] Jose Caballero, Christian Ledig, Andrew Peter Aitken, Ale-

jandro Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi.

Real-time video super-resolution with spatio-temporal net-

works and motion compensation. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 2848–

2857, 2017.

[4] Chao Dong, Change Loy Chen, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38(2):295–307, 2016.

[5] Chao Dong, Change Loy Chen, and Xiaoou Tang. Acceler-

ating the super-resolution convolutional neural network. In

European Conference on Computer Vision (ECCV), pages

391–407, 2016.

[6] Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der

Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-

ing optical flow with convolutional networks. In IEEE In-

ternational Conference on Computer Vision (ICCV), pages

2758–2766, 2015.

[7] Sina Farsiu, Michael D Robinson, Michael Elad, and Pey-

man Milanfar. Fast and robust multiframe super resolution.

IEEE Transactions on Image Processing, 13(10):1327–1344,

2004.

[8] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 1664–1673, 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification. In IEEE International

Conference on Computer Vision (ICCV), pages 1026–1034,

2016.

[11] Yan Huang, Wei Wang, and Liang Wang. Bidirection-

al recurrent convolutional networks for multi-frame super-

resolution. In International Conference on Neural Informa-

tion Processing Systems (NIPS), pages 235–243, 2015.

[12] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-

per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:

Evolution of optical flow estimation with deep networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1647–1655, 2017.

[13] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and

Seon Joo Kim. Deep video super-resolution network using

dynamic upsampling filters without explicit motion compen-

sation. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3224–3232, 2018.

[14] Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Agge-

los K. Katsaggelos. Video super-resolution with convolu-

tional neural networks. IEEE Transactions on Computation-

al Imaging, 2(2):109–122, 2016.

[15] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1646–1654, 2016.

[16] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-

recursive convolutional network for image super-resolution.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 1637–1645, 2016.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations, 2014.

[18] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate super-resolution. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5835–5843,

2017.

[19] Dingyi Li and Zengfu Wang. Video superresolution via mo-

tion compensation and deep residual learning. IEEE Trans-

actions on Computational Imaging, 3(4):749–762, 2017.

[20] Renjie Liao, Xin Tao, Ruiyu Li, Ziyang Ma, and Jiaya Jia.

Video super-resolution via deep draft-ensemble learning. In

IEEE International Conference on Computer Vision (ICCV),

pages 531–539, 2015.

[21] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages

1132–1140, 2017.

[22] Ce Liu and Deqing Sun. On bayesian adaptive video super

resolution. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 36(2):346–60, 2014.

[23] Ding Liu, Zhaowen Wang, Yuchen Fan, Xianming Liu,

Zhangyang Wang, Shiyu Chang, and Thomas Huang. Ro-

bust video super-resolution with learned temporal dynamics.

In IEEE International Conference on Computer Vision (IC-

CV), pages 2526–2534, 2017.

[24] Jiayi Ma, Xinya Wang, and Junjun Jiang. Image super-

resolution via dense discriminative network. IEEE Trans-

actions on Industrial Electronics, 2019.

[25] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3D residual networks.

In IEEE International Conference on Computer Vision (IC-

CV), pages 5534–5542, 2017.

[26] Mehdi S. M Sajjadi, Raviteja Vemulapalli, and Matthew

Brown. Frame-recurrent video super-resolution. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 6626–6634, 2018.

[27] Wenzhe Shi, Jose Caballero, Ferenc Huszr, Johannes Totz,

Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

3114

using an efficient sub-pixel convolutional neural network. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1874–1883, 2016.

[28] Xingjian Shi, Zhourong Chen, Hao Wang, Wang Chun Woo,

Wang Chun Woo, and Wang Chun Woo. Convolutional lstm

network: a machine learning approach for precipitation now-

casting. In International Conference on Neural Information

Processing Systems (NIPS), pages 802–810, 2015.

[29] Ji Shuiwang, Yang Ming, Xu Wei, and Yu Kai. 3D convolu-

tional neural networks for human action recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(1):221–231, 2012.

[30] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2790–2798, 2017.

[31] Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya

Jia. Detail-revealing deep video super-resolution. In IEEE

International Conference on Computer Vision (ICCV), pages

4482–4490, 2017.

[32] Radu Timofte, Kyoung Mu Lee, Xintao Wang, Yapeng Tian,

Ke Yu, Yulun Zhang, Shixiang Wu, Chao Dong, Liang

Lin, and Yu Qiao. Ntire 2017 challenge on single image

super-resolution: Methods and results. In IEEE Confer-

ence on Computer Vision and Pattern Recognition Work-

shops (CVPRW), pages 1110–1121, 2017.

[33] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image

super-resolution using dense skip connections. In IEEE In-

ternational Conference on Computer Vision (ICCV), pages

4809–4817, 2017.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Llion Jones,

Jakob Uszkoreit, Aidan N Gomez, and ukasz Kaiser. At-

tention is all you need. International Conference on Neural

Information Processing Systems (NIPS), pages 5998–6008,

2017.

[35] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and

Chen Change Loy. Edvr: Video restoration with enhanced

deformable convolutional networks. In IEEE Conference

on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2019.

[36] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

7794–7803, 2018.

[37] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncel-

li. Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004.

[38] Zhongyuan Wang, Peng Yi, Kui Jiang, Junjun Jiang, Zhen

Han, Tao Lu, and Jiayi Ma. Multi-memory convolutional

neural network for video super-resolution. IEEE Transac-

tions on Image Processing, 28(5):2530–2544, 2019.

[39] Peng Yi, Zhongyuan Wang, Kui Jiang, Zhenfeng Shao, and

Jiayi Ma. Multi-temporal ultra dense memory network for

video super-resolution. IEEE Transactions on Circuits and

Systems for Video Technology, 2019.

[40] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a

single convolutional super-resolution network for multiple

degradations. IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 3262–3271, 2018.

[41] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2472–2481, 2018.

3115

