
Enforcing geometric constraints of virtual normal for depth prediction

Wei Yin1 Yifan Liu1 Chunhua Shen1∗

1The University of Adelaide, Australia

{wei.yin, yifan04, chunhua.shen}@adelaide.edu.au

Youliang Yan2

2Noah’s Ark Lab, Huawei Technologies

Abstract

Monocular depth prediction plays a crucial role in un-

derstanding 3D scene geometry. Although recent methods

have achieved impressive progress in evaluation metrics

such as the pixel-wise relative error, most methods neglect

the geometric constraints in the 3D space. In this work, we

show the importance of the high-order 3D geometric con-

straints for depth prediction. By designing a loss term that

enforces one simple type of geometric constraints, namely,

virtual normal directions determined by randomly sampled

three points in the reconstructed 3D space, we can consid-

erably improve the depth prediction accuracy. Significantly,

the byproduct of this predicted depth being sufficiently ac-

curate is that we are now able to recover good 3D structures

of the scene such as the point cloud and surface normal di-

rectly from the depth, eliminating the necessity of training

new sub-models as was previously done. Experiments on

two benchmarks: NYU Depth-V2 and KITTI demonstrate

the effectiveness of our method and state-of-the-art perfor-

mance. Code is available at: https://tinyurl.com/

virtualnormal

1. Introduction

Monocular depth prediction aims to predict distances be-

tween scene objects and the camera from a single monoc-

ular image. It is a critical task for understanding the 3D

scene, such as recognizing a 3D object and parsing a 3D

scene.

Although the monocular depth prediction is an ill-posed

problem because many 3D scenes can be projected to the

same 2D image, many deep convolutional neural networks

(DCNN) based methods [8, 9, 13, 15, 27, 30, 39, 17] have

achieved impressive results by using a large amount of la-

belled data, thus taking advantage of prior knowledge in la-

belled data to solve the ambiguity.

These methods typically formulate the optimization

problem as either point-wise regression or classification.
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Figure 1 – Example results of ground truth (the first row), our method

(the second row) and Hu et al. [21] (the third row). By enforcing the ge-

ometric constraints of virtual normals, our reconstructed 3D point cloud

can represent better shape of sofa (see the left part) and the recovered

surface normal has much less errors (see green parts) even though the

absolute relative error (rel) of our predicted depth is only slightly better

than Hu et al. (0.108 vs. 0.115).

That is, with the i.i.d. assumption, the overall loss is sum-

ming over all pixels. To improve the performance, some

endeavours have been made to employ other constraints be-

sides the pixel-wise term. For example, a continuous con-

ditional random field (CRF) [31] is used for depth predic-

tion, which takes pair-wise information into account. Other

high-order geometric relations [10, 35] are also exploited,

such as designing a gravity constraint for local regions [10]

or incorporating the depth-to-surface-normal mutual trans-

formation inside the optimization pipeline [35]. Note that,

for the above methods, almost all the geometric constraints

are ‘local’ in the sense that they are extracted from a small

neighborhood in either 2D or 3D. Surface normal is ‘local’

by nature as it is defined by the local tangent plane. As

the ground truth depth maps of most datasets are captured

by consumer-level sensors, such as the Kinect, depth values

can fluctuate considerably. Such noisy measurement would

adversely affect the precision and subsequently the effec-

tiveness of those local constraints inevitably. Moreover, lo-

cal constraints calculated over a small neighborhood have
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not fully exploited the structure information of the scene ge-

ometry that may be possibly used to boost the performance.

To address these limitations, here we propose a more

stable geometric constraint from a global perspective to

take long-range relations into account for predicting depth,

termed virtual normal. A few previous methods already

made use of 3D geometric information in depth estima-

tion, almost all of which focus on using surface normal.

We instead reconstruct the 3D point cloud from the esti-

mated depth map explicitly. In other words, we gener-

ate the 3D scene by lifting each RGB pixel in the 2D im-

age to its corresponding 3D coordinate with the estimated

depth map. This 3D point cloud serves as an intermediate

representation. With the reconstructed point cloud, we can

exploit many kinds of 3D geometry information, not lim-

ited to the surface normal. Here we consider the long-range

dependency in the 3D space by randomly sampling three

non-colinear points with the large distance to form a virtual

plane, of which the normal vector is the proposed virtual

normal (VN). The direction divergence between ground-

truth and predicted VN can serve as a high-order 3D geom-

etry loss. Owing to the long-range sampling of points, the

adverse impact caused by noises in depth measurement is

much alleviated compared to the computation of the surface

normal, making VN significantly more accurate. Moreover,

with randomly sampling we can obtain a large number of

such constraints, encoding the global 3D geometric. Sec-

ond, by converting estimated depth maps from images to

3D point cloud representations it opens many possibilities

of incorporating algorithms for 3D point cloud processing

to 2D images and 2.5D depth processing. Here we show

one instance of such possibilities.

By combining the high-order geometric supervision and

the pixel-wise depth supervision, our network can predict

not only an accurate depth map but also the high-quality 3D

point cloud, subsequently other geometry information such

as the surface normal. It is worth noting that we do not use

a new model or introduce network branches for estimating

the surface normal. Instead it is computed directly from the

reconstructed point cloud. The second row of Fig. 1 demon-

strates an example of our results. By contrast, although the

previously state-of-the-art method [21] predicts the depth

with low errors, the reconstructed point cloud is far away

from the original shape (see, e.g., left part of ‘sofa’). The

surface normal also contains many errors. We are probably

the first to achieve high-quality monocular depth and sur-

face normal prediction with a single network.

Experimental results on NYUD-v2 [40] and KITTI [14]

datasets demonstrate state-of-the-art performance of our

method. Besides, when training with the lightweight back-

bone, MobileNetV2 [38], our framework provides a better

trade-off between network parameters and accuracy. Our

method outperforms other state-of-the-art real-time systems

by up to 29% with a comparable number of network param-

eters. Furthermore, from the reconstructed point cloud, we

directly calculate the surface normal, with a precision being

on par with that of specific DCNN based surface normal

estimation methods.

In summary, our main contributions of this work are as

follow.

• We demonstrate the effectiveness of enforcing a high-

order geometric constraint in the 3D space for the

depth prediction task. Such global geometry informa-

tion is instantiated with a simple yet effective concept

termed virtual normal (VN). By enforcing a loss de-

fined on VNs, we demonstrate the importance of 3D

geometry information in depth estimation, and design

a simple loss to exploit it.

• Our method can reconstruct high-quality 3D scene

point clouds, from which other 3D geometry fea-

tures can be calculated, such as the surface normal.

In essence, we show that for depth estimation, one

should not consider the information represented by

depth only. Instead, converting depth into 3D point

clouds and exploiting 3D geometry is likely to improve

many tasks including depth estimation.

• Experimental results on NYUD-V2 and KITTI illus-

trate that our method achieves state-of-the-art perfor-

mance.

1.1. Related Work

Monocular Depth Prediction. Depth prediction from im-

ages is a long-standing problem. Previous work can be di-

vided into active methods and passive methods. The former

ones use the assistant optical information for prediction,

such as coded patterns [47], while the latter ones completely

focus on image matching [2, 3]. Monocular depth predic-

tion [4, 8, 9, 31, 50] has been extensively studied recently.

As limited geometric information can be directly extracted

from the monocular image, it is essentially an ill-posed

problem. Recently, owing to the structural features from

very deep convolution neural network, such as ResNet [18],

various pixel-wise vision tasks have been promoted signif-

icantly, such as semantic segmentation [42, 43, 19]. Var-

ious DCNN-based methods focus on designing structural

features [33, 48, 13], especially in depth prediction. Fu et

al. [13] proposed an encoder-decoder network, which ex-

tracts multi-scale features from the encoder and is trained

in an end-to-end manner without iterative refinement. They

achieved state-of-the-art performance on several datasets.

Jiao et al. [22] proposed an attention-driven loss, which

merges the semantic priors to improve the prediction pre-

cision on unbalanced distribution datasets.

Most previous methods only adopted the pixel-wise

depth supervision to train a network. By contrast, Liu et

al. [31] combined DCNN with the continuous conditional
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random field (CRF) to exploit consistency information of

neighbouring pixels. CRF establishes a pair-wise constraint

for local regions. Furthermore, several high-order con-

straints are investigated. Chen et al. [6] applied the gen-

erative adversarial training to lead the network to learn a

context-aware and patch-level loss automatically. Note that

most of these methods directly work with the depth, instead

of in the 3D space.

Surface Normal. Surface normal is an important geome-

try information for 3D scene understanding. Several data-

driven methods [8, 9, 11, 12, 45, 49] have achieved promis-

ing results. Eigen et al. [8] proposed a CNN with different

output channels to directly predict depth map, surface nor-

mal and semantic labels. Bansal et al. [1] proposed a two-

stream network to predict the surface normal first, which is

further joined with the input image to learn the pose. Note

that most of these methods formulate surface normal pre-

diction and depth prediction as multiple different tasks.

2. Our Method

Our approach resolves the monocular depth prediction

and reconstructs the high-quality scene 3D point cloud from

the predicted depth at the same time. The pipeline is illus-

trated in Fig. 2.

We take an RGB image Iin as the input of an encoder-

decoder network and predict the depth map Dpred. From

the Dpred, the 3D scene point cloud Ppred can be recon-

structed. The ground truth point cloud Pgt is reconstructed

from Dgt.

We enforce two types of supervision for training the net-

work.We firstly follow standard monocular depth prediction

methods to enforce pixel-wise depth supervision over Dpred

with Dgt. With the reconstructed point clouds, we then

align the spatial relationship between the Ppred and the Pgt

using the proposed virtual normal.

When the network is well trained, we not only obtain ac-

curate depth map but also high-quality point clouds. From

the reconstructed point clouds, other 3D features can be di-

rectly calculated, such as the surface normal.

2.1. High­order Geometric Constraints

Surface Normal. The surface normal is an important ‘lo-

cal’ feature for many point-cloud based applications such

as registration [37] and object detection [20, 16]. It appears

to be a promising 3D cue for improving depth prediction.

One can apply the angular difference between ground-truth

and calculated surface normal to be a geometric constraint.

One major issue of this approach is, when computing sur-

face normal from either a depth map or 3D point cloud, it is

sensitive to noise. Moreover, surface normal only considers

short-range local information.

We follow [24] to calculate the surface normal. It

assumes that local 3D points locate in the same plane,

of which the normal vector is the surface normal. In

practice ground-truth depth maps are usually captured by

a consumer-level sensor with limited precision, so depth

maps are contaminated by noise. The reconstructed point

clouds in the local region can vary considerably due to

noises as well as the size of local patch for sampling

(Fig. 3(a)). We experiment on the NYUD-V2 dataset to test

the robustness of the surface normal computation. Five dif-

ferent sampling sizes around the target pixel are employed

to sample points, which are used to calculate its surface nor-

mal. The sample area is a = (2i+1) · (2i+1), i = 1, ..., 5.

The Mean Difference Error (Mean) [8] between calculated

surface normals is evaluated. From Fig. 3(b), we can learn

that the surface normal varies significantly with different

sampling sizes. For example, the Mean between 3×3 and

11×11 is 22◦. Such unstable surface normal negatively af-

fects its effectiveness for learning. Likewise, other 3D ge-

ometric constraints demonstrating the ‘local’ relative rela-

tions also encounter this problem.

Virtual Normal. In order to enforce robust high-order ge-

ometric supervision in the 3D space, we propose the vir-

tual normal (VN) to establish 3D geometric connections

between regions in a much larger range. The point cloud

can be reconstructed from the depth based on the pinhole

camera model. For each pixel pi(ui, vi), the 3D location

Pi(xi, yi, zi) in the world coordinate can be obtained by the

prospective projection. We set the camera coordinate as the

world coordinate. Then the 3D coordinate Pi can be ob-

tained.

We randomly sample N groups points from the depth

map, with three points in each group. The corresponding

3D points are S = {(PA, PB , PC)i|i = 0...N}. Three

points in a group are restricted to be non-colinear based on

the restriction R1. ∠(·) is the angle between two vectors.

R1 = {α ≥ ∠(
−−−→
PAPB ,

−−−→
PAPC) ≥ β,

α ≥ ∠(
−−−→
PBPC ,

−−−→
PBPA) ≥ β|P ∈ S }

(1)

where α, β are hyper-parameters. In all experiments, we set

α = 120◦, β = 30◦

In order to sample more long-range points, which have

ambiguous relative locations in 3D space, we perform long-

range restriction R2 for each group in S .

R2 = {‖
−−−→
PkPm‖ > θ|k,m ∈ [A,B,C], P ∈ S } (2)

where θ = 0.6m in our experiments.

Therefore, three 3D points in each group can establish a

plane. We compute the normal vector of the plane to encode

geometric relations, which can be written as

N = {ni =

−−−−→
PAiPBi ×

−−−−→
PAiPCi

∥

∥

∥

−−−−→
PAiPBi ×

−−−−→
PAiPCi

∥

∥

∥

|

(PA, PB , PC)i ∈ S , i = 0...N}

(3)
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Figure 2 – Illustration of the pipeline of our method. An encoder-decoder network is employed to predict the depth, from which the point cloud can

be reconstructed. A pixel-wise depth supervision is firstly enforced on the predicted depth, while a geometric supervision, virtual normal constraint, is

enforced in 3D space. With the well trained model, other 3D features, such as the surface normal, can be directly recovered from the reconstructed 3D

point cloud in the inference.

𝑛1 𝑛2𝑛2𝑛1

3×3 5×5 7×7 9×9 11×11

3×3

5×5

7×7

11×11

9×9

Sample Area

(a) (b)

𝑛1𝑛2

𝑛1𝑛2
Figure 3 – Illustration of fitting point clouds to obtain the local surface

normal. The directions of the surface normals is fitted with different

sampling sizes on a real point cloud (a). Because of noise, the surface

normals vary significantly. (b) compares the angular difference between

surface normals computed with different sample sizes in Mean Differ-

ence Error. The error can vary significantly.

where ni is the normal vector of the virtual plane i.
Robustness to Depth Noise. Compared with local surface

normal, our virtual normal is more robust to noise. In Fig. 4,

we sample three 3D points with large distance. PA and PB

are assumed to locate on the XY plane, PC is on the Z axis.

When PC varies to PC
′, the direction of the virtual normal

changes from n to n′. PC
′′ is the intersection point between

plane PAPBPC
′ and Z axis. Because of restrictions R1 and

R2, the difference between n and n′ is usually very small,

which is simple to show:

∠(n,n′) =∠(
−−→
OPC ,

−−−→
OPC

′′) = arctan
‖
−−−−→
PCPC

′′‖

‖
−−→
OPC‖

≈ 0,

‖
−−−−→
PCPC

′′‖ ≪ ‖
−−→
OPC‖

(4)

𝐶′ 𝑛′𝑛𝐶
𝐴

𝑃𝐶′ 𝒏
X Y

Z

𝑃𝐴𝑂′𝑂
𝑃𝐵𝑃𝐶𝑃𝐶′′

𝒏′

Figure 4 – Robustness of VN to depth noise.
Furthermore, we conduct a simple experiment to verify

the robustness of our proposed virtual normal against data

noise. We create an unit sphere and then add gaussian noise

to simulate the ideal noise-free data and the real noisy data

(see Fig. 5a). We then sample 100K groups points from the

noisy surface and the ideal one to compute the virtual nor-

mal respectively, while 100K points are sampled to com-

pute the surface normal as well. For the gaussian noise,

we use different deviations to simulate different noise levels

by varying deviation σ = [0.0002, ..., 0.01], and the mean

being µ = 0. The experimental results are illustrated in

Fig. 5b. We can learn that our proposed virtual normal is

much more robust to the data noise than the surface normal.

Other local constraints are also sensitive to data noise.
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Figure 5 – Robustness of virtual normal and surface normal against data

noise. (a) The ideal surface and noisy surface. (b) The Mean Difference

Error (Mean) is applied to evaluate the robustness of virtual normal and

surface normal against different noise level. Our proposed virtual nor-

mal is more robust.

Most ‘local’ geometric constraints, such as the surface

normal, actually enforcing the first-order smoothness of the

surface but are less useful for helping the depth map predic-

tion. In contrast, the proposed VN establishes long-range

relations in the 3D space. Compared with pairwise CRFs,

VN encodes triplet based relations, thus being of high order.

Virtual Normal Loss. We can sample a large number of

triplets and compute corresponding VNs. With the sam-

pled VNs, we compute the divergence as the Virtual Normal
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Loss (VNL):

ℓV N =
1

N
(

N
∑

i=0

‖npred
i − n

gt
i ‖1) (5)

where the N is the number of valid sampling groups sat-

isfying R1,R2. In experiments we have employed online

hard example mining.

Pixel-wise Depth Supervision. We also use a standard

pixel-wise depth map loss. We quantize the real-valued

depth and formulate the depth prediction as a classifica-

tion problem instead of regression, and employ the cross-

entropy loss. In particular we follow [4] to use the weighted

cross-entropy loss (WCEL), with the weight being the in-

formation gain. See [4] for details.

To obtain the accurate depth map and recover high-

quality 3D information, we combine WCEL and VNL to-

gether to supervise the network output. The overall loss is:

ℓ = ℓWCE + λℓV N , (6)

where λ is a trade-off parameter, which is set to 5 in all ex-

periments to make the two terms roughly of the same scale.

Note that the above overall loss function is differentiable.

The gradient of the ℓV N loss can be easily computed as

Eq. (3) and Eq. (5) are both differentiable.

3. Experiments

In this section, we conduct several experiments to com-

pare ours against state-of-the-art methods. We evaluate our

methods on two datasets, NYUD-V2 and KITTI.

3.1. Datasets

NYUD-V2. The NYUD-V2 dataset consists of 464 differ-

ent indoor scenes, which are further divided into 249 scenes

for training and 215 for testing. We randomly sample 29K

images from the training set to form NYUD-Large. Note

that DORN uses the whole training set, which is signifi-

cantly larger than that what we use. Apart from the whole

dataset, there are officially annotated 1449 images (NYUD-

Small), in which 795 images are split for training and others

are for testing. In the ablation study, we use the NYUD-

Small data.

KITTI. The KITTI dataset contains over 93K outdoor im-

ages and depth maps with the resolution around 1240×374.

All images are captured on driving cars by stereo cameras

and a Lidar. We test on 697 images from 29 scenes split by

Eigen et al. [9], validate on 888 images, and train on about

23488 images from the remaining 32 scenes.

3.2. Implementation Details

The pre-trained ResNeXt-101 [46] (32 × 4d) model on

ImageNet [7] is used as our backbone model. A polyno-

mial decaying method with the base learning rate 0.0001

Table 1 – Results on NYUD-V2. Our method outperforms other state-

of-the-art methods over all evaluation metrics.

Method
rel log10 rms δ1 δ2 δ3

Lower is better Higher is better

Saxena et al. [39] 0.349 - 1.214 0.447 0.745 0.897
Karsch et al. [23] 0.349 0.131 1.21 - - -

Liu et al. [32] 0.335 0.127 1.06 - - -

Ladicky et al. [26] - - - 0.542 0.829 0.941
Li et al. [28] 0.232 0.094 0.821 0.621 0.886 0.968

Roy et al. [36] 0.187 0.078 0.744 - - -

Liu et al. [31] 0.213 0.087 0.759 0.650 0.906 0.974
Wang et al. [44] 0.220 0.094 0.745 0.605 0.890 0.970
Eigen et al. [8] 0.158 - 0.641 0.769 0.950 0.988
Chakrabarti [5] 0.149 - 0.620 0.806 0.958 0.987

Li et al. [29] 0.143 0.063 0.635 0.788 0.958 0.991
Laina et al. [27] 0.127 0.055 0.573 0.811 0.953 0.988

DORN [13] 0.115 0.051 0.509 0.828 0.965 0.992

Ours 0.108 0.048 0.416 0.875 0.976 0.994

and the power of 0.9 is applied for SGD. The weight de-

cay and the momentum are set to 0.0005 and 0.9 respec-

tively. Batch size is 8 in our experiments. The model

is trained for 10 epochs on NYUD-Large and KITTI, and

is trained for 40 epochs on NYUD-Small in the ablation

study. We perform the data augmentation on the training

samples by the following methods. For NYUD-V2, the

RGB image and the depth map are randomly resized with

ratio [1, 0.92, 0.86, 0.8, 0.75, 0.7, 0.67], randomly flipped in

the horizon, and finally randomly cropped with the size

384×384 for NYUD-V2. The similar process is applied for

KITTI but resizing with the ratio [1, 1.1, 1.2, 1.3, 1.4, 1.5]
and cropping with 384 × 512. Note that the depth map

should be scaled with the corresponding resizing ratio.

3.3. Evaluation Metrics

We follow previous methods [27] to evaluate the perfor-

mance of monocular depth prediction quantitatively based

on following metrics: mean absolute relative error (rel),

mean log
10

error (log
10

), root mean squared error (rms) ,

root mean squared log error (rms (log)) and the accuracy

under threshold (δi < 1.25i, i = 1, 2, 3).

3.4. Comparison with State­of­the­art

In this section, we detail the comparison of our methods

with state-of-the-art methods.

NYUD-V2. In this experiment, we compare with other

state-of-the-art methods on the NYUD-V2 dataset. Table 1

demonstrates that our proposed method outperforms other

state-of-the-art methods across all evaluation metrics sig-

nificantly. Compare to DORN, we have improved the accu-

racy from 0.2% to 18% over all evaluation metrics that they

report.

In addition to the quantitative comparison, we demon-

strate some visual results between our method and the state-

of-the-art DORN in Fig. 6. Clearly, the predicted depth by

the proposed method is much more accurate. The plane of

ours is much smoother and has fewer errors (see the wall

regions colored with red in the 1st, 2nd, and 3rd row). Fur-
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thermore, the last row in Fig. 6 manifests that our predicted

depth is more accurate in the complicated scene. We have

fewer errors in shelf and desk regions.

Image DORN Ours GT

Figure 6 – Examples of predicted depth maps by our method and the

state-of-the-art DORN on NYUD-V2. Color indicates the depth (red

is far, purple is close). Our predicted depth maps have fewer errors in

planes (see walls) and have high-quality details in complicated scenes

(see the desk and shelf in the last row)

.KITTI. In order to demonstrate that our proposed method

can still reach the state-of-the-art performance on outdoor

scenes, we test our method on the KITTI dataset. Results

in Table 2 show that our method has outperformed all other

methods on all evaluation metrics except root mean square

(rms) error. The rms error is only slightly behind that of

DORN.

Table 2 – Results on KITTI. Our method outperforms other methods

over all evaluation metrics except rms.

Method
δ1 δ2 δ3 rel rms rms (log)

Higher is better Lower is better

Make3D [39] 0.601 0.820 0.926 0.280 8.734 0.361
Eigen et al. [9] 0.692 0.899 0.967 0.190 7.156 0.270
Liu et al. [31] 0.647 0.882 0.961 0.114 4.935 0.206

Semi. [25] 0.862 0.960 0.986 0.113 4.621 0.189
Guo et al. [15] 0.902 0.969 0.986 0.090 3.258 0.168

DORN [13] 0.932 0.984 0.994 0.072 2.727 0.120

Ours 0.938 0.990 0.998 0.072 3.258 0.117

3.5. Ablation Studies

In this section, we conduct several ablation studies to an-

alyze the details of our approach.

Effectiveness of VNL. In this study, in order to prove the

effectiveness of the proposed VNL we compare it with two

types of pixel-wise depth map supervision, a pair-wise geo-

metric supervision, and a high-order geometric supervision:

1) the ordinary cross-entropy loss (CEL); 2) the L1 loss

(L1); 3) the surface normal loss (SNL); 4) the pair-wise ge-

ometric loss (PL). We reconstruct the point cloud from the

Table 3 – Illustration of the effectiveness of VNL.

Metrics rel log10 rms δ1 δ2 δ3

Pixel-wise Depth Supervision

CEL 0.1456 0.061 0.617 0.8087 0.9559 0.9862

WCEL 0.1427 0.060 0.511 0.8117 0.9611 0.9895

WCEL+L1 0.1429 0.061 0.626 0.8098 0.9539 0.9858

Pixel-wise Depth Supervision + Geometric Supervision

WCEL+PL‡
0.1380 0.059 0.504 0.8212 0.9643 0.9913

WCEL+PL+VNL 0.1341 0.056 0.485 0.8336 0.9671 0.9913

WCEL+SNL†
0.1406 0.059 0.599 0.8209 0.9602 0.9886

WCEL+VNL‡ (Ours) 0.1337 0.056 0.480 0.8323 0.9669 0.9920

† ‘Local’ geometric supervision in 3D.
‡ ‘Global’ geometric supervision in 3D.

depth map and further recover the surface normal from the

point cloud. The angular discrepancy between the ground

truth and recovered surface normal is defined as the surface

normal loss, which is a high-order geometric supervision

in 3D space. The pair-wise loss is the direction difference

of two vectors in 3D, which are established by randomly

sampling paired points in ground-truth and predicted point

cloud. The loss function of PL is as follow,

ℓPL =
1

N

N
∑

i=0

(1−

−−−−→
P ∗

AiP
∗

Bi ·
−−−−→
PAiPBi

∥

∥
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−−−−→
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AiP
∗

Bi

∥

∥

∥
·
∥

∥

∥

−−−−→
PAiPBi

∥

∥

∥

) (7)

where (P ∗

A, P
∗

B)i and (PA, PB)i are paired points sampled

from the ground truth and the predicted point cloud respec-

tively. N is the total number of pairs.

We also employ the long-range restriction R2 for the

paired points. Therefore, similar to VNL, PL can also be

seen as a global geometric supervision in 3D space. The

experimental results are reported in Table. 3. WCEL is the

baseline for all following experiments.

Firstly, we analyze the effect of pixel-wise depth super-

vision for prediction performance. As WCE employs an

weight in the CE loss, its performance is slightly better than

that of CEL. However, when we enforce two pixel-wise su-

pervision (WCEL+L1) on the depth map, the performance

cannot improve any more. Thus using two pixel-wise loss

terms does not help.

Secondly, we analyze the effectiveness of the supple-

mentary 3D geometric constraint (PL, SNL, VNL). Com-

pared with the baseline (WCEL), three supplementary 3D

geometric constraints can promote the network perfor-

mance with varying degrees. Our proposed VNL combining

with WCEL has the best performance, which has improved

the baseline performance by up to 8%.

Thirdly, we analyze the difference of three geometric

constraints. As SNL can only exploit geometric relations

of homogeneous local regions, its performance is the low-

est among the three constraints over all evaluation metrics.

Compared with SNL, since PL constrains the global geo-

metric relations, its performance is clearly better. How-

ever, the performance of WCEL+PL is not as good as our

proposed WCEL+VNL. When we further add our VNL on
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Image w/o VNL with VNL GT

Figure 7 – Depth maps in the red dashed boxes with sign, pedestrian and traffic lights are zoomed in. One can see that with the help of virtual normal,

predicted depth maps in these ambiguous regions are considerably more accurate.

top of WCEL+PL, the precision can further be slightly im-

proved and is comparable to WCEL+VNL. Therefore, al-

though PL is a global geometric constraint in 3D, the pair-

wise constraint cannot encode as strong geometry informa-

tion as our proposed VNL.

At last, in order to further demonstrate the effectiveness

of VNL, we analyze the results of network trained with and

without VNL supervision on the KITTI dataset. The vi-

sual comparison is shown in Fig. 7. One can see that VNL

can improve the performance of the network in ambiguous

regions. For example, the sign (1st row), the distant pedes-

trian (2nd row), and traffic light in the last row of the figure

can demonstrate the effectiveness of the proposed VNL.

In conclusion, the geometric constraints in the 3D space

can significantly boost the network performance. Moreover,

the global and high-order constraints can enforce stronger

supervision than the ‘local’ and pair-wise ones in 3D space.
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Figure 8 – Illustration of the impact of the samples size. The more

samples will promote the performance.

Impact of the Amount of Samples. Previously, we have

proved the effectiveness of VNL. Here the impact of the

size of samples for VNL is discussed. We sample six dif-

ferent sizes of point groups, 0K, 20K, 40K, 60K, and 80K

and 100K, to establish VNL. ‘0K’ means that the model is

trained without VNL supervision. The rel error is reported

for evaluation. Fig. 8 demonstrates that ‘rel’ slumps by

5.6% with 20K point groups to establish VNL. However,

it only drops slightly when the samples for VNL increase

from 20K to 100K. Therefore, the performance saturates

with more samples, when samples reach a certain number

in that the diversity of samples is enough to construct the

global geometric constraint.

Lightweight Backbone Network. We train the network

with the MobileNetV2 backbone to evaluate the effective-

ness of the proposed geometric constraint on the light net-

work. We train it on the NYUD-Large for 10 epochs. Re-

sults in Table 4 show that the proposed VNL can improve

the performance by 1% - 8%. Comparing with previous

state-of-the-art methods, we have improved the accuracy by

around 29% over all evaluation metrics and achieved a bet-

ter trade-off between parameters and the accuracy.

Table 4 – Performance on NYUD-V2 with MobileNetV2 backbone.
†Trained without VN. ‡Trained with VN.

Metrics CReaM [41] RF-LW[34] Ours-B† Ours-VN‡

δ1 0.704 0.790 0.814 0.829

δ2 0.917 0.955 0.947 0.956

δ3 0.977 0.990 0.972 0.980

rel 0.190 0.149 0.144 0.134

rms 0.687 0.565 0.502 0.485

rms (log) 0.251 0.205 0.201 0.185

params 1.5M 3.0M 2.7M 2.7M

3.6. Recovering 3D Features from Estimated Depth

We have argued that, with geometric constraints in the

3D space, the network can achieve both more accurate depth

and higher-quality 3D information. Here we recovered the

3D point cloud and surface normal to support this.

3D Point Cloud. Firstly, we compare the reconstructed 3D
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point cloud from our predicted depth and that of DORN.

Fig. 9 demonstrate that the overall quality of ours outper-

forms theirs significantly. Although our predicted depth is

only slightly better than theirs on evaluation metrics, the re-

constructed wall (see the 2nd row in 9) of ours is much

flatter and has fewer errors. The shape of the bed is more

similar to the ground truth. From the bird view, it is hard to

recognize the bed shape of their results. The point cloud in

Fig. 1 also leads to a similar conclusion.

DORN Ours GT

Figure 9 – Comparison of reconstructed point clouds from estimated

depth maps between DORN [13] and ours. Our point cloud results con-

tain less noise and are closer to groud-truth than that of DORN.

Surface Normal. We compare the calculated surface nor-

mal with previous state-of-the-art methods and demonstrate

the quantitative results in Table 5. The ground truth is

obtained as described in [8]. We first compare our geo-

metrically calculated results with DCNN-based optimiza-

tion methods. Although we do not optimize a sub-model to

achieve the surface normal, our results can outperform most

of such methods and even are the best on 30
◦ metric.

Table 5 – Evaluation of the surface normal on NYUD-V2.

Method
Mean Median 11.2

◦
22.5

◦
30

◦

Lower is better Higher is better

Predicted Surface Normal from the Network

3DP [11] 33.0 28.3 18.8 40.7 52.4

Ladicky et al. [49] 35.5 25.5 24.0 45.6 55.9

Fouhey et al. [12] 35.2 17.9 40.5 54.1 58.9

Wang et al. [45] 28.8 17.9 35.2 57.1 65.5

Eigen et al. [8] 23.7 15.5 39.2 62.0 71.1

Calculated Surface Normal from the Point cloud

GT-GeoNet† [35] 36.8 32.1 15.0 34.5 46.7

DORN‡ [13] 36.6 31.1 15.7 36.5 49.4

Ours 24.6 17.9 34.1 60.7 71.7

† Cited from the original paper.
‡ Using authors’ released models.

Furthermore, we compare the surface normals directly

computed from the reconstructed point cloud with that of

Image GT Ours

Figure 10 – Recovered surface normal from 3D point cloud. According

to the visual effect, the surface normal is in high-quality in planes (1st

row) and the complicated curved surface (2nd and last row).

DORN [13] and GeoNet [35]. Note that we run the re-

leased code and model of DORN to obtain depth maps and

then calculate surface normals from the depth, while the

evaluation of GeoNet is cited from the original paper. In

Table 5, we can see that, with high-order geometric supervi-

sion, our method outperforms DORN and GeoNet by a large

margin, and even is close to Eigen method which trains to

output normals. It suggests that our method can lead the

model to learn the shape from images.

Apart from the quantitative comparison, the visual effect

is shown in Fig. 10, demonstrating that our directly calcu-

lated surface normals are not only accurate in planes (the

1st row), but also are of higher quality in regions with so-

phisticated curved surface (the 2nd and last row).

4. Conclusion

This paper proposed to construct a high-order global ge-

ometric constraint (VNL) in the 3D space for monocular

depth prediction. In contrast to previous methods with only

pixel-wise constraint, our method can not only predict accu-

rate depth but also recover high-quality 3D features, such as

the point cloud and the surface normal, eliminating necessi-

ties to optimize a new sub-model. Compared with other 3D

constrains, our proposed VNL is more robust to noise and

can encode strong global constraints. Experimental results

on NYUD-V2 and KITTI have proved the effectiveness of

our method and the state-of-the-art performance both on

large models and light-weight backbones.
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