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Figure 1: Photorealistic stylization results. Given (a) an input pair (top: content, bottom: style), the results of (b) WCT [18],

(c) PhotoWCT [19], and (d) our model are shown. Every result is produced without any post-processing. While WCT and

PhotoWCT suffer from spatial distortions, our model successfully transfers the style and preserves the fine details.

Abstract

Recent style transfer models have provided promising

artistic results. However, given a photograph as a reference

style, existing methods are limited by spatial distortions or

unrealistic artifacts, which should not happen in real pho-

tographs. We introduce a theoretically sound correction to

the network architecture that remarkably enhances photore-

alism and faithfully transfers the style. The key ingredient of

our method is wavelet transforms that naturally fits in deep

networks. We propose a wavelet corrected transfer based

on whitening and coloring transforms (WCT2) that allows

features to preserve their structural information and sta-

tistical properties of VGG feature space during stylization.

This is the first and the only end-to-end model that can

stylize a 1024×1024 resolution image in 4.7 seconds, giv-

ing a pleasing and photorealistic quality without any post-

processing. Last but not least, our model provides a stable

video stylization without temporal constraints. Our code,

generated images, pre-trained models and supplementary

documents are all available at ClovaAI/WCT2.

1. Introduction

Photorealistic style transfer has to satisfy contradictory

objectives. To be photorealistic, a model should apply the

reference style on the scene without hurting the details of an

image. In figure 1, for example, the general style (color and

tone) of sky and sea should change, while the fine structures

of the ship and the bridge remain intact. However, artistic

style transfer methods (e.g., whitening and coloring trans-

forms, WCT [18]) generally suffer from severe distortions

due to their strong abstraction ability, which is not favored

in the photorealistic stylization (figure 1b). (Please refer to

our supplementary materials for more failure cases.)

Luan et al. [22] introduced a regularizer for photorealism

on the traditional optimization-based method [8]. However,

solving the optimization problem requires heavy computa-

tional costs, which limits their use in practice. To overcome

this issue, Li et al. [19] recently proposed a photorealis-

tic variant of WCT (PhotoWCT) that replaced the upsam-

pling components of the VGG decoder with unpooling. By

* indicates equal contribution
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Figure 2: Comparison between previous style transfer models and our proposed model architecture (WCT2). Unlike WCT

[18] and PhotoWCT [19] that use max-pooling and recursively stylize from coarse (level 5) to fine (level 1), WCT2 replaces

lossy operations (green) with wavelet pooling (blue) and unpooling (red), and employs the progressive stylization strategy

in a single pass. Note that given the content (c) and style (s), WCT2 outputs the final image (Ifinal) while the PhotoWCT

output (Ilevel1) needs further post-processing steps (smoothing and filtering).

providing a max-pooling mask, PhotoWCT is designed to

compensate for information loss during the encoding step

and suppress the spatial distortion. Although their approach

was valid, the introduction of the mask was not able to re-

solve the information loss that comes from the max-pooling

of VGG network (figure 1c). To fix the remaining artifacts,

they had to perform a series of post-processing steps, which

require the original image to patch up the result. Not only

do these post-processing steps retuire cumbersome compu-

tation and time but they entail another unfavorable blurry

artifact and hyper-parameters to manually set.

Instead of providing partial amendments, we address the

fundamental problem by introducing a theoretically sound

correction on the downsampling and upsampling opera-

tions. We propose a wavelet corrected transfer based on

whitening and coloring transforms (WCT2) that substitutes

the pooling and unpooling operations in the VGG encoder

and decoder with wavelet pooling and unpooling. Our mo-

tivation is that the learned function by the network should

have its inverse operation to enable exact signal recov-

ery, and accordingly, photorealistic stylization. (We pro-

vide theoretical details in our supplementary materials.) It

allows WCT2 to fully reconstruct the signal without any

post-processing steps, thanks to the favorable properties of

wavelets providing minimal information loss [32, 33]. The

decomposed wavelet features provide interesting interpreta-

tions on the feature space as well, such as component-wise

stylization and why average pooling is known to give better

stylization than max-pooling (Section 4.1).

In addition, we propose progressive stylization instead of

following the multi-level strategy that is used in WCT [18]

and PhotoWCT [19] (figure 2). To maximize the styliza-

tion effect, WCT and PhotoWCT recursively transformed

features in a multi-level manner from coarse to fine. In con-

trast, we progressively transform features during a single

pass. This allows two significant advantages over the oth-

ers. First, our model is simple and efficient since we only

have a single decoder during training as well as in the in-

ference time. On the other hand, the multi-level strategy

requires to train a decoder for each level without sharing

parameters, which is inefficient in terms of the number of

parameters and training procedure. This overhead remains

in the inference time as well because the model requires to

pass multiple encoder and decoder pairs to stylize an image.

Second, by recursively encoding and decoding the signal

with the lossy VGG networks, artifacts are amplified during

the multi-level stylization. Because of wavelet operations

and progressive stylization, our model does not have such a

problem, and even more, it shows little error amplification

when the multi-level strategy is employed (figure 6).

Our contributions are summarized as follows. We first

show that the spatial distortions come from the network

operations that cannot satisfy the reconstruction condition

(sec:wct2). By employing the wavelet corrected transfer and

progressive stylization, we propose the first end-to-end

photorealistic style transfer model that allows to remove

the additional post-processing steps. Our model can pro-

cess a high resolution image (1024×1024) in 4.7 seconds,

which is 830 times faster than the state-of-the-art models,

where PhotoWCT fails due to an out-of-memory issue and

Deep Photo Style Transfer (DPST) [22] takes 3887.8 sec-

onds. Our experimental results show quantitatively better

visual quality in both SSIM and Gram loss (figure 9), and

qualitatively being preferred by 62.21% in the user study

(table 2). In addition, our model has three times fewer pa-

rameters than PhotoWCT and provides temporally stable

stylization enabling video applications without additional

constraints, such as optical flow (figure 8).
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2. Related Work

Style transfer. Starting from the seminal work of Gatys

et al. [8], many artistic style transfer studies have been pro-

posed to synthesize stylized images through either iterative

optimization [9], finding dense correspondence [20, 28, 10]

or manipulating features in pre-trained networks [13, 18].

However, due to their powerful ability to abstract the fea-

tures, they cannot be used in the photorealistic style transfer

as they are.

Compared to artistic style transfer, photorealistic trans-

fer has been overlooked. Classical methods mostly match

the color and tone [1, 24, 25] of the images, which are re-

stricted to specific usage. Luan et al. [22] proposed deep

photo style transfer (DPST), which augments the neural

style algorithm [8] with an additional photorealism regular-

ization term and a semantic segmentation mask. However,

DPST requires heavy computation to solve the regularized

optimization problem.

Recently, Li et al. [19] proposed a photorealistic vari-

ant of WCT (PhotoWCT), which replaces the upsampling

of the VGG decoder with unpooling. PhotoWCT showed

that the spatial distortion could be relaxed by providing

max-pooling masks to the decoder. Because the visual qual-

ity of the raw outputs of PhotoWCT was not satisfactory,

the authors had to employ additional post-processing, such

as smoothing and filtering. However, not only do these in-

crease runtime exponentially to the image resolution, but

blur final outputs.

Different from the existing methods, our method can pre-

serve the fine structures of an image with little spatial dis-

tortion in an end-to-end manner, and thus removes the ne-

cessity of additional post-processing steps.

Signal reconstruction using wavelets. Signal recon-

struction using wavelets has been an extensive research

topic in applied mathematics community due to its favor-

able characteristics such as proven convergence and com-

pact representation of an arbitrary signal [6, 17]. There have

been several attempts to incorporate both classical signal

processing and deep learning approaches, including fea-

ture reduction [16], network compression [11, 16], super-

resolution [2], classification [3, 7, 23, 27, 30] and image

denoising [14]. Similarly, our approach augments wavelets

as a component of the network architecture and provides an

interpretable module that can enhance the photorealism of

a style transfer model.

One closest related work [30] recently proposed to use

wavelets as an alternative to traditional neighborhood pool-

ing. However, their goal is to reduce feature dimensions by

discarding the first-level sub-bands, while we exploits all

sub-bands. In addition, we utilize both wavelet decomposi-

tion and reconstruction together to exactly recover the spa-

tial information with minimal noise amplification.

3. WCT2

To achieve photorealism, a model should recover the

structural information of a given content image while it

stylizes the image faithfully at the same time. To address

this issue, we propose a Wavelet Corrected Transfer based

on Whitening and Coloring Transforms, dubbed WCT2.

More specifically, we handle the first objective by employ-

ing wavelet pooling and unpooling, which preserve infor-

mation of the content to the transfer network. We use pro-

gressive stylization within a single forward pass to tackle

the second issue.

3.1. Wavelet corrected transfer

Haar wavelet pooling and unpooling. We first explain

the main components of our model using Haar wavelets,

which we call wavelet pooling and unpooling. Haar wavelet

pooling has four kernels, {LL⊤ LH⊤ HL⊤ HH⊤}, where

the low (L) and high (H) pass filters are

L⊤
=

1√
2

[

1 1
]

, H⊤
=

1√
2

[

−1 1
]

. (1)

Thus, unlike common pooling operations, the output of the

Haar wavelet pooling has four channels. Here, the low-pass

filter captures smooth surface and texture while the high-

pass filters extract vertical, horizontal, and diagonal edge-

like information. For simplicity, we denote the output of

each kernel as LL, LH, HL, and HH, respectively.

One important property of our wavelet pooling is that

the original signal can be exactly reconstructed by mirror-

ing its operation; i.e., wavelet unpooling. In detail, wavelet

unpooling fully recovers the original signal by perform-

ing a component-wise transposed-convolution, followed by

a summation. (Please see our supplementary materials for

more details.) Thanks to this favorable property, our pro-

posed model can stylize an image with minimal informa-

tion loss and noise amplification. On the other hand, max-

pooling does not have its exact inverse so that the encoder-

decoder structured networks used in the WCT [18] and Pho-

toWCT [19] cannot fully restore the signal.

Note that Haar wavelet pooling and unpooling is not the

only operation which can fully recover the original signal.

However, we choose Haar wavelet because it splits the orig-

inal signal into channels that capture different components,

which leads to better stylization.

Model architecture. To fully utilize the encoded infor-

mation, we replace every max-pooling and unpooling of

PhotoWCT with the wavelet pooling and unpooling (fig-

ure 2). Specifically, we use the ImageNet [5] pre-trained

VGG-19 network [29] from conv1 1 layer to conv4 1

layer as the encoder. The max-pooling layers are replaced

with wavelet pooling where the high frequency components
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(LH, HL, HH) are skipped to the decoder directly. Thus,

only the low frequency component (LL) is passed to the

next encoding layer. The decoder has a mirror structure of

the encoder, and the wavelet unpooling aggregates the com-

ponents. (Please refer to our supplementary materials for

more details about the proposed network architecture)

3.2. Stylization

Whitening and coloring transforms (WCT). Since our

method is built upon WCT [18]1, we first recap WCT

briefly. WCT can perform style transfer with arbitrary styles

by directly matching the correlation between content and

style in the VGG feature domain. It projects the content

features to the eigenspace of style features by calculating

singular value decomposition (SVD). The final stylized im-

age is obtained by feeding the transferred features into the

decoder. To provide better artistic style transfer, the authors

employed a multi-level stylization framework by applying

WCT to multiple encoder-decoder pairs (figure 2b).

Progressive stylization. Instead of using the multi-level

stylization used in WCT and PhotoWCT, we progressively

transform features within a single forward-pass as illus-

trated in figure 2. We sequentially apply WCT at each scale

(conv1 X, conv2_X, conv3 X and conv4 X) within a

single encoder-decoder network. Note that the number of

SVD computations of our model remains the same. We can

add more WCTs on skip-connections and decoding layers to

further strengthen the stylizing effect at the cost of time con-

sumption. This will be covered in more detail in Section 4.4.

There are several advantages of our proposed progressive

stylization against the multi-level one. First, the multi-level

strategy requires to train a decoder for each level without

sharing parameters, which is inefficient. On the other hand,

our training procedure is simple because we only have a

single pair of encoder and decoder, which is advantageous

in the inference time as well. Second, recursively encod-

ing and decoding the signal with VGG network architecture

amplifies errors causing unrealistic artifacts in the output.

In the later section, we show that our proposed progressive

stylization technique suffers less from the error amplifica-

tion than the multi-level strategy.

4. Analysis

4.1. Wavelet pooling

We first examine the effects of using the wavelet pool-

ing instead of max-pooling. As shown in figure 3b and 3c,

1Note that our wavelet corrected transfer is not limited to a specific

stylization method. Here, we simply used WCT for better stylization. For

example, at the expanse of slight image quality degradation, our model

can be integrated with AdaIN [13], which further accelerates the model by

avoiding SVD calculation. (Please refer to the supplemntary materials.)

(a) Input (b) PhotoWCT [19]

(c) Ours (d) Ours (LL only)

Figure 3: Comparison between max-pooling and wavelet

pooling. Given (a) an input pair (inset: style), we compare

the results of (b) PhotoWCT without post-processing, (c)

ours and (d) ours but stylize only the LL component. Note

that the edges are left unstylized (inside the red box).

PhotoWCT suffers from the loss of spatial information by

max-pooling while ours preserves fine details. We recall

that the low frequency component captures smooth surface

and texture while the high frequency components detect

edges. This enables our model to separately control the styl-

ization effect by choosing a component. More specifically,

it implies that applying WCT to LL of the encoder affects

overall texture or surface while applying WCT to the high

frequency components (i.e., LH, HL, HH) stylize edges. In-

deed, when we stylize all components (figure 3c), our model

transfers the given style to the entire building. In contrast,

if we do not perform WCT on the high frequency compo-

nents, the boundaries of windows remain unchanged (figure

3d).

Note that using only the LL component of our wavelet

pooling is equivalent to using the average pooling. Interest-

ingly, since Gatys et al. [8], many studies have consistently

reported that replacing the max-pooling operation with av-

erage pooling yields slightly more appealing results. This

can be explained in our framework that the model is us-

ing only the partial information (LL) of the wavelet decom-

posed feature domain. In addition, because each frequency

component of the content feature is transformed into its cor-

responding component of style feature, we can obtain a sim-

ilar advantage as we do by using spatial correspondences.

4.2. Ablation study

To show that our model indeed benefits from the wavelet

pooling, we compare the stylization results using other

pooling variants. We unpool the features similar to the

way we do for the wavelet unpooling; i.e., transposed-

convolution and summation.
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(a) Input (b) Split

(c) Learnable (d) Ours (WCT2)

Figure 4: Ablation study on pooling methods. While split

and learnable poolings suffer from the lack of representation

power or altered feature statistics, wavelet pooling benefits

from the compact representation of wavelets and retains the

original VGG feature property intact.

Split pooling. Split pooling has 2 × 2 filters with fixed

weights, i.e., [1 0 0 0], [0 1 0 0], [0 0 1 0], and [0 0 0 1]. Split

pooling has a similar property to wavelet pooling in that

it can carry whole information. Here, we can see a similar

effect but degradation in fine details, e.g., the grass (figure

4b). We suspect that this is due to the lack of representation

power.

Learnable pooling. Learnable pooling is a trainable

conv layer with a stride of two. As shown in figure 4c,

it does not preserve the content nor faithfully transfer the

style. We suppose that this happens because the learnable

pooling brings too much flexibility to the network. This ru-

ins the original feature properties of VGG networks [29],

which is known to be good at extracting styles [8].

4.3. Unpooling options

To achieve better reconstruction, we adopted concate-

nation instead of summation for unpooling, similar to U-

Net structure [12, 26, 34]. This enables the network to

learn the weighted sum of components at the expense of

interpretability and theoretical correctness. Specifically, our

wavelet unpooling now performs channel-wise concatena-

tion of four feature components from the corresponding

scale plus feature output before the wavelet pooling. There-

fore, the number of parameters increases at the conv layer

that comes right after the wavelet unpooling. This increases

the total number of parameters to be 1.80× of the sum-

version of WCT2 while PhotoWCT has 3.06× parameters.

As shown in figure 5, spatial details are further improved.

The sum-version generally produces a more stylized output

(a) Content (b) Style

(c) Sum-version (d) Concatenated-version

Figure 5: Variation of the unpooling options (Section 4.3).

(a) Input (b) Style

(c) Single-pass (WCT2) (d) Multi-level

Figure 6: Stylization strength with more whitening and col-

oring transforms. Single-pass is our baseline (Section 4.4).

while the concatenated-version produces a clearer image.

(Please see our supplementary materials for more results.)

4.4. Progressive vs. multi­level strategy

Owing to the exact reconstruction property of wavelet

pooling, our model can adopt the multi-level strategy to

increase the contrast in the transferred style with minimal

noise amplification. As shown in figure 6d, adopting the

multi-level approach in addition to WCT2 leads to more

vivid results. Note that it maintains photorealism while Pho-

toWCT produces spotty artifacts due to the noise amplifica-

tion (figure 7c). In addition, performing progressive styliza-

tion at the decoder as well, namely conv3 2, conv2 2,

and conv1 2, further increases stylization effect. Still,

strengthening the style comes at the cost of photorealism

and multiple SVD computations. (Please refer to the sup-

plementary materials for more results)
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(a) Input (b) DPST [22] (c) PhotoWCT [19] (d) PhotoWCT (full) [19] (e) Ours (WCT2)

Figure 7: Photorealistic stylization results. Given (a) an input pair (top: content, bottom: style), the results of (b) deep photo

style transfer (DPST) [22], (c) and (d) PhotoWCT [19], and (e) ours (WCT2) are shown. PhotoWCT (full) denotes the results

after applying two post-processing steps proposed by the authors [19]. Note that WCT2 does not need any post-processing.

9041



Ours (WCT2)

PhotoWCT

Style Content

Figure 8: Photorealistic video stylization results (from day-to-sunset). Given a style image and video frames (top), we

show the results by (middle) WCT2 and (bottom) PhotoWCT [19] without providing semantic segmentation maps and post-

processing steps.

5. Experimental results

In this section, we show that our simple modification can

remarkably enhance the performance of photorealistic style

transfer. Here, every result is reported based on the con-

catenated version of our model. For a fair comparison and

time-efficiency, we only perform whitening and coloring on

LL components (e.g., convX 1 outputs of the encoder) pro-

gressively. Thus, the number of whitening and coloring pro-

cedure of our model matches with PhotoWCT.

5.1. Implementation details

We use the encoder-decoder architecture with fixed VGG

encoder weights. The decoder is trained on Microsoft

COCO dataset [21], minimizing the L2 reconstruction loss

and the additional feature Gram matching loss with the en-

coder. The training is done with NAVER Smart Machine

Learning (NSML) platform [?]. We use ADAM optimizer

[15] with a learning rate of 10−3. Finally, similar to Pho-

toWCT and DPST, we utilize the semantic map to match

the styles of corresponding image regions. The code and

pre-trained models are available at ClovaAI/WCT2.

5.2. Qualitative evaluation

Figure 7 shows the results of DPST, PhotoWCT and

ours (WCT2). DPST often generates “staircasing” or “car-

toon” artifacts [4] with an unrealistic color transfer, which

severely hurts photorealism (figure 7b). PhotoWCT better

reconstructs the details of the content image, while it shows

spotty artifacts over entire images (figure 7c). Such artifacts

can be removed by employing additional post-processing

steps (figure 7d). However, it has three disadvantages that

1) optimization is slow, 2) hyper-parameters should be care-

fully tuned to trade-off between smoothness and fine details,

and 3) the final image becomes blurry at the expense of re-

moved artifacts. In contrast, our proposed method shows

fewer artifacts while faithfully transferring the reference

styles (figure 7e). Note that we do not apply any post-

processing after the network output.

Video stylization. To emphasize consistent feature rep-

resentation of the wavelet pooling and unpooling, we sep-

arately stylize every video frame to target style without

any semantic segmentation. Figure 8 shows that WCT2

performs stable video style transfer without any tempo-

ral consistency regularization such as optical flow. On the

other hand, PhotoWCT generates spotty and varying arti-

facts over frames, which harms the photorealism. (The link

to the full video can be found in our project page.)

5.3. Quantitative evaluation

Statistics. To measure photorealism, we employ two sur-

rogate metrics for spatial recovery and stylization. We cal-

culate the structural similarity (SSIM) index between edge

responses [31] of original contents and stylized images.

Following WCT [18], we report the covariance matrix dif-

ference (VGG style loss [8]) between the style image and

the outputs of each model. Figure 9 shows SSIM (X-axis)

against style loss (Y-axis). Our proposed model (WCT2) re-

markably outperforms other methods.

Note that WCT2 and its variants are located at the top-

right corner, superior to PhotoWCT (full) and DPST that

perform post-processing. Here, DPST has strength on the

Gram-based score because it directly optimizes the style

loss. Still, it is far from being practical due to its heavy op-

timization procedure (table 1). As expected, when we com-

pare the results of our variants, the multi-level approach

adds more style (smaller Gram-based loss) at the expense

of noise amplification (larger SSIM index), which is even

better than the direct optimization (DPST).

In addition, by comparing the gap before and after

the post-processing steps (figure 9, dashed lines), we can

clearly see that the final visual qualities of PhotoWCT

majorly come from the powerful post-processing, espe-

cially the smoothing step, not the network itself. The

original WCT with smoothing already shows a compara-

ble result to that of PhotoWCT. This demonstrates that the

unpooling substitution of PhotoWCT did not fully address

the information loss but the post-processing did.
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Figure 9: SSIM index (higher is better) versus Style loss

(lower is better). Ideal case is the top-right corner (red

dot). Dashed lines depict the gap before and after the post-

processing steps, i.e., smoothing. The baseline WCT2 with

concatenation is denoted by the red asterisk.

PhotoWCT (full)

Image Size DPST (WCT + post) Ours

256× 256 306.9 3.2 + 9.2 3.2

512× 512 1020.7 3.6 + 40.2 3.8

896× 896 2988.6 3.8 + OOM 4.4

1024× 1024 3887.8 3.9 + OOM 4.7

Table 1: Runtime comparision of DPST, PhotoWCT (full)

and ours in seconds. OOM denotes out-of-memory error.

Runtime & memory. table 1 shows the runtime compar-

ison of DPST, PhotoWCT, and WCT2. For PhotoWCT, we

separately measured WCT and post-processing steps to bet-

ter compare with ours. The reported runtime for each model

is an average of ten-rounds run on a single NVIDIA P40

GPU. As expected, our model inherits the computational

time of the original WCT. Note that the concatenation in

unpooling hardly increases the runtime of WCT2. Because

our model can remove the cumbersome post-processing

steps, WCT2 can deal with high resolution images, such

as 1024 × 1024, maintaining a high quality of photoreal-

istic style transfer. Compared to DPST, WCT2 achieves a

speed-up of about 830 times in runtime. In addition, WCT2

uses only 51% GPU-memory of PhotoWCT, which uses a

multi-level stylization requiring four encoder-decoder mod-

els (subsec:progressive) since WCT2 progressively stylize

an image using a single encoder-decoder.

User study. We conducted a user study to further eval-

uate the methods in terms of fewer artifacts, faithfulness to

the style input, and overall qualities. Our benchmark dataset

consists of content and style pairs provided by Luan et al.

[22]. Total 40 sets of questions were asked to 41 subjects,

in which subjects had to choose one among three stylized

DPSP PhotoWCT (full) Ours

Fewest artifacts 21.34% 9.33% 69.33%

Best stylization 30.49% 12.74% 56.77%

Most preferred 24.63% 11.16% 62.21%

Table 2: User study results. The percentage indicates the

preferred model outputs out of 1640 responses.

images from each model. The results are shown in ran-

dom order with content and style images. Table 2 shows

the percentage of model outputs that are chosen out of 1640

(= 40 × 41) responses. Our method is preferred by human

subjects against the other state-of-the-art methods by a large

margin in all aspects. Note that we compare our results with

PhotoWCT (full) that applies two post-processing steps pro-

posed by the authors [19] while we do not perform any post-

processing for WCT2. (Please see our supplementary mate-

rials for the images that are used for the user study)

Failure cases. Many photorealistic models [22, 19] in-

cluding ours require the semantic map and its accuracy is

important for better stylization results. In fact, this phe-

nomenon is more prominent in our model because WCT2

retains every fine detail unlike the others (Supplementary

materials). The effect of misaligned map is visible in our

result while PhotoWCT smooths it out unintentionally. Re-

solving the dependency on the semantic label map is an in-

teresting future research direction.

6. Conclusion

In this paper, we proposed the first end-to-end photoreal-

istic style transfer method, WCT2. Based on the theoretical

analysis, we specifically designed our model to satisfy the

reconstruction condition. The exact recovery of the wavelet

transforms allows our model to preserve structural infor-

mation while providing stable stylization without any con-

straints. By employing progressive stylization, we achieved

better results with less noise amplification. Compared to the

other state-of-the-arts, our analysis and experimental results

showed that WCT2 is scalable, lighter, faster and achieves

better photorealism quantitatively and qualitatively. Our re-

sults were preferred by human subjects in every aspect with

a significant margin. Future study will include removing the

necessity of semantic labels, which should be accurate for a

flawless result so far.
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