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Figure 1: Free-form image inpainting results by our system built on gated convolution. Each triad shows original image,

free-form input and our result from left to right. The system supports free-form mask and guidance like user sketch. It helps

user remove distracting objects, modify image layouts and edit faces in images.

Abstract

We present a generative image inpainting system to com-

plete images with free-form mask and guidance. The sys-

tem is based on gated convolutions learned from millions of

images without additional labelling efforts. The proposed

gated convolution solves the issue of vanilla convolution

that treats all input pixels as valid ones, generalizes partial

convolution by providing a learnable dynamic feature se-

lection mechanism for each channel at each spatial location

across all layers. Moreover, as free-form masks may appear

anywhere in images with any shape, global and local GANs

designed for a single rectangular mask are not applicable.

Thus, we also present a patch-based GAN loss, named SN-

PatchGAN, by applying spectral-normalized discriminator

on dense image patches. SN-PatchGAN is simple in for-

mulation, fast and stable in training. Results on automatic

image inpainting and user-guided extension demonstrate

that our system generates higher-quality and more flexi-

ble results than previous methods. Our system helps user

quickly remove distracting objects, modify image layouts,

clear watermarks and edit faces. Code, demo and models

are available at: https://github.com/JiahuiYu/

generative_inpainting.

1. Introduction

Image inpainting (a.k.a. image completion or image

hole-filling) is a task of synthesizing alternative contents in

missing regions such that the modification is visually realis-

tic and semantically correct. It allows to remove distracting

objects or retouch undesired regions in photos. It can also

be extended to tasks including image/video un-cropping, ro-

tation, stitching, re-targeting, re-composition, compression,

super-resolution, harmonization and many others.

In computer vision, two broad approaches to image in-

painting exist: patch matching using low-level image fea-

tures and feed-forward generative models with deep convo-

lutional networks. The former approach [3, 8, 9] can syn-

thesize plausible stationary textures, but usually makes crit-

ical failures in non-stationary cases like complicated scenes,

faces and objects. The latter approach [15, 49, 45, 46, 38,

37, 48, 26, 52, 33, 35, 19] can exploit semantics learned

from large scale datasets to synthesize contents in non-

stationary images in an end-to-end fashion.

However, deep generative models based on vanilla con-
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volutions are naturally ill-fitted for image hole-filling be-

cause the spatially shared convolutional filters treat all

input pixels or features as same valid ones. For hole-

filling, the input to each layer are composed of valid pix-

els/features outside holes and invalid ones in masked re-

gions. Vanilla convolutions apply same filters on all valid,

invalid and mixed (for example, the ones on hole boundary)

pixels/features, leading to visual artifacts such as color dis-

crepancy, blurriness and obvious edge responses surround-

ing holes when tested on free-form masks [15, 49].

To address this limitation, recently partial convolu-

tion [23] is proposed where the convolution is masked and

normalized to be conditioned only on valid pixels. It is then

followed by a rule-based mask-update step to update valid

locations for next layer. Partial convolution categorizes all

input locations to be either invalid or valid, and multiplies a

zero-or-one mask to inputs throughout all layers. The mask

can also be viewed as a single un-learnable feature gating

channel1. However this assumption has several limitations.

First, considering the input spatial locations across differ-

ent layers of a network, they may include (1) valid pixels in

input image, (2) masked pixels in input image, (3) neurons

with receptive field covering no valid pixel of input image,

(4) neurons with receptive field covering different number

of valid pixels of input image (these valid image pixels may

also have different relative locations), and (5) synthesized

pixels in deep layers. Heuristically categorizing all loca-

tions to be either invalid or valid ignores these important

information. Second, if we extend to user-guided image in-

painting where users provide sparse sketch inside the mask,

should these pixel locations be considered as valid or in-

valid? How to properly update the mask for next layer?

Third, for partial convolution the “invalid” pixels will pro-

gressively disappear layer by layer and the rule-based mask

will be all ones in deep layers. However, to synthesize pix-

els in hole these deep layers may also need the informa-

tion of whether current locations are inside or outside the

hole. The partial convolution with all-ones mask cannot

provide such information. We will show that if we allow

the network to learn the mask automatically, the mask may

have different values based on whether current locations are

masked or not in input image, even in deep layers.

We propose gated convolution for free-form image in-

painting. It learns a dynamic feature gating mechanism

for each channel and each spatial location (for example,

inside or outside masks, RGB channels or user-guidance

channels). Specifically we consider the formulation where

the input feature is firstly used to compute gating values

g = σ(wgx) (σ is sigmoid function, wg is learnable param-

1Applying mask before convolution or after is equivalent when convo-

lutions are stacked layer-by-layer in neural networks. Because the output

of current layer is the input to next layer and the masked region of input

image is already filled with zeros.

eter). The final output is a multiplication of learned feature

and gating values y = φ(wx)⊙g where φ can be any activa-

tion function. Gated convolution is easy to implement and

performs significantly better when (1) the masks have arbi-

trary shapes and (2) the inputs are no longer simply RGB

channels with a mask but also have conditional inputs like

sparse sketch. For network architectures, we stack gated

convolution to form an encoder-decoder network follow-

ing [49]. Our inpainting network also integrates contextual

attention module within same refinement network [49] to

better capture long-range dependencies.

Without compromise of performance, we also signifi-

cantly simplify training objectives as two terms: a pixel-

wise reconstruction loss and an adversarial loss. The mod-

ification is mainly designed for free-form image inpaint-

ing. As the holes may appear anywhere in images with

any shape, global and local GANs [15] designed for a sin-

gle rectangular mask are not applicable. Instead, we pro-

pose a variant of generative adversarial networks, named

SN-PatchGAN, motivated by global and local GANs [15],

MarkovianGANs [21], perceptual loss [17] and recent work

on spectral-normalized GANs [24]. The discriminator of

SN-PatchGAN directly computes hinge loss on each point

of the output map with format Rh×w×c, formulating h ×

w × c number of GANs focusing on different locations and

different semantics (represented in different channels). SN-

PatchGAN is simple in formulation, fast and stable in train-

ing and produces high-quality inpainting results.

Table 1: Comparison of different approaches including

PatchMatch [3], Global&Local [15], ContextAttention [49],

PartialConv [23] and our approach. The comparison of im-

age inpainting is based on four dimensions: Semantic Un-

derstanding, Non-Local Algorithm, Free-Form Masks and

User-Guided Option.

PM [3] GL [15] CA [49] PC [23] Ours

Semantics X X X X

Non-Local X X X

Free-Form X X X

User-guided X X

For practical image inpainting tools, enabling user in-

teractivity is crucial because there could exist many plau-

sible solutions for filling a hole in an image. To this end,

we present an extension to allow user sketch as guided in-

put. Comparison to other methods is summarized in Ta-

ble 1. Our main contributions are as follows: (1) We intro-

duce gated convolution to learn a dynamic feature selection

mechanism for each channel at each spatial location across

all layers, significantly improving the color consistency and

inpainting quality of free-form masks and inputs. (2) We

present a more practical patch-based GAN discriminator,
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SN-PatchGAN, for free-form image inpainting. It is simple,

fast and produces high-quality inpainting results. (3) We

extend our inpainting model to an interactive one, enabling

user sketch as guidance to obtain more user-desired inpaint-

ing results. (4) Our proposed inpainting system achieves

higher-quality free-form inpainting than previous state of

the arts on benchmark datasets including Places2 natural

scenes and CelebA-HQ faces. We show that the proposed

system helps user quickly remove distracting objects, mod-

ify image layouts, clear watermarks and edit faces in im-

ages.

2. Related Work

2.1. Automatic Image Inpainting

A variety of approaches have been proposed for image

inpainting. Traditionally, patch-based [8, 9] algorithms pro-

gressively extend pixels close to the hole boundaries based

on low-level features (for example, features of mean square

difference on RGB space), to search and paste the most

similar image patch. These algorithms work well on sta-

tionary textural regions but often fail on non-stationary im-

ages. Further, Simakov et al. propose bidirectional similar-

ity synthesis approach [36] to better capture and summarize

non-stationary visual data. To reduce the high cost of mem-

ory and computation during search, tree-based acceleration

structures of memory [25] and randomized algorithms [3]

are proposed. Moreover, inpainting results are improved

by matching local features like image gradients [2, 5] and

offset statistics of similar patches [11]. Recently, image in-

painting systems based on deep learning are proposed to

directly predict pixel values inside masks. A significant ad-

vantage of these models is the ability to learn adaptive im-

age features for different semantics. Thus they can synthe-

size more visually plausible contents especially for images

like faces [22, 47], objects [29] and natural scenes [15, 49].

Among all these methods, Iizuka et al. [15] propose a fully

convolutional image inpainting network with both global

and local consistency to handle high-resolution images on

a variety of datasets [18, 32, 53]. This approach, however,

still heavily relies on Poisson image blending with tradi-

tional patch-based inpainting results [11]. Yu et al. [49]

propose an end-to-end image inpainting model by adopt-

ing stacked generative networks to further ensure the color

and texture consistence of generated regions with surround-

ings. Moreover, for capturing long-range spatial dependen-

cies, contextual attention module [49] is proposed and inte-

grated into networks to explicitly borrow information from

distant spatial locations. However, this approach is mainly

trained on large rectangular masks and does not generalize

well on free-form masks. To better handle irregular masks,

partial convolution [23] is proposed where the convolution

is masked and re-normalized to utilize valid pixels only. It

is then followed by a rule-based mask-update step to re-

compute new masks layer by layer.

2.2. Guided Image Inpainting and Synthesis

To improve image inpainting, user guidance is explored

including dots or lines [1, 3, 7, 40], structures [13], transfor-

mation or distortion information [14, 30] and image exem-

plars [4, 10, 20, 43, 51]. Notably, Hays and Efros [10] first

utilize millions of photographs as a database to search for

an example image which is most similar to the input, and

then complete the image by cutting and pasting the corre-

sponding regions from the matched image.

Recent advances in conditional generative networks em-

power user-guided image processing, synthesis and manip-

ulation learned from large-scale datasets. Here we selec-

tively review several related work. Zhang et al. [50] pro-

pose colorization networks which can take user guidance

as additional inputs. Wang et al. [42] propose to syn-

thesize high-resolution photo-realistic images from seman-

tic label maps using conditional generative adversarial net-

works. The Scribbler [34] explore a deep generative net-

work conditioned on sketched boundaries and sparse color

strokes to synthesize cars, bedrooms, or faces.

2.3. Feature­wise Gating

Feature-wise gating has been explored widely in vi-

sion [12, 28, 39, 41], language [6], speech [27] and many

other tasks. For examples, Highway Networks [39] utilize

feature gating to ease gradient-based training of very deep

networks. Squeeze-and-Excitation Networks re-calibrate

feature responses by explicitly multiplying each channel

with learned sigmoidal gating values. WaveNets [27]

achieve better results by employing a special feature gating

y = tanh(w1x) ·sigmoid(w2x) for modeling audio signals.

3. Approach

In this section, we describe our approach from bottom to

top. We first introduce the details of the Gated Convolution,

SN-PatchGAN, and then present the overview of inpainting

network in Figure 3 and our extension to allow optional user

guidance.

3.1. Gated Convolution

We first explain why vanilla convolutions used in [15,

49] are ill-fitted for the task of free-form image inpainting.

We consider a convolutional layer in which a bank of filters

are applied to the input feature map as output. Assume input

is C−channel , each pixel located at (y, x) in C ′−channel

output map is computed as

Oy,x =

k′

h
∑

i=−k′

h

k′

w
∑

j=−k′

w

Wk′

h
+i,k′

w
+j · Iy+i,x+j ,
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where x, y represents x-axis, y-axis of output map, kh and

kw is the kernel size (e.g. 3 × 3), k′h = kh−1
2 , k′w =

kw−1
2 , W ∈ R

kh×kw×C′
×C represents convolutional filters,

Iy+i,x+j ∈ R
C and Oy,x ∈ R

C′

are inputs and outputs. For

simplicity, the bias in convolution is ignored.

The equation shows that for all spatial locations (y, x),
the same filters are applied to produce the output in vanilla

convolutional layers. This makes sense for tasks such as im-

age classification and object detection, where all pixels of

input image are valid, to extract local features in a sliding-

window fashion. However, for image inpainting, the input

are composed of both regions with valid pixels/features out-

side holes and invalid pixels/features (in shallow layers) or

synthesized pixels/features (in deep layers) in masked re-

gions. This causes ambiguity during training and leads to

visual artifacts such as color discrepancy, blurriness and ob-

vious edge responses during testing, as reported in [23].

Recently partial convolution is proposed [23] which

adapts a masking and re-normalization step to make the

convolution dependent only on valid pixels as

Oy,x =

{∑∑

W · (I ⊙ M
sum(M) ), if sum(M) > 0

0, otherwise

in which M is the corresponding binary mask, 1 represents

pixel in the location (y, x) is valid, 0 represents the pixel

is invalid, ⊙ denotes element-wise multiplication. After

each partial convolution operation, the mask-update step

is required to propagate new M with the following rule:

m′

y,x = 1, iff sum(M) > 0.

Partial convolution [23] improves the quality of inpaint-

ing on irregular mask, but it still has remaining issues: (1) It

heuristically classifies all spatial locations to be either valid

or invalid. The mask in next layer will be set to ones no

matter how many pixels are covered by the filter range in

previous layer (for example, 1 valid pixel and 9 valid pixels

are treated as same to update current mask). (2) It is incom-

patible with additional user inputs. We aim at a user-guided

image inpainting system where users can optionally provide

sparse sketch inside the mask as conditional channels. In

this situation, should these pixel locations be considered as

valid or invalid? How to properly update the mask for next

layer? (3) For partial convolution the invalid pixels will pro-

gressively disappear in deep layers, gradually converting all

mask values to ones. However, our study shows that if we

allow the network to learn optimal mask automatically, the

network assigns soft mask values to every spatial locations

even in deep layers. (4) All channels in each layer share the

same mask, which limits the flexibility. Essentially, partial

convolution can be viewed as un-learnable single-channel

feature hard-gating.

We propose gated convolution for image inpainting net-

work, as shown in Figure 2. Instead of hard-gating mask

FeatureBinary Mask

Binary Mask Feature

Rule-based

Update

Rule-based

Update
Conv.

Conv.

Conv.

Output

Feature

Conv.

Output

Soft Gating

Conv.

Soft Gating

Conv.

Feature

Conv.

Conv.

Learnable Gating/FeatureRule-based Binary Mask

Figure 2: Illustration of partial convolution (left) and gated

convolution (right).

updated with rules, gated convolutions learn soft mask au-

tomatically from data. It is formulated as:

Gatingy,x =
∑∑

Wg · I

Featurey,x =
∑∑

Wf · I

Oy,x = φ(Featurey,x)⊙ σ(Gatingy,x)

where σ is sigmoid function thus the output gating values

are between zeros and ones. φ can be any activation func-

tions (for examples, ReLU, ELU and LeakyReLU). Wg and

Wf are two different convolutional filters.

The proposed gated convolution learns a dynamic fea-

ture selection mechanism for each channel and each spatial

location. Interestingly, visualization of intermediate gat-

ing values show that it learns to select the feature not only

according to background, mask, sketch, but also consider-

ing semantic segmentation in some channels. Even in deep

layers, gated convolution learns to highlight the masked re-

gions and sketch information in separate channels to better

generate inpainting results.

3.2. Spectral­Normalized Markovian Discrimina­
tor (SN­PatchGAN)

For previous inpainting networks which try to fill a sin-

gle rectangular hole, an additional local GAN is used on

the masked rectangular region to improve results [15, 49].

However, we consider the task of free-form image inpaint-

ing where there may be multiple holes with any shape at any

location. Motivated by global and local GANs [15], Marko-

vianGANs [16, 21], perceptual loss [17] and recent work on

spectral-normalized GANs [24], we present a simple and

effective GAN loss, SN-PatchGAN, for training free-form

image inpainting networks.

A convolutional network is used as the discriminator

where the input consists of image, mask and guidance chan-

nels, and the output is a 3-D feature of shape R
h×w×c (h,

w, c representing the height, width and number of channels

respectively). As shown in Figure 3, six strided convolu-

tions with kernel size 5 and stride 2 is stacked to captures
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Figure 3: Overview of our framework with gated convolution and SN-PatchGAN for free-form image inpainting.

the feature statistics of Markovian patches [21]. We then

directly apply GANs for each feature element in this fea-

ture map, formulating h×w× c number of GANs focusing

on different locations and different semantics (represented

in different channels) of input image. It is noteworthy that

the receptive field of each neuron in output map can cover

entire input image in our training setting, thus a global dis-

criminator is not necessary.

We also adapt the recently proposed spectral normaliza-

tion [24] to further stabilize the training of GANs. We use

the default fast approximation algorithm of spectral normal-

ization described in SN-GANs [24]. To discriminate if the

input is real or fake, we also use the hinge loss as objective

function for generator LG = −Ez∼Pz(z)[D
sn(G(z))] and

discriminator LDsn = Ex∼Pdata(x)[ReLU(✶−Dsn(x))]+
Ez∼Pz(z)[ReLU(✶ + Dsn(G(z)))] where Dsn represents

spectral-normalized discriminator, G is image inpainting

network that takes incomplete image z.

With SN-PatchGAN, our inpainting network trains faster

and more stable than baseline model [49]. Perceptual

loss is not used since similar patch-level information is al-

ready encoded in SN-PatchGAN. Compared with Partial-

Conv [23] in which 6 different loss terms and balancing

hyper-parameters are used, our final objective function for

inpainting network is only composed of pixel-wise ℓ1 re-

construction loss and SN-PatchGAN loss, with default loss

balancing hyper-parameter as 1 : 1.

3.3. Inpainting Network Architecture

We customize a generative inpainting network [49] with

the proposed gated convolution and SN-PatchGAN loss.

Specifically, we adapt the full model architecture in [49]

with both coarse and refinement networks. The full frame-

work is summarized in Figure 3.

For coarse and refinement networks, we use a simple

encoder-decoder network [49] instead of U-Net used in Par-

tialConv [23]. We found that skip connections in a U-

Net [31] have no significant effect for non-narrow mask.

This is mainly because for center of a masked region, the

inputs of these skip connections are almost zeros thus can-

not propagate detailed color or texture information to the

decoder of that region. For hole boundaries, our encoder-

decoder architecture equipped with gated convolution is

sufficient to generate seamless results.

We replace all vanilla convolutions with gated convolu-

tions [49]. One potential problem is that gated convolutions
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introduce additional parameters. To maintain the same ef-

ficiency with our baseline model [49], we slim the model

width by 25% and have not found obvious performance

drop both quantitatively and qualitatively. The inpainting

network is trained end-to-end and can be tested on free-form

holes at arbitrary locations. Our network is fully convolu-

tional and supports different input resolutions in inference.

3.4. Free­Form Mask Generation

The algorithm to automatically generate free-form

masks is important and non-trivial. The sampled masks,

in essence, should be (1) similar to masks drawn in real

use-cases, (2) diverse to avoid over-fitting, (3) efficient in

computation and storage, (4) controllable and flexible. Pre-

vious method [23] collects a fixed set of irregular masks

from an occlusion estimation method between two consec-

utive frames of videos. Although random dilation, rotation

and cropping are added to increase its diversity, the method

does not meet other requirements listed above.

We introduce a simple algorithm to automatically gener-

ate random free-form masks on-the-fly during training. For

the task of hole filling, users behave like using an eraser to

brush back and forth to mask out undesired regions. This

behavior can be simply simulated with a randomized algo-

rithm by drawing lines and rotating angles repeatedly. To

ensure smoothness of two lines, we also draw a circle in

joints between the two lines. More details are included in

the supplementary materials due to space limit.

3.5. Extension to User­Guided Image Inpainting

We use sketch as an example user guidance to extend our

image inpainting network as a user-guided system. Sketch

(or edge) is simple and intuitive for users to draw. We show

both cases with faces and natural scenes. For faces, we ex-

tract landmarks and connect related landmarks. For natural

scene images, we directly extract edge maps using the HED

edge detector [44] and set all values above a certain thresh-

old (i.e. 0.6) to ones. Sketch examples are shown in the

supplementary materials due to space limit.

For training the user-guided image inpainting system, in-

tuitively we will need additional constraint loss to enforce

the network generating results conditioned on the user guid-

ance. However with the same combination of pixel-wise

reconstruction loss and GAN loss (with conditional chan-

nels as input to the discriminator), we are able to learn

conditional generative network in which the generated re-

sults respect user guidance faithfully. We also tried to

use additional pixel-wise loss on HED [44] output features

with the raw image or the generated result as input to en-

force constraints, but the inpainting quality is similar. The

user-guided inpainting model is separately trained with a

5-channel input (R,G,B color channels, mask channel and

sketch channel).

4. Results

We evaluate the proposed free-form image inpainting

system on Places2 [53] and CelebA-HQ faces [18]. Our

model has totally 4.1M parameters, and is trained with Ten-

sorFlow v1.8, CUDNN v7.0, CUDA v9.0. For testing,

it runs at 0.21 seconds per image on single NVIDIA(R)

Tesla(R) V100 GPU and 1.9 seconds on Intel(R) Xeon(R)

CPU @ 2.00GHz for images of resolution 512 × 512 on

average, regardless of hole size.

4.1. Quantitative Results

As mentioned in [49], image inpainting lacks good quan-

titative evaluation metrics. Nevertheless, we report in Ta-

ble 2 our evaluation results in terms of mean ℓ1 error and

mean ℓ2 error on validation images of Places2, with both

center rectangle mask and free-form mask. As shown in the

table, learning-based methods perform better than Patch-

Match [3] in terms of mean ℓ1 and ℓ2 errors. Moreover, par-

tial convolution implemented within the same framework

obtains worse performance, which may due to un-learnable

rule-based gating.

Table 2: Results of mean ℓ1 error and mean ℓ2 error on val-

idation images of Places2 with both rectangle masks and

free-form masks. Both PartialConv* and ours are trained

on same random combination of rectangle and free-form

masks. No edge guidance is utilized in training/inference

to ensure fair comparison. * denotes our implementation

within the same framework due to unavailability of official

implementation and models.

rectangular mask free-form mask

Method ℓ1 err. ℓ2 err. ℓ1 err. ℓ2 err.

PatchMatch [3] 16.1% 3.9% 11.3% 2.4%

Global&Local [15] 9.3% 2.2% 21.6% 7.1%

ContextAttention [49] 8.6% 2.1% 17.2% 4.7%

PartialConv* [23] 9.8% 2.3% 10.4% 1.9%

Ours 8.6% 2.0% 9.1% 1.6%

4.2. Qualitative Comparisons

Next, we compare our model with previous state-of-the-

art methods [15, 23, 49]. Figure 4 and Figure 5 shows au-

tomatic and user-guided inpainting results with several rep-

resentative images. For automatic image inpainting, the re-

sult of PartialConv is obtained from its online demo2. For

user-guided image inpainting, we train PartialConv* with

the exact same setting of GatedConv, expect the convolu-

tion types (sketch regions are treated as valid pixels for rule-

based mask updating). For all learning-based methods, no

post-processing step is performed to ensure fairness.

2https://www.nvidia.com/research/inpainting
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Figure 4: Example cases of qualitative comparison on the Places2 and CelebA-HQ validation sets. More comparisons are

included in supplementary materials due to space limit. Best viewed (e.g., shadows in uniform region) with zoom-in.

Figure 5: Comparison of user-guided image inpainting.

As reported in [15], simple uniform region (last row

of Figure 4 and Figure 5) are hard cases for learning-

based image inpainting networks. Previous methods with

vanilla convolution have obvious visual artifacts and edge

responses in/surrounding holes. PartialConv produces bet-

ter results but still exhibits observable color discrepancy.

Our method based on gated convolution obtains more visu-

ally pleasing results without noticeable color inconsistency.

In Figure 5, given sparse sketch, our method produces real-

istic results with seamless boundary transitions.

4.3. Object Removal and Creative Editing

Moreover, we study two important real use cases of im-

age inpainting: object removal and creative editing.

Object Removal. In the first example, we try to re-

move the distracting person in Figure 6. We compare

our method with commercial product Photoshop (based on

PatchMatch [3]) and the previous state-of-the-art genera-

tive inpainting network (official released model trained on

Places2) [49]. The results show that Content-Aware Fill

function from Photoshop incorrectly copies half of face

from left. This example reflects the fact that traditional

methods without learning from large-scale data ignore the

semantics of an image, which leads to critical failures

in non-stationary/complicated scenes. For learning-based

methods with vanilla convolution [49], artifacts exist near

hole boundaries.

Creative Editing. Next we study the case where user in-

teracts with the inpainting system to produce more desired

results. The examples on both faces and natural scenes are

shown in Figure 7. Our inpainting results nicely follow the

user sketch, which is useful for creatively editing image lay-
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Figure 6: Object removal case study with comparison.

Figure 7: Examples of user-guided inpainting/editing of

faces and natural scenes.

outs, faces and many others.

4.4. User Study

We performed a user study by first collecting 30 test im-

ages (with holes but no sketches) from Places2 validation

dataset without knowing their inpainting results on each

model. We then computed results of the following four

methods for comparison: (1) ground truth, (2) our model,

(3) re-implemented PartialConv [23] within same frame-

work, and (4) official PartialConv [23]. We did two types

of user study. (A) We evaluate each method individually

to rate the naturalness/inpainting quality of results (from

1 to 10, the higher the better), and (B) we compare our

model and the official PartialConv model to evaluate which

method produces better results. 104 users finished the user

study with the results shown as follows.

(A) Naturalness: (1) 9.89, (2) 7.72, (3) 7.07, (4) 6.54

(B) Pairwise comparison of (2) our model vs. (4) official

PartialConv model: 79.4% vs. 20.6% (the higher the better).

4.5. Ablation Study of SN­PatchGAN

Figure 8: Ablation study of SN-PatchGAN. From left to

right, we show original image, masked input, results with

one global GAN and our results with SN-PatchGAN.

SN-PatchGAN is proposed for the reason that free-form

masks may appear anywhere in images with any shape. Pre-

viously introduced global and local GANs [15] designed

for a single rectangular mask are not applicable. We pro-

vide ablation experiments of SN-PatchGAN in the context

of image inpainting in Figure 8. SN-PatchGAN leads to sig-

nificantly better results, which verifies that (1) one vanilla

global discriminator has worse performance [15], and (2)

GAN with spectral normalization has better stability and

performance [24]. Although introducing more loss func-

tions may help in training free-form image inpainting net-

works [23], we demonstrate that a simple combination of

SN-PatchGAN loss and pixel-wise ℓ1 loss, with default loss

balancing hyper-parameter as 1:1, produces photo-realistic

inpainting results. More comparison examples are shown in

the supplementary materials.

5. Conclusions

We presented a novel free-form image inpainting system

based on an end-to-end generative network with gated con-

volution, trained with pixel-wise ℓ1 loss and SN-PatchGAN.

We demonstrated that gated convolutions significantly im-

prove inpainting results with free-form masks and user

guidance input. We showed user sketch as an exemplar

guidance to help users quickly remove distracting objects,

modify image layouts, clear watermarks, edit faces and

interactively create novel objects in photos. Quantitative

results, qualitative comparisons and user studies demon-

strated the superiority of our proposed free-form image in-

painting system.
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