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Abstract

Fashion recommendation is the task of suggesting a fash-
ion item that fits well with a given item. In this work, we
propose to automatically synthesis new items for recom-
mendation. We jointly consider the two key issues for the
task, i.e., compatibility and personalization. We propose
a personalized fashion design framework with the help of
generative adversarial training. A convolutional network is
first used to map the query image into a latent vector repre-
sentation. This latent representation, together with another
vector which characterizes user’s style preference, are taken
as the input to the generator network to generate the target
item image. Two discriminator networks are built to guide
the generation process. One is the classic real/fake discrim-
inator. The other is a matching network which simultane-
ously models the compatibility between fashion items and
learns users’ preference representations. The performance
of the proposed method is evaluated on thousands of outfits
composited by online users. The experiments show that the
items generated by our model are quite realistic. They have
better visual quality and higher matching degree than those
generated by alternative methods.

1. Introduction

With the rapid evolution of the fashion industry toward
an online business, fashion related computer vision prob-
lems have attracted increasing attention nowadays. One
task that is of particular interest is fashion recommenda-
tion [4,7,9,10,16,21,35-37], which suggests clothing items
that fit well with a given item. The key to fashion rec-
ommendation is to model the compatibility between fash-
ion items. Various methods such as distance metric learn-
ing [7,25,36], Siamese networks [37] and Recurrent Neural
Networks [4, 16] have been explored. Despite of their suc-
cess in predicting the compatibility, there are still problems
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Figure 1. Example outfits our model designs. In the upper case,
we design bottoms (items in red box) to go with the given tops,
and in the lower case, we design tops (items in red box) to go with
the given bottoms. All these designs are user specific.

when applying them in real world scenarios. Note that these
methods only measure the compatibility between existing
items. When the given inventory is small or limited, it is
possible that there is no item good enough to complement
the query. On the other hand, when the inventory is large,
generating the recommendation may face some efficiency
problem since one needs to compute the compatibility for
each item, which is computational expensive due to the us-
age of deep neural networks by most methods.

In this work, instead of suggesting existing items, we
synthesize images of new items that are compatible to a
given one. This solves the deficit problem for small inven-
tory. For large inventory, when targeting real items is neces-
sary, we can just search items that are similar with the syn-
thesized one. This is more efficient than exhaustive com-
patibility evaluation since similarity search can be very fast
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with techniques like hashing. The ability to generate new
items for outfit composition also facilitates fashion design
and manufacture. It helps producers to create and iterate
their designs more quickly.

Besides general compatibility, we also consider the per-
sonal issue when synthesizing the complement item. Per-
sonalization is an important trend in fashion industry. Given
the same query item, different persons may prefer different
items to complement it. While personalized recommenda-
tion has been prevalent in areas like movie and music rec-
ommendation, most recommendations for fashion are still
not user specific. Among the few works that explored per-
sonalization, Hu [10] showed that their personalized model
is more capable of picking out outfits that suit users’ taste
than unpersonalized methods. Kang [13] presented a model
to generate new item images of some category for a user.
Although their recommendation was personalized, since no
query item was provided in their setting, they did not con-
sider the compatibility between items. Our method synthe-
sizes new fashion items that go together with a given item
according to the style preference of a user.

In this paper, we build our personalized fashion designer
using the generative adversarial training framework. Gener-
ative Adversarial Networks (GANs) [3] have achieved great
success in synthesizing realistic images for different appli-
cations. Here we apply it for personalized fashion design.
We first use an encoder network to map the query image into
a latent vector representation. This latent representation, to-
gether with another vector which characterizes user’s style
preference, are taken as the input to the generator network,
which generates the target item image. Two discriminator
networks are build to guide the generation process. One
is the classic discriminator which learns to classify real and
fake images. The other is a matching network which models
the compatibility between fashion items. This network also
learns users’ preference representations, which contribute
to both compatibility measure and item generation.

We evaluate the performance of our method on thou-
sands of outfits created by online users. We show that
modeling users’ style preferences and using the compatibil-
ity discriminator are important for producing good designs.
The images generated by our model are realistic and full of
details. They have better visual quality and higher matching
degree than those generated by the baseline methods.

2. Related Work

Many studies have been conducted on fashion related
vision problems. Exemplary research includes clothing
parsing [17,40], clothing recognition [19, 38], fashion re-
trieval [18,42], fashion trend prediction [1, 6], etc.

Compatibility and recommendation Prior works ex-
plore various ways to model the compatibility between
fashion items [4, 9, 32, 36, 37]. Veit et al. [37] used a

Siamese CNN architecture to learn compatibility between
co-purchased items. Han et al. [4] trained a bidirectional
LSTM model to sequentially predict the next item condi-
tioned on previous ones. Vasileva et al. [36] proposed to
learn type-aware embedding for compatibility prediction.
All these prior works focused on modeling the compati-
bility between existing fashion items. Our method, on the
other hand, synthesizes garment photos that complement
the given items. We use compatibility to guide the gener-
ating process. The work most similar to us is [32], which
introduced a projected compatibility distance to measure
compatibility and a metric-regularized conditional GAN to
visualize the learned compatible prototypes. However, they
did not consider the personalization issue as our model.

Fashion synthesis Due to the high demand for real-
life applications, fashion synthesis has gained increasing
popularity recently. Given an image of a person and a
piece of texture description, Zhu et al. [43] proposed a
two-stage GAN approach for generating new clothing on
the person. Han et al. [5] presented an image-based vir-
tual try-on network to transfer a clothing item onto a per-
son. Yoo [41] generated product photos of clothings from
images of dressed persons. In [29], a SwapNet that inter-
changed garments between images of two people was pre-
sented. There were also many interests in synthesizing im-
ages of people in arbitrary poses while keeping their cloth-
ing unchanged [22, 28, 33]. In most of these synthesis, the
fashion items were kept the same. Only their appearances or
modalities were changed after the translation. In our case,
the output is different from the input even in categories.
They are linked through the underlying coordinating rela-
tionships.

Conditional GANs GANs have been vigorously studied
in the conditional setting, which learn a conditional gen-
erative model of data. Previous works have conditioned
GANSs on discrete labels [26], text [30], as well as im-
ages [2, 15,20, 24]. Isola et al. [11] proposed a generic
solution for different image-to-image translation problems.
Promising results were obtained for a variety of mappings
like labels to street scene, edges to photo, etc. Kim et
al. [14] designed a model to learn bidirectional mapping be-
tween two unpaired image domains. Note that the semantic
structure of the images were mostly kept the same during
the translations in these works. Our work differs in that the
semantic layouts of the images generated are different from
those of their corresponding inputs.

3. Our Approach

The task of personalized fashion design is to produce a
fashion item for a specific user given an input query item.
There are two general requirements for the design: (1) re-
alness requirement, which means that the designed item
should look realistic; (2) compatibility requirement, i.e. the
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Figure 2. Network architecture for personalized fashion design. It contains one generator and two discriminators. The generator uses an
encoder-decoder architecture. One of the discriminators is for real/fake supervision. And the other one is for compatibility prediction.

designed item should be compatible with the query item.

As shown in Figure 2, we use an encoder-decoder archi-
tecture to synthesize the complementary item. The encoder
F' progressively downsamples the query image until it is
compressed into a low dimensional latent space representa-
tion z4. The vector z, captures the semantic attributes, e.g.,
category, color, style, of the query item, and serves as the
basis for designing the target item. The encoder F' used in
this paper is similar to the VGG16 network [34] except for
the last three fully connected layers, which have 1024, 512
and 64 channels respectively.

To achieve personalized design, one method is to take
user’s identification information as a discrete label to the
generator, just as many work do for conditional GANs. The
discrete labels, however, are not capable enough to describe
users’ style preferences. We therefore use a vector 6,
which is learned from historical data, to represent user u.
The latent vector 2, and the user vector 8,, are concatenated
and then fed into the decoder G to generate the image of the
complementary item. The architecture of the decoder G is
illustrated in Figure 3. It is composed of several deconvolu-
tion layers, similar to the generator in [13].

To make sure that the designed item output by the de-
coder G meets the realness and compatibility requirements,
we train the decoder G using the generative adversarial
training framework with two discriminators, each of which
serve one requirement. We discuss them in detail in the fol-
lowing two subsections.

3.1. Real/fake Discriminator

The real/fake discriminator is utilized to train the de-
coder GG such that the designed item images look realistic.
To overcome the problems of traditional GANs, [12] pro-
posed to use a “relativistic discriminator” which estimates
the probability that the given real data is more realistic than
fake data. Following this work and combining the idea of
LSGANs [23], we use the following loss for the real/fake
discriminator:

o 1
ﬁg LSGAN :i]EmTNP [(D($T)

+ 1B, g [(D(@s) — Ea,pD(,) + 1)7]

2
M

—Eg gD (xf) — 1)7]
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Figure 3. Network structures of the decoder GG and the real/fake
discriminator D. We use LeakyReL U activation with slope 0.2 in
both networks for all hidden layers, and use Tanh in the decoder
G for the output layer.

The discriminator distinguishes real and fake data by keep-
ing a margin between them. The generator is trained to
eliminate this gap by minimizing the following loss:

1
CgaLSGAN :iEmf"’Q [(D((Bf) - EwTN]P’D(:ET))Q:I

+1Emr~p [(D(z)) — EqyngD(xs))?]

2
2)

3.2. Compatibility Discriminator

The compatibility discriminator is utilized to model
users’ style preferences and guide the training of the genera-
tor so that the item designed is compatible to the query. This
discriminator consists of two parts. The first is a Siamese
network [37] that takes a pair of fashion images, i.e., the
query image x, and the complementary item image x., as
input. Each image is passed through an encoder F' that
transfers it into a latent representation:

z; = F(z;),i € {q, c}. 3)

Note that this encoder shares parameters with the encoder
in the generator. In the second part, we link the two latent
representations to get a score that reflects how well the two
items are compatible. We first take element-wise product of
z4 and z, to get a latent space representation of the outfit:

Zo =24 O 2. @

To take personalization into consideration, for each user
u, we use a vector 6,, to characterize his/her fashion prefer-
ence. 0, is part of the network parameters and is learned
during training. 6, is combined with z, also through
element-wise product, which works better than vector con-
catenation in our initial experiments. The result is fed into
a metric network M, which consists of fully-connected lay-
ers, to get the final compatibility score, i.e.,

Su,o = M(6, © z,). (5)

To train the compatibility discriminator, we split our
dataset into positive set OF and negative set O~

OF = {o*lo* — (z7,z|u)}, (6)
O~ ={o7lo” = (z},z |[w)or (z,,z |u)}, (]

where o™ is an outfit that user u crafts online. We take it as
positive outfit for u; o~ is a negative outfit, which is formed
by a query item wj and a random item x_ from the com-
plementary category, or it is an outfit {x_, z_ } created by
users other than u. The negative outfit {x", z_ |u} reflects
the general ‘incompatibility’ between the query alr:q+ and the
random item x_, while the negative outfit {z, x [u} de-
picts the mismatch between the outfit {x_,x_ } and the
user u.

The designed item images can also compose a new
dataset O* with the input query images:

0" ={0"|o" = (z;, zz|u)}, ®)

where o* is the output outfit of our system, which contains
the query w;r and the designed item z.

The compatibility discriminator should be able to dis-
tinguish positive outfits from negative outfits, i.e., assign
higher compatibility scores to positive outfits:

Su,ot > Su,0— - (9)

To achieve this, the encoder F' and the metric network M
should seek to reduce the loss
Lryv = _Eo+~0+,[lng(5u,o+ — Su,o— )] + Xopn ||9FM||27
o ~O~

(10)
where o (-) is the sigmoid function, 6z includes the pa-
rameters in the encoder F' and the metric network M, and
Ao, 18 a regularization parameter. 6,, is also learned dur-
ing this process.

To make sure that the designed item fits well with the
query item and the outfit they make satisfy the user’s pref-
erence, we let 0™ get similar compatibility score as the pos-
itive outfits o™. This is achieved by optimizing the parame-
ters of the decoder G so that the following loss is minimized

1
LgM :5E0+~O+ [(Su,oJr - EO*NO* (SUvO* ))2]

1
—Eos o [(Sy.o
+2 o+ [(su,

1)

- Eo+~0+ (su,o+ ))2]
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3.3. Adversarial Training

The overall objective of our approach is to minimize the
following loss function

L= cFM + )\lﬁgM + )\Q,CgaLSGAN + )\3[’ga[/SG'AN7

(12)
where L) is related to the encoder F', the metric network
M and the user preference vectors 0,,. LEESGAN jg only
related to the real/fake discriminator D. Both ﬁgM and
[,g“LSGAN are related to the decoder G. A1, Ao, A3 are the
model tradeoff parameters. All these losses are complemen-
tary to each other, and ultimately enable our algorithm to
obtain pleasant results.

Given a batch of real images from the training set, we
first train the compatibility discriminator by reducing the
loss of Eq.(10). The real/fake discriminator is then trained
to reduce the loss of Eq.(1). After that, we keep the discrim-
inator parameters fixed, and optimize the parameters of the
decoder G by reducing the loss in Eq.(2) and Eq.(11). The
whole training procedure is summarized in Algorithm 1.

4. Experiments

In this section, we conduct experiments to evaluate the
proposed method. We compare it with several state-of-
the-art methods quantitatively and also through their visual
quality performance. We implement our method using Ten-
sorFlow and all experiments are run on a commodity work-
station with a single GTX-1080 graphics card.

Our dataset is crawled from the community-powered
fashion website Polyvore. In total, we collected 208,814
outfits crafted by 797 online users. For each user, 221
and 41 outfits are used for training and testing respectively.
Each outfit consists of two items, i.e., a top and a bottom.
We test on two tasks: given a top, designing a bottom item
to go with it; and given a bottom, designing a top item for
it. Some statistics of our dataset are given in Table 1.

Users Top Bottom  Outfits
Training 797 102,217 76,245 176,137
Testing 797 26,899 23,642 32,677

Table 1. Statistics of our dataset.

We use Adam optimizer and the learning rate is 0.0002.
The model tradeoff parameters are set to Ay = Ay = A3 =
1. We set the batch size to 64 and train the model for 25
epochs, 2750 iterations per step.

4.1. Baselines

To validate the effectiveness of our method, we compare
it with the following methods. The first two are general

Algorithm 1 Adversarial training algorithm for personal-
ized fashion design

Set: The number of iterations for the D network np = 2,
the batch size m = 64, \g,,, = 1075.
Initialize: Initialize the network parameters, i.e. 0 for F
and M, 0 for G, 6p for D, and the user preference vectors
0,.

1: while 65 has not converged do

2: Sample a batch of ot = {z ],z |u} from the posi-

tive set

3 Sample a batch of o* = {af, x%|u} from the de-
signed set

4 Sample a batch of o~ = {xF,z|u} or o= =

{zg,x |u} from the negative set
Update 0, with

Orn < Orn — MVopy Lrm
fort=1,...,npdo

Update 6 with

HD — GD _ /\QWVODEgaLSGAN

10:  end for
11:  Update 65 with
12: O0c « 0g — nng (AlﬁgM + )\3ﬁgaLSGAN)
13: end while

R A4

frameworks for image-to-image translation problems and
the last two are designed specific for fashion problems.

Pix2pix [11] A U-Net architecture is used for the generator
and a single discriminator is learned to classify real and fake
tuples ({query, complementary item}).

DiscoGAN [14] It is a state-of-the-art method for discover-
ing relations between two domains. It consists of two gen-
erators for bilateral cross-domain generation and two dis-
criminators with one for each domain respectively.

Pixel-level transfer [41] It uses two discriminators to guide
the domain transfer. The source and target images are con-
catenated along the channels when input to the domain-
discriminator.

MrCGAN [32] It first obtains a compatible prototype using
a pre-learned projection function, then the prototype is used
to generate images of compatible items.

4.2. Ablation Study

Compared with previous methods, the main differences
of our model are: (1) We learn users’ style preferences from
historical data and incorporate them into the image genera-
tion process; (2) we design a compatibility discriminator to
ensure that the generated item fit well with the query. There-
fore, we conduct the following ablation studies to evaluate
the effect of these important components of our model.

Discrete user label As many vanilla conditional GANs do,
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Methods IS 1 Opposite SSIM 1 FID |
Real 4.63724.05 0.5500+.15 0.0000
Pix2pix [11] 3.0793+.04 0.4077+£.12 43.5215
Baselines DiscoGAN [14] 4.3430+.05 0.5717+.14 51.8099
Pixel-level transfer [41] 3.8569+.03 0.5735+.16 57.0461
MrCGAN [32] 3.9078+.06 0.5576+.13 26.3591
Ours (discrete user label) 3.9137+.04 0.5207+.14 45.4453
Ablation Study Ours (remove 8,,) 4.23754+.05 0.5447+.14 31.3604
Ours (remove EgM) 4.31574.06 0.5499+.07 22.3429
Ours (full) 4.26264.05 0.5644+.13 18.1023

Table 2. Quantitative evaluation of the generated images by different methods. The values after 4 are the standard deviations.
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Figure 4. Survey results of the user study. The green bars indi-
cate votes got by our full model, and the orange bars are votes
of other methods. Panel (a, b, ¢, d) correspond to Pix2pix [11],
DiscoGAN [14], Pixel-level transfer [41] and MrCGAN [32] re-
spectively. Panel (e, f, g) are different versions of our model, i.e.
discrete user label, remove 0., and remove L5 .

instead of learning and using 8,,, we use a discrete label to
represent the users for the conditional generation.

User unaware design We only model the general compat-
ibility but unaware of the preferences of different users. In
this case, we omit 8,, in the network. The input of the de-
coder G is only the latent vector 2, and the compatibility
score s, = M (24 © 2¢).

Remove EgM The compatibility discriminator guarantees
that the items designed by the generator fit well with the
queries. To analyze the importance of this component, we
remove LEM while training the decoder G. Note that the
user preference vector 6, is kept and still fed into the de-
coder as a condition.

4.3. Quantitative Evaluation

The designed item images are evaluated from the per-
spective of realness, diversity and compatibility. To mea-
sure the realness, the Inception Score [31] based on a stan-
dard pre-trained inception network is utilized. The higher
the score the better the quality. For diversity, similar to [27],
we calculate the visual similarity of pairs of generated im-
ages, which is measured by the structural similarity (SSIM)
[39]. Following [13], we report the Opposite Mean SSIM,
which is one minus the mean SSIM, to show diversity. A
higher value means better diversity. Furthermore, we also
compute the Fréchet Inception Distance (FID) [8] between
the sets of generated images and the ground truth images.
The smaller the value, the closer the two image distributions
are.

For compatibility, we conduct user surveys to see
whether our model could produce images that are perceived
as compatible to the query item. 20 subjects are involved in
the study. Each is assigned 300 randomly selected queries
(150 tops and 150 bottoms). We make pairwise comparison
between our method and the baselines. For each query im-
age, two complementary item images, one generated by our
full model and the other by a randomly selected baseline
method, are given. The users are asked to select the item
that is more compatible with the query. The total number
of votes got by each method are computed. We also pro-
vide pairwise comparison between our full model and the
models for ablation study.

The evaluation results are shown in Table 2 and Figure 4.
We can see that the proposed method performs better than
most other methods in IS and Opposite SSIM. As for FID,
our method outperforms other methods with a large margin.
Although DiscoGAN performs a little better in IS and Op-
posite SSIM. Its FID value is much worse than ours. It is
also less preferable to our method in the user study. Ac-
cording to the ablation study, our full model performs much
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Figure 5. Qualitative comparison of different methods. Results of the top-to-bottom task are shown on the left and results of the bottom-
to-top task are shown on the right. For each task, the first row are the query images. From the 2nd to the 5th rows are the results of
pix2pix [11], DiscoGAN [14], pixel-level transfer [41] and MrCGAN [32] respectively. From the 6th to the 8th rows are results of our part
models. The last two rows are the items generated by our full model and the ground truth items selected by online users.

better than the alternative methods. Modeling users’ pref-
erence properly and using it to guide item design help the
generator better estimate the data distribution and improve
the results a lot. Using discrete labels as the user condition
is not capable enough to capture users’ style preferences and
it performs even worse than the unpersonalized model. By
using the compatibility discriminator, the matching degree
between the generated items and the queries is improved.
Therefore, both the personalized modeling and the compat-
ibility module are important for enhancing the performance.

4.4. Qualitative Evaluation

We also evaluate the visual quality of the designed items.
In Figure 5, we show some results of the two design tasks:
(a) top to bottom and (b) bottom to top. We can see that
compared with the baseline methods and our abbreviated
models, the items designed by our full model look more
realistic. They are good shaped and full of texture details.
They have fewer visual artifacts than the other methods and
are also more similar with the corresponding ground truth
items. The results demonstrate that our method is capable
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Figure 7. Designed items for different users given the same query.

of generating realistic and compatible items.

In Figure 6, we illustrate the 5 nearest neighbors of some
designed items in the real image dataset. From the figures,
we find that the designed items are very similar with the
real items, i.e., almost undistinguishable from the real ones.
For applications such as online shopping, where real items
are needed, we can use this design-and-retrieval method to
efficiently identify the targets.

Our framework can model users’ preferences on fash-
ion styles and make the designs personalized. Therefore for
the same query, the designs for different users are different.
This is validated in Figure 7. It shows that quite different
items are generated for different users. This is very desir-
able in practice.

4.5. Learning preferences for new users

When new users join after the model has been trained,
it would be un-affordable to retrain the whole model. With
our framework, we can keep all other parameters of the net-
work fixed and only learn 6,, for the newcomers. Note that
0., is only a 64 dimensional vector, which can be computed
efficiently with all other parameters fixed.

We have tested the performance with this setting. We
first use outfits from 700 users to train the whole network.
For the remaining 97 users, we learn their 6,, without updat-
ing other network parameters. We compare the images gen-

erated for these 97 users under this setting with our previous
setting where all 797 users were trained together. The quan-
titative comparison is showed in (Table 3). In general, we
find that the qualities of the images generated under these
two settings are similar.

‘ ISt Opposite SSIM 1+ FID | ‘
Original setting | 4.2899+.18 0.5922+.10 19.4098
New setting 4.1198+£.13 0.5672+.11 21.6177

Table 3. Evaluation of the images generated for the 97 new users.
5. Conclusion

In this paper, we have proposed a personalized fashion
design framework with the help of generative adversarial
training. Our framework can automatically model user’s
fashion taste and design a fashion item that is compatible to
a given query item. It is composed of an encoder that maps
the query image into a latent vector representation, a de-
coder that generates the target item image, and two discrim-
inators which guide the generation process. Experiments
on thousands of outfits crafted by online users show that the
proposed method outperforms alternative methods in terms
of capturing users’ personal tastes, modeling the compati-
bility between items, and the visual quality of the designed
items.
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