
Universally Slimmable Networks and Improved Training Techniques

Jiahui Yu Thomas Huang

University of Illinois at Urbana-Champaign

Abstract

Slimmable networks [25] are a family of neural networks

that can instantly adjust the runtime width. The width can

be chosen from a predefined widths set to adaptively op-

timize accuracy-efficiency trade-offs at runtime. In this

work, we propose a systematic approach to train univer-

sally slimmable networks (US-Nets), extending slimmable

networks to execute at arbitrary width, and generalizing to

networks both with and without batch normalization layers.

We further propose two improved training techniques for

US-Nets, named the sandwich rule and inplace distillation,

to enhance training process and boost testing accuracy. We

show improved performance of universally slimmable Mo-

bileNet v1 and MobileNet v2 on ImageNet classification

task, compared with individually trained ones and 4-switch

slimmable network baselines. We also evaluate the pro-

posed US-Nets and improved training techniques on tasks

of image super-resolution and deep reinforcement learn-

ing. Extensive ablation experiments on these representative

tasks demonstrate the effectiveness of our proposed meth-

ods. Our discovery opens up the possibility to directly eval-

uate FLOPs-Accuracy spectrum of network architectures.

Code and models are available at: https://github.

com/JiahuiYu/slimmable_networks.

1. Introduction

The ability to run neural network models within latency

budget is of paramount importance for applications on mo-

bile phones, augmented reality glasses, self-driving cars, se-

curity cameras and many others [22, 10, 15]. Among these

applications, many are required to deploy trained models

across different devices or hardware versions [25, 9, 13].

However, a single trained network cannot achieve opti-

mal accuracy-efficiency trade-offs across different devices

(e.g., face recognition model running on diverse mobile

phones). To address the problem, recently slimmable net-

works [25] were introduced that can switch among different

widths at runtime, permitting instant and adaptive accuracy-

efficiency trade-offs. The width can be chosen from a prede-

fined widths set, for example [0.25, 0.5, 0.75, 1.0]×, where

Width

0.25× 49.8 55.7 (5.9)

0.375× - 60.1

0.5× 63.3 64.2 (0.9)

0.625× - 67.5

0.75× 68.4 69.5 (1.1)

0.875× - 70.9

1.0× 70.9 71.8 (0.9)

Figure 1. FLOPs-Accuracy spectrum of single US-MobileNet v1

model, compared with four individual MobileNet v1 models.

[·]× denotes available widths, and 0.25× represents that

the width in all layers is scaled by 0.25 of the full model.

To train a slimmable network, switchable batch normal-

ization [25] is proposed that privatizes batch normaliza-

tion [11] layers for each sub-network. A slimmable network

has accuracy similar to that of individually trained ones with

the same width [25].

Driven by slimmable networks, a further question arises:

can a single neural network run at arbitrary width? The

question motivates us to rethink the basic form of feature

aggregation. In deep neural networks, the value of a sin-

gle output neuron is an aggregation of all input neurons

weighted by learnable coefficients y =
∑

n

i=1
wixi, where

x is input neuron, y is output neuron, w is learnable coeffi-

cient and n is number of input channels. This formulation

indicates that each input channel or group of channels can

be viewed as a residual component [6] to an output neu-

ron. Thus, a wider network should have no worse perfor-

mance than its slim one (the accuracy of slim one can al-

ways be achieved by learning new connections to zeros). In

other words, if we consider a single layer, the residual error

between full aggregation and partial aggregation decreases

and is bounded:

|yn − yk+1| ≤ |yn − yk| ≤ |yn − yk0 |, (1)

1803

where yk summarizes the first k channels yk =
∑

k

i=1
wixi,

∀k ∈ [k0, n), k0 is a constant hyper-parameter (for exam-

ple, k0 = ⌈0.25n⌉). The bounded inequality1 suggests that

a slimmable network [25] executable at a discrete widths

set can potentially run at any width in between (if properly

trained), since the residual error decreases by the increase of

width and is bounded. Moreover, the inequality conceptu-

ally applies to any deep neural network, regardless of what

normalization layers [11, 17] are used. However, as sug-

gested in [25], batch normalization (BN) [11] requires spe-

cial treatment because of the inconsistency between training

and testing.

In this work, we present universally slimmable networks

(US-Nets) that can run at any width in a wide range. Three

fundamental challenges of training US-Nets are addressed.

First, how to deal with neural networks with batch normal-

ization? Second, how to train US-Nets efficiently? Third,

compared with training individual networks, what else can

we explore in US-Nets to improve overall performance?

Batch normalization [11] has been one of the most im-

portant components in deep learning. During training, it

normalizes feature with mean and variance of current mini-

batch, while in inference, moving averaged statistics of

training are used instead. This inconsistency leads to fail-

ure of training slimmable networks, as shown in [25]. The

switchable batch normalization [25] (we address the ver-

sion of shared scale and bias by default, the version of pri-

vate scale and bias will be discussed in Section 6) is then

introduced. However, it is not practical for training US-

Nets for two reasons. First, accumulating independent BN

statistics of all sub-networks in a US-Net during training

is computationally intensive and inefficient. Second, if in

each iteration we only update some sampled sub-networks,

then these BN statistics are insufficiently accumulated thus

inaccurate, leading to much worse accuracy in our experi-

ments. To properly address the problem, we adapt the batch

normalization with a simple modification. The modifica-

tion is to calculate BN statistics of all widths after train-

ing. The weights of US-Nets are fixed after training, thus all

BN statistics can be computed in parallel on cluster servers.

More importantly, we find that a randomly sampled subset

of training images, as few as 1 mini-batch (1024 images),

already produces accurate estimation. Thus calculating BN

post-statistics can be very fast. We note that to be more

general, we intentionally avoid modifying the formulation

of BN or proposing new normalization.

Next we propose an improved training algorithm for US-

Nets motivated by the bounded inequality in Equation 1.

To train a US-Net, a natural solution is to accumulate or

average losses sampled from different widths. For exam-

1The analysis is based on a single hidden layer. Future research on

theoretical analysis of deep neural networks with nonlinear activation may

fully reveal why or why not universally slimmable networks exist.

ple, in each training iteration we randomly sample n widths

in the range of [0.25, 1.0]×. Taking a step further, we

should notice that in a US-Net, performances at all widths

are bounded by performance of the model at smallest width

(e.g., 0.25×) and largest width (e.g., 1.0×). In other words,

optimizing performance lower bound and upper bound can

implicitly optimize the model at all widths. Thus, instead

of sampling n widths randomly, in each training iteration

we train the model at smallest width, largest width and (n-

2) randomly sampled widths. We employ this rule (named

the sandwich rule) to train US-Nets and show better conver-

gence behavior and overall performance.

Further we propose inplace distillation that transfers

knowledge inside a single US-Net from full-network to sub-

networks inplace in each training iteration. The idea is mo-

tivated by two-step knowledge distilling [7] where a large

model is trained first, then its learned knowledge is trans-

ferred to a small model by training with predicted soft-

targets. In US-Nets, by the sandwich rule we train the

model at largest width, smallest width and other randomly

sampled widths all together in each iteration. Remarkably,

this training scheme naturally supports inplace knowledge

transferring: we can directly use the predicted label of the

model at the largest width as the training label for other

widths, while for the largest width we use ground truth. It

can be implemented inplace in training without additional

computation and memory cost. Importantly, the proposed

inplace distillation is general and we find it works well not

only for image classification, but also on tasks of image

super-resolution and deep reinforcement learning.

We apply the proposed methods to train universally

slimmable networks on representative tasks with represen-

tative networks (both with and without BN, and both resid-

ual and non-residual networks). We show that trained

US-Nets perform similarly or even better than individually

trained models. Extensive ablation studies on the sandwich

rule and inplace distillation demonstrate the effectiveness

of our proposed methods. Our contributions are summa-

rized as follows:

1. For the first time we are able to train a single neural

network executable at arbitrary width, using a simple

and general approach.

2. We further propose two improved training techniques

in the context of US-Nets to enhance training process

and boost testing accuracy.

3. We present experiments and ablation studies on image

classification, image super-resolution and deep rein-

forcement learning.

4. We further intensively study the US-Nets with regard

to (1) width lower bound k0, (2) width divisor d, (3)

number of sampled widths per training iteration n, and

(4) size of subset for BN post-statistics s.

1804

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤' 𝑤(𝑤)𝑤"

𝑦"

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤' 𝑤(𝑤)𝑤"

𝑦"

DogCat
0.5× 0.75×

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤' 𝑤(𝑤)𝑤"

𝑦"

1.0×

Residual Error Residual Error

Adjust Runtime

Width

Figure 2. Illustration of a network executing at different widths. We specifically consider an output neuron y1 in a layer (right, zoomed).

5. We further show that our method can also be applied

to train nonuniform US-Nets where each layer can ad-

just its own width ratio, instead of a global width ratio

uniformly applied on all layers.

6. Our discovery opens up the possibility to many related

fields, for examples, network comparison in terms of

FLOPs-Accuracy spectrum (Figure 1), and one-shot

architecture search for number of channels [24].

2. Related Work

Slimmable Networks. Yu et al. [25] present the ini-

tial approach to train a single neural network executable at

different widths, permitting instant and adaptive accuracy-

efficiency trade-offs at runtime. The width can be chosen

from a predefined widths set. The major obstacle of training

slimmable networks is addressed: accumulating different

numbers of channels results in different feature mean and

variance. This discrepancy across different sub-networks

leads to inaccurate statistics of shared Batch Normalization

layers [11]. Switchable batch normalization is proposed

that employs independent batch normalization for differ-

ent sub-networks in a slimmable network. On tasks of im-

age recognition (i.e., classification, detection and segmenta-

tion), slimmable networks achieve accuracy similar to that

of individually trained models [25].

Knowledge Distilling. The idea of knowledge distill-

ing [7] is to transfer the learned knowledge from a pre-

trained network to a new one by training it with predicted

features, soft-targets or both. It has many applications

in computer vision, network compression, reinforcement

learning and sequence learning problems [2, 4, 12, 14, 16].

FitNet [16] proposes to train a thinner network using both

outputs and intermediate representations learned by the

teacher network as hints. Net2Net [4] proposes to trans-

fer the knowledge from a pretrained network to new deeper

or wider one for accelerating training. Actor-Mimic [14]

trains a single policy network to behave in multiple tasks

with guidance of many teacher networks. Knowledge dis-

tillation is also effectively applied to word-level prediction

for neural machine translation [12].

3. Universally Slimmable Networks

3.1. Rethinking Feature Aggregation

Deep neural networks are composed of layers where

each layer is made of neurons. As the fundamental element

of deep learning, a neuron performs weighted sum of all in-

put neurons as its value, propagating layer by layer to make

final predictions. An example is shown in Figure 2. The

output neuron y is computed as:

y =

n
∑

i=1

wixi, (2)

where n is the number of input neurons (or channels in con-

volutional networks), x = {x1, x2, ..., xn} is input neurons,

w = {w1, w2, ..., wn} is learnable coefficient, y is a single

output neuron. This process is also known as feature ag-

gregation: each input neuron is responsible for detecting a

particular feature, and the output neuron aggregates all in-

put features with learnable transformations.

The number of channels in a network is usually a manu-

ally picked hyper-parameter (e.g., 128, 256, ..., 2048). It

plays a significant role in the accuracy and efficiency of

deep models: wider networks normally have better accuracy

with sacrifice of runtime efficiency. To provide the flexibil-

ity, many architecture engineering works [8, 18, 26] indi-

vidually train their proposed networks with different width

multipliers: a global hyper-parameter to slim a network uni-

formly at each layer.

We aim to train a single network that can directly run at

arbitrary width. It motivates us to rethink the basic form of

feature aggregation in deep neural networks. As shown in

Figure 2, feature aggregation can be explicitly interpreted in

the framework of channel-wise residual learning [6], where

each input channel or group of channels can be viewed as

a residual component [6] for the output neuron. Thus, a

wider network should have no worse performance than its

slim one (the accuracy of slim one can always be achieved

by learning new connections to zeros). In other words, the

residual error δ between fully aggregated feature yn and

partially aggregated feature yk decreases and is bounded:

0 ≤ δk+1 ≤ δk ≤ δk0
, δk = |yn − yk|, (3)

where yk summarizes the first k channels yk =
∑

k

i=1
wixi,

1805

∀k ∈ [k0, n), k0 is a constant hyper-parameter (for exam-

ple, k0 = ⌈0.25n⌉).

The bounded inequality in Equation 3 provides clues

about several speculations: (1) Slimmable network [25] ex-

ecutable at a discrete widths set can potentially run at any

width in between (if properly trained). In other words, a

single neural network may execute at any width in a wide

range for k from k0 to n, since the residual error of each

feature is bounded by δk0
, and decreases by increase of

width k. (2) Conceptually the bounded inequality applies

to any deep neural network, regardless of what normaliza-

tion layers (e.g., batch normalization [11] and weight nor-

malization [17]) are used. Thus, in the following sections

we mainly explore how to train a single neural network ex-

ecutable at arbitrary width. These networks are named as

universally slimmable networks, or simply US-Nets.

3.2. PostStatistics of Batch Normalization

However, as suggested in [25], batch normalization [11]

requires special treatment because of the inconsistency be-

tween training and testing. During training, features in each

layer are normalized with mean and variance of the current

mini-batch feature values xB :

x̂B = γ
xB − EB [xB]

√

V arB [xB] + ǫ
+ β, (4)

where ǫ is a small value (e.g. 10−5) to avoid zero-division,

γ and β are learnable scale and bias. The values of feature

mean and variance are then updated to global statistics as

moving averages:

µt = mµt−1 + (1−m)EB [xB],

σ2
t
= mσ2

t−1 + (1−m)V arB [xB],
(5)

where m is the momentum (e.g., 0.9), and t is the index of

training iteration. We denote µ = µT , σ
2 = σ2

T
, assum-

ing the network is trained for T iterations totally. During

inference, these global statistics are used instead:

x̂test = γ∗
xtest − µ√
σ2 + ǫ

+ β∗, (6)

where γ∗ and β∗ are the optimized scale and bias. Note

that after training, the Equation 6 can be reformulated as a

simple linear transformation:

x̂test = γ′xtest + β′, γ′ =
γ∗

√
σ2 + ǫ

, β′ = β∗ − γ′µ, (7)

and usually γ′ and β′ can be further fused into its previous

convolution layer.

In slimmable networks, accumulating different numbers

of channels results in different feature means and vari-

ances, which further leads to inaccurate statistics of shared

BN [25]. Yu et al. introduced switchable batch normal-

ization that privatizes γ, β, µ, σ2 of BN for each sub-

network. Although parameter γ, β can be merged after

training (Equation 7), slimmable networks with shared γ
and β have close performance [25].

Regarding universally slimmable networks, however,

switchable batch normalization [25] is not practical for two

reasons. First, accumulating independent BN statistics of

all sub-networks in a US-Net during training is computa-

tionally intensive and inefficient. For example, assuming an

n−channel layer can adjust its width from ⌈0.25n⌉ to n, to-

tally there are (n − ⌈0.25n⌉) sub-networks to evaluate and

⌈0.25n⌉+(⌈0.25n⌉+1)+ ...+n = O(n2) variables of BN

statistics to update in each training iteration. Second, if in

each iteration we only update some sampled sub-networks,

then these BN statistics are insufficiently accumulated thus

inaccurate, leading to much worse accuracy in our experi-

ments.

To this end, we adapt the batch normalization with a sim-

ple modification that can properly address the problem. The

modification is to calculate BN statistics of all widths after

training. Trainable parameters of US-Nets are fixed, thus all

BN statistics can be computed in parallel on cluster servers.

After training, we can calculate BN statistics over training

samples, either as moving averages in Equation 5 or exact

averages as follows:

m = (t− 1)/t,

µt = mµt−1 + (1−m)EB [xB],

σ2
t
= mσ2

t−1 + (1−m)V arB [xB].

(8)

Our experiments show that exact averages have slightly bet-

ter performance than moving averages.

In practice, we find it is not necessary to accumulate

BN statistics over all training samples: a randomly sampled

subset (e.g., 1k images) already produces accurate estima-

tions. With this option, calculating post-statistics of BN can

be extremely fast (by default we calculate over all training

samples). In experiments, we will compare the accuracy

for different sample sizes. Moreover, in research or de-

velopment, it is important to track the validation accuracy

of a model as it trains. Although it is not supported with

post-statistics of BN, we can use a simple engineering trick

in training US-Nets: always tracking BN statistics of the

model at largest and smallest width during training.

4. Improved Training Techniques

In this section, we describe our training algorithm for

US-Nets from bottom to top. We first introduce motivations

and details of the sandwich rule and inplace distillation, and

then present the overall algorithm for training universally

slimmable networks.

1806

4.1. The Sandwich Rule

To train a US-Net, a natural solution is to accumulate or

average losses sampled from different sub-networks. For

example, in each training iteration we randomly sample

n widths in the range of [0.25, 1.0]× and apply gradients

back-propagated from accumulated loss. Taking a step fur-

ther, the bounded inequality in Equation 3 tells that in a

US-Net, performances at all widths are bounded by per-

formance of the model at smallest width 0.25× and largest

width 1.0×. In other words, optimizing performance lower

bound and upper bound can implicitly optimize all sub-

networks in a US-Net. Thus, we propose the sandwich rule

that in each iteration we train the model at smallest width,

largest width and (n − 2) random widths, instead of n ran-

dom widths. We employ this rule and show better conver-

gence behavior and overall performance in experiments.

The sandwich rule brings two additional benefits. First,

as mentioned in Section 3.2, by training smallest width and

largest width, we can explicitly track the validation accu-

racy of a model as it trains, which also indicates the perfor-

mance lower bound and upper bound of a US-Net. Second,

training the largest width is also important and necessary

for our next training technique: inplace distillation.

4.2. Inplace Distillation

The essential idea behind inplace distillation is to trans-

fer knowledge inside a single US-Net from full-network to

sub-networks inplace in each training iteration. It is mo-

tivated by two-step knowledge distilling [7] where a large

model is trained first, then its learned knowledge is trans-

ferred to a small model by training with predicted class soft-

probabilities. In US-Nets, by the sandwich rule we train the

model at largest width, smallest width and other randomly

sampled widths all together in each iteration. Remarkably,

this training scheme naturally supports inplace knowledge

distillation: we can directly use the predicted label of the

model at the largest width as the training label for other

widths, while for the largest width we use ground truth.

The proposed inplace distillation is simple, efficient, and

general. In contrast to two-step knowledge distillation [7],

inplace distillation is single-shot: it can be implemented in-

place in training without additional computation or memory

cost. And it is generally applicable to all our tasks includ-

ing image classification, image super-resolution and deep

reinforcement learning. For image classification, we use

predicted soft-probabilities by largest width with cross en-

tropy as objective function. In image super-resolution, pre-

dicted high-resolution patches are used as labels with either

ℓ1 or ℓ2 as training objective. For deep reinforcement learn-

ing we take proximal policy optimization algorithm (Actor-

Critic) [19] as an example. To distill, we run the policy pre-

dicted by the model at largest width as roll-outs for training

other widths.

In practice, it is important to stop gradients of label ten-

sor predicted by the largest width, which means that the

loss of a sub-network will never back-propagate through

the computation graph of the full-network. Also, the pre-

dicted label is directly computed in training mode if it has

batch normalization. It works well and saves additional for-

ward cost of inference mode. We tried to combine both

ground truth label and predicted label as training label for

sub-networks, using either constant balance of two losses or

decaying balance, but the results are worse.

4.3. Training Universally Slimmable Networks

Equipped with the sandwich rule and inplace distillation,

the overall algorithm for training US-Nets is revealed in Al-

gorithm 1. For simplicity, calculating post-statistics of BN

using Equation 8 is not included. It is noteworthy that: (1)

The algorithm is general for different tasks and networks.

(2) The GPU memory cost is the same as training individ-

ual networks thus we can use the same batch size. (3) In

all our experiments, same hyper-parameters are applied. (4)

It is relatively simple to implement and we show PyTorch-

Style pseudo code as an example in Algorithm 1.

Algorithm 1 Training universally slimmable network M .

Require: Define width range, for example, [0.25, 1.0]×.

Require: Define n as number of sampled widths per train-

ing iteration, for example, n = 4.

1: Initialize training settings of shared network M .

2: for t = 1, ..., Titers do

3: Get next mini-batch of data x and label y.

4: Clear gradients, optimizer.zero grad().
5: Execute full-network, y′ = M(x).
6: Compute loss, loss = criterion(y′, y).
7: Accumulate gradients, loss.backward().
8: Stop gradients of y′ as label, y′ = y′.detach().
9: Randomly sample (n−2) widths, as width samples.

10: Add smallest width to width samples.

11: for width in width samples do

12: Execute sub-network at width, ŷ = M ′(x).
13: Compute loss, loss = criterion(ŷ, y′).
14: Accumulate gradients, loss.backward().
15: end for

16: Update weights, optimizer.step().
17: end for

5. Experiments

In this section, we first present experiments on tasks of

ImageNet classification, image super-resolution and deep

reinforcement learning. Next we provide extensive ablation

studies regarding the sandwich rule and inplace distillation.

We further study US-Nets with regard to size of samples for

1807

BN post-statistics s, width lower bound k0, width divisor

d and number of sampled widths per training iteration n.

In all tables and figures, we use I-Net to denote individu-

ally trained models at different widths, S-Net to denote 4-

switch slimmable networks [25] and US-Net to denote our

proposed universally slimmable networks.

5.1. Main Results

ImageNet Classification. We experiment with the Ima-

geNet [5] classification dataset with 1000 classes. Two rep-

resentative mobile network architectures, MobileNet v1 [8]

and MobileNet v2 [18], are evaluated. Note that MobileNet

v1 is a non-residual network, while MobileNet v2 is a resid-

ual network.

Table 1. Results (top-1 error) on ImageNet classification of I-

Net [8, 18], S-Net [25] and US-Net, given same width configu-

rations and FLOPs.

Network Width FLOPs I-Net S-Net US-Net

MobileNet v1

1.0× 569M 29.1 28.5 (0.6) 28.2 (0.9)

0.75× 317M 31.6 30.5 (1.1) 30.5 (1.1)

0.5× 150M 36.7 35.2 (1.5) 35.8 (0.9)

0.25× 41M 50.2 46.9 (3.3) 44.3 (5.9)

AVG 269M 36.9 35.3 (1.6) 34.7 (2.2)

MobileNet v2

1.0× 301M 28.2 29.5 (-1.3) 28.5 (-0.3)

0.75× 209M 30.2 31.1 (-0.9) 30.3 (-0.1)

0.5× 97M 34.6 35.6 (-1.0) 35.0 (-0.4)

0.35× 59M 39.7 40.3 (-0.6) 37.8 (1.9)

AVG 167M 33.2 34.1 (-0.9) 32.9 (0.3)

100 200 300 400 500
Millions of Multiply-Adds (MFLOPs)

50

55

60

65

70

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

US-MobileNet v1 (single model)
US-MobileNet v2 (single model)
4-siwtch S-MobileNet v1 (single model)
4-siwtch S-MobileNet v2 (single model)
MobileNet v1 (four individual models)
MobileNet v2 (four individual models)

Figure 3. FLOPs-Accuracy spectrum of US-MobileNet v1 and

US-MobileNet v2, compared with I-Net [8, 18] and S-Net [25].

We use default training and testing settings in [8, 18] ex-

cept: (1) We only train US-Nets for 250 epochs instead of

480 epochs for fast experimentation. (2) We use stochastic

gradient descent as the optimizer instead of the RMSProp.

(3) We decrease learning rate linearly from 0.5 to 0 with

batch size 1024 on 8 GPUs. We always report results with

the model of final training epoch. To be fair, we use n = 4
for training US-Nets following Algorithm 1.

We first show numerical results in Table 1. Com-

pared with individual models and 4-switch slimmable net-

works [25], US-Nets have better classification accuracy on

average. In Figure 3, we show FLOPs-Accuracy spectrum

of US-MobileNet v1 at widths of [.25 : .025 : 1.0]× and

US-MobileNet v2 at widths of [.35 : .025 : 1.0]×.

Image Super-Resolution. We experiment with DIV2K

dataset [21] which contains 800 training and 100 valida-

tion 2K-resolution images, on the task of bicubic ×2 im-

age super-resolution. The network WDSR [23] is evalu-

ated. Note that WDSR network has no batch normaliza-

tion layer [11], instead weight normalization [17] is used,

which requires no further modification in US-Nets. We first

individually train two models at width n = 32 and width

n = 64 with 8 residual blocks. We then train US-Nets that

can execute at any width in [32, 64], either with or without

proposed inplace distillation in Section 4.2.

The results are shown in Figure 4. US-WDSR have

slightly worse performance than individually trained mod-

els (but only 0.01 lower PSNR). The US-WDSR trained

without inplace distillation has slightly worse performance.

It is noteworthy that we use default hyper-parameters op-

timized for individual models, which may not be optimal

for our slimmable models (e.g., learning rate, initialization,

weight decay, etc).

Bicubic Upscaled

US-WDSR @ 1GFLOPs

US-WDSR @ 5GFLOPs

Figure 4. FLOPs-PSNR spectrum of US-WDSR and super-

resolved high-resolution images under different computations.

FLOPs are calculated using input size 48× 48.

Deep Reinforcement Learning. We experiment with

Atari game BreakoutNoFrameskip-v4 [3] using Actor-Critic

proximal policy optimization algorithm [19]. Following

baseline models [19], we stack three convolutions with base

channel number as 32, 64 , 32, kernel size as 8, 4, 3, stride

as 4, 2, 1, and a fully-connected layer with 512 output fea-

1808

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Individual Networks
I-Net 0.25 ×
I-Net 0.5 ×
I-Net 0.75 ×
I-Net 1.0 ×

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Universally Slimmable Networks
US-Net 0.25 ×
US-Net 0.5 ×
US-Net 0.75 ×
US-Net 1.0 ×

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Comparison at width 0.25 ×
I-Net 0.25 ×
US-Net 0.25 ×

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Comparison at width 0.5 ×
I-Net 0.5 ×
US-Net 0.5 ×

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Comparison at width 0.75 ×
I-Net 0.75 ×
US-Net 0.75 ×

0 2000 4000 6000 8000 10000
Number of Updates

0

50

100

150

200

250

300

350

M
ea

n
Ep

iso
de

 R
ew

ar
d

Comparison at width 1.0 ×
I-Net 1.0 ×
US-Net 1.0 ×

Figure 5. Mean Episode Reward with US-Net and I-Net based on actor-critic style PPO [19]. Curves are not smoothed.

Table 2. Results on ImageNet classification with different width

sampling rules during training. We denote min as smallest width,

max as largest width, random as randomly sampled widths.

Sampling Rule 0.25× 0.5× 0.75× 1.0× AVG

3 random 55.9 35.8 31.0 30.1 38.20

min+2 random 46.2 37.2 32.2 31.3 36.73

max+2 random 58.4 37.0 31.1 28.3 38.70

min+1 random+max 46.6 38.6 32.4 28.2 36.45

tures. The output is shared for both actor (with an additional

fully-connected layer to number of actions) and critic (with

an additional fully-connected layer to 1). Note that the net-

work has no batch normalization layer.

We first individually train the model at different widths

of [0.25, 0.5, 0.75, 1.0]×. Then a US-Net is trained with

inplace distillation following Section 4.2 and Algorithm 1.

The performances are shown in Figure 5. From left to right,

we show individually trained models, universally slimmable

models (four corresponding widths are shown for compari-

son), and performance comparison between I-Net and US-

Net at widths of [0.25, 0.5, 0.75, 1.0]×. The curves show

that the US-Net consistently outperforms four individually

trained networks in the task of deep reinforcement learning.

We note that we include the Atari game example mainly

to illustrate that our slimmable training is also applicable to

CNNs for RL. We believe it is important because in more

challenging RL solutions, for example AlphaGo [20] and

AlphaStar [1], the inference latency and adaptive computa-

tion ability will be critical.

5.2. Ablation Study

The Sandwich Rule. We study the effectiveness of the

sandwich rule by ablation experiments. We train four mod-

els of US-MobileNet v1 with n = 3 using different width

sampling rules: n randomly sampled widths, (n − 1) ran-

domly sampled widths plus the smallest width, (n− 1) ran-

domly sampled widths plus the largest width, and (n − 2)

randomly sampled widths plus both the smallest and largest

width. Results are shown in Table 2. The US-Net trained

with the sandwich rule has better performance on average,

with good accuracy at both smallest width and largest width.

Moreover, training the model at smallest width is more im-

portant than training the model at largest width as shown

in the 2nd row and 3rd row of Table 2, which suggests the

importance of width lower bound k0. Inplace distillation is

Table 3. Performance comparison (top-1 error) of different meth-

ods for calculating post-statistics of batch normalization. We

use either moving (Equation 5) or exact (Equation 8) averages.

Size of Samples Average 0.25× 0.5× 0.75× 1.0×

1.28M Moving 44.4 35.8 30.6 28.2

1.28M Exact 44.3 35.8 30.5 28.2

1k Exact 44.4 35.8 30.6 28.2

2k Exact 44.3 35.8 30.5 28.2

not used in all these experiments since it is not applicable to

width sampling rules excluding largest width.

Inplace Distillation. Next we study the effectiveness of

proposed inplace distillation mainly on ImageNet classifi-

cation. The results of image super-resolution (both with and

without inplace distillation) and deep reinforcement learn-

ing (with inplace distillation) are already shown in Figure 4

and Figure 5. We use the same settings to train two US-

MobileNet v1 models either with or without inplace distil-

lation, and show the comparison in Figure 6. Inplace distil-

lation significantly improves overall performance at no cost.

We suppose it could be an essential component for training

slimmable networks.

Width

0.25× 53.9 55.7 (1.8)

0.375× 56.9 60.1 (3.2)

0.5× 61.4 64.2 (2.8)

0.625× 65.1 67.5 (2.4)

0.75× 67.6 69.5 (1.9)

0.875× 69.9 70.9 (1.0)

1.0× 72.0 71.8 (-0.2)

Figure 6. FLOPs-Accuracy spectrum of two US-MobileNet v1

models trained either with or without inplace distillation.

Post-Statistics of Batch Normalization. We further

study post-statistics for batch normalization in US-Nets. We

update BN statistics after training US-MobileNet v1 when

all weights are fixed. We then compute BN statistics using

four methods: moving average over entire training set, ex-

act average over entire training set, exact average over ran-

domly sampled 1k training subset, and exact average over

1809

