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Abstract

In recent decades, 3D morphable model (3DMM) has

been commonly used in image-based photorealistic 3D face

reconstruction. However, face images are often corrupted

by serious occlusion by non-face objects including eye-

glasses, masks, and hands. Such objects block the correct

capture of landmarks and shading information. Therefore,

the reconstructed 3D face model is hardly reusable. In this

paper, a novel method is proposed to restore de-occluded

face images based on inverse use of 3DMM and generative

adversarial network. We utilize the 3DMM prior to the pro-

posed adversarial network and combine a global and local

adversarial convolutional neural network to learn face de-

occlusion model. The 3DMM serves not only as geometric

prior but also proposes the face region for the local discrim-

inator. Experiment results confirm the effectiveness and ro-

bustness of the proposed algorithm in removing challenging

types of occlusions with various head poses and illumina-

tion. Furthermore, the proposed method reconstructs the

correct 3D face model with de-occluded textures.

1. Introduction

3D face reconstruction from a single image is a key

technology in many computer vision and graphic applica-

tions, such as face recognition and face animation. Since

Blanz and Vetter [1] proposed the 3D morphable face

model (3DMM), the methodology based on 3DMM has

been most popular for coarse face geometric reconstruction.

Further development involves using the shape from shad-

ing (SfS) technique to enhance details (e.g. wrinkles) on

the face geometry [14, 22, 13]. These techniques assume

that the input image is free from occlusion, or at most, self-

occluded by head pose variation. However, in actual situ-

ations in the wild, we encounter new challenges in which

existing algorithms become inapplicable due to serious oc-

clusion by eyeglasses, masks, hands, and others.

To solve this problem in face recognition, a few meth-

ods propose solutions for automatic face de-occlusion to

(a) (b) (c) (d)

Figure 1: Face de-occlusion results by applying the pro-

posed method. (a)(b) Real images. (c)(d) Synthetic im-

ages. (Upper) Input images with occlusions. (Lower) De-

occlusion results.

improve recognition performance [4, 21, 27, 31, 18]. How-

ever, almost all existing methods work under highly con-

strained conditions, e.g. low-resolution grayscale images

with predefined head pose. Therefore, these methods can-

not perform photorealistic 3D face reconstruction in terms

of image resolution and image diversity.

The recent work by Tran [26] addresses the challenge of

detailed face reconstruction from occluded images. How-

ever, rather than performing de-occlusion, this method fo-

cuses on geometrical reconstruction by searching the refer-

ence dataset to reconstruct the bump map on the occluded

region. By contrast, our proposed method directly removes

the occlusion on the face image, thereby allowing texture

mapping on the reconstructed 3D model.

In this paper, we address the problem of face de-

occlusion from seriously occluded actual images while

focusing on the application of 3D face reconstruction.

The proposed method aims to directly remove occlusions,

thereby enabling it to synthesize the texture for the 3D face

model. An example of face de-occlusion is shown in Fig-

ure 1. Various occlusions and head poses are observed from

actual face images. Thus, automatically removing face oc-

clusions through a purely data-driven manner is a challeng-
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ing task.

To solve this problem, we propose a novel 3DMM-

conditioned deep convolutional neural network to learn to

automatically remove occlusions. To the best of our knowl-

edge, this is the first face de-occlusion network that attempts

to exploit the potential use of 3DMM for face de-occlusion.

Similar with the previous works [5, 17, 29], we employ the

recent generative adversarial network (GAN) [10] that has

been widely used to train an image synthesis model with

strong ability to generate natural and high-quality images.

In the proposed approach, global and local discriminators

are combined with the generative model to achieve high-

quality image synthesis. During training, 3DMM not only

serves as prior but also proposes face region for the local

discriminator. To diversify the training images with various

occlusions, we synthesize a large-scale dataset from 300W-

3D and AFLW2000-3D [32]. The key contributions of this

paper can be summarized as follows:

• We propose a novel deep face de-occlusion framework,

which applies the inverse use of 3DMM and GAN and

consists of a generator and two discriminators.

• The proposed face de-occlusion model can handle face

images under challenging conditions, e.g., serious oc-

clusions with nontrivial head poses and illumination

variations.

• We build a large-scale synthesized face-with-occlusion

dataset. All occlusions are semantically placed on the

face with reference to face landmarks.

• The proposed face de-occlusion method not only

boosts the performance of 3D face reconstruction but

also allows face attribute editing by modifying the

3DMM coefficients.

2. Related Works

Image Completion Image completion or image inpaint-

ing aims to recover masked or missing regions on images

with visually plausible contents. Recently, the generative

model has been widely used in image completion with rea-

sonably acceptable results [11, 5, 17, 25, 30]. These meth-

ods train an auto-encoder to predict the missing region by

using a combination of reconstruction loss and adversarial

loss. Despite the ability of the image completion technique

to recover high-quality visual patterns in face de-occlusion

tasks, the occluded region needs to be masked manually or

with an additional object detection algorithm to segment the

occluder. By contrast, the proposed model does not need

any preprocessing on the occluded region and can automat-

ically remove the occlusion.

Face De-occlusion and Frontalization Conventional

face de-occlusion algorithms are developed to increase the

performance of face recognition algorithms. Wright et

al. [27] proposed to apply sparse representation to encode

faces and demonstrated the robustness of the extracted fea-

tures to occlusion. Cheng et al. [4] introduced the double-

channel SSDA (DC-SSDA) to detect noise by exploiting

the difference between activations of two channels. Re-

cently, a deep learning-based approach has been proposed

by Zhao [31] to restore the partially occluded face in sev-

eral successive processes using an LSTM auto-encoder.

However, these methods can only remove occlusions

under constrained conditions. Images in low-resolution

grayscale and all faces in the dataset have to be cropped

and aligned first. Therefore, these methods cannot conduct

practical applications beyond face recognition. By contrast,

the proposed method is targeted to perform actual face re-

construction and texture synthesis. Thus, we generalize the

input to RGB images with enlarged resolution (256×256)

and with various head poses.

Besides, Yin et al. proposed a deep 3DMM-conditioned

face frontalization method called FF–GAN [29], which in-

corporates 3DMM coefficients into the GAN structure to

provide poses prior to the face frontalization task. This

method utilizes 3DMM coefficients as a weak prior to re-

duce the artifacts during frontalization in extreme profile

views.

3D Face Reconstruction from Occluded Image Bern-

hard et al. [6] proposed an occlusion-aware face modeling

method in which they incorporated 3DMM as appearance

prior in a RANSAC-like algorithm. In this method, the

input image is segmented into face and non-face regions

and the illumination is estimated using the face region only.

However, this method is not robust if the occlusions, e.g.,

hands, have a similar color appearance to the face. A recent

face alignment technique shows the robustness in occluded

face images [2, 28]. Thus, this technique can be used to fit

3DMM and produce a 3D face model with a few details.

Although their goal is to robustly find the head pose, de-

occlusion in not within the scope of their work. Tran et

al. [26] is the first to address the problem of detailed face

reconstruction from occluded images by filling in the cor-

rupted region of the bump map using a similar patch in a ref-

erence dataset. Although this method can generate a com-

plete representation of face details, the de-occluded face im-

age is not reconstructed [26].

Face Synthesis with GAN GAN [10] utilizes min–max

optimization over the generator and discriminator and

shows significant improvement in face synthesis applica-

tions, such as face attribute editing [24], and face com-

pletion [5, 17]. Gecer et al. exploited to synthesize fa-

cial images [8] and facial textures [9] conditioned on latent

3DMM parameters. However, no previous study has been

conducted on using GAN for de-occlusion on challenging

faces.
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Figure 2: Proposed network structure. It consists of a generator with two discriminators. The generator takes a synthesis

image and an occluded image as input. Two discriminators help to generate a more natural result. Only the generator is

necessary during testing.

3. Overview and Background

3.1. Overview of the Proposed Method

In this paper, we address the face de-occlusion problem

by incorporating 3DMM and GAN in the same framework.

Motivated by [29], we propose to use 3DMM as our ge-

ometric regularization in our face de-occlusion model. In

our work, 3DMM is a strong prior without which the algo-

rithm would fail completely. That is, 3DMM is used to pro-

vide constraints on the appearance of the occluded region in

which the generator output is used explicitly to synthesize

the de-occluded image.

We first fit the 3DMM to an occluded image and syn-

thesize a 2D face image. Then, we take the synthesis and

occluded face as the inputs of the generator to synthesize

occlusion-free images. At the same time, a global discrim-

inator and a local discriminator attempt to distinguish the

image as a real image or a generated one. The 3DMM

serves not only as the geometric prior but also provides the

face region for the local discriminator. With the guidance

of 3DMM, the generator can efficiently remove occlusions

even on challenging faces. Figure 2 illustrates our proposed

framework consisting of a 3DMM-conditioned generator

and two discriminators.

3.2. 3D Morphable Model

3DMM is the most commonly used statistical method

for the representation and synthesis of face geometry and

texture. In our work, we use a multilinear 3DMM with

53K vertices and 106K triangles to represent the 3D face

shape [33]. Each face geometry can be parameterized as

follows:

M(α, β) = S̄id +α · Sid + β · Sexp, (1)

3DMM assumes that each face shares a similar structure

that distributes around the average identity S̄id ∈ R3n.

Sid ∈ R3n×80, Sexp ∈ R3n×29 are principal components

representing the basis of identity and expression. α ∈ R80

and β ∈ R29 are the use-specific coefficients estimated

from the given image. In our implementation, the identity

component comes from the Basel Face Model (BFW) [1],

whereas the expression comes from the FaceWarehouse

database [3].

Synthesis is dependent on the 3DMM coefficients α,β,

the rigid translation R, t, and the camera projection matrix

Π. To reconstruct a 3D face model, we align correspond-

ing 2D face landmarks with 3D landmarks on the bilinear

face model using the pose normalization method [15]. All

3DMM parameters, defined as Θ, are then jointly estimated

by using the following formula:

argmin
Θ

= ‖Π(RV + t)−U‖2 + ρ1‖
α

ξid
‖2 + ρ2‖

β

ξexp
‖2,

(2)

where U represents 2D face landmarks, and V represents

corresponding vertices on the face model determined by

3DMM coefficients α, β. ρ1 and ρ2 are positive weights

of the regularization term to enforce the parameters to stay

statistically close to the mean. ξid and ξexp are the stan-

dard deviations of shape and expression basis, respectively.

We employ an occlusion-robust face alignment method [2]

to infer 68 face landmarks. All parameters are jointly solved

via the Levenberg–Marquart algorithm [20].

Based on the fitting result, the synthesis is generated as

shown in Figure 3. The correspondence between pixels and

triangles is computed by using Z buffering. Finally, the

3DMM is occlusion-free and can synthesize the appearance

and pose of a face.

4. Face De-occlusion using GAN

The main framework of our model is a GAN that consists

of a generator G, a global discriminator Dg , and a local
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Figure 3: Occluded face image (left) and the 3DMM syn-

thesis (right).

discriminator Dl. The generator takes the occluded image

and 3DMM synthesis as input to generate the occlusion-free

image. Moreover, two discriminators Dg and Dl attempt to

determine whether the generator output is a real face image

or not. 3DMM not only serves as the prior but also provides

a mask indicating the face region for the local discriminator.

Additionally, a smoothness term is used to regularize G to

generate an image with fewer artifacts.

4.1. Generator Module

The generator G works as an auto encoder–decoder to

remove face occlusion and construct the corrupted region.

The occluded image I , concatenated with the synthesis Is,

is first mapped into the hidden feature through the encoder,

which captures not only the variation of the known region

but also the coarse geometric information of the occluded

region. Then, the feature vector is fed into a decoder to

generate an occlusion-free image.

Our encoder and decoder use modules of the form Con-

volution–BatchNorm –Relu and have the same architecture

except for the input layer. We follow the encoder–decoder

network designed in [12], where a skip layer is used to pre-

serve the low-level feature from the corresponding symmet-

rical layer. The skip collection allows combining the coarse

geometry information from the downsampling path with the

high-frequency features in the upsampling path to finally

generate an occlusion-free image with good visual quality.

Even though 3DMM can synthesize the appearance and

pose of a face, the generated image looks unrealistic and

tends to lose all face details. To force the generator to out-

put photo-realistic images, we adopt a pixel-wise L1 recon-

struction loss to penalize the output from the ground truth

by using the following equation:

Lgen = |G(I, Is)− Ig|1, (3)

where Ig is the ground truth, I is the occluded image, and

Is is the synthesis of 3DMM. As actual face images have

various head poses, we avoid using symmetry loss as in the

work of Yin [29].

Despite the ability of the generator to reconstruct the oc-

cluded region with semantical contents, inconsistency oc-

curs especially when the occlusion has a complex pattern.

Thus, we use a total variation regularization to reduce the

artifacts on the reconstructed region. We perform a L2 min-

imization to the gradient of the generated image. The reg-

ularization is performed separately for each coordinate and

then combined. The total variation regularization is com-

monly used in image noise removal using the following

equation:

Ltv = |∇xG(I, Is)|2 + |∇yG(I, Is)|2 (4)

However, this term tends to smoothen high-frequency de-

tails. Thus, we multiply a small weight to Ltv to avoid

oversmoothening.

Our generator can remove the occlusion and generate

photo-realistic contents. However, recovering the expres-

sion in the occluded region is an ill-posed problem. Expres-

sion coefficients estimated from the occluded region can

be arbitrary. Our generator relies on 3DMM for geomet-

ric information. Thus, we can edit face attributes by sim-

ply adjusting the 3DMM coefficients. Therefore, face de-

occlusion and face attributes are integrated into one frame-

work. The generator output of the occlusion-free image is

consistent with the synthesis of 3DMM in geometry and

demonstrates the solid effect of the 3DMM in regularizing

the generation process.

4.2. Discriminator Module

Reconstruction loss tends to average all the details,

thereby making the synthesized contents look blurry. More-

over, the generator only optimizes on the occluded region

and cannot learn the relationship between pixels, which re-

sults in the generated contents being discontinuous with sur-

roundings.

Recently, GAN consisting of generator and discrimi-

nator has been widely used for image synthesis. In this

work, the generator synthesizes an occlusion-free face im-

age, whereas the discriminator determines whether the gen-

erated face is real or not. The min-max optimization over

generator and discriminator forces the model to synthesize

images with better visual quality.

Our discriminator includes a local discriminator Dl and

a global discriminator Dg . The latter is used to determine

the faithfulness of the entire image to enforce the generated

region to become consistent with the surroundings. Con-

sidering our goal to reconstruct face geometry and texture

synthesis on the image, we only rely on the face region.

Thus, we enforce the optimization of the local discriminator

in the face region. The mask M used for the local discrim-

inator is a projected silhouette from the 3DMM indicating

the face region. Compared with the global discriminator,
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the local module enhances details in the face region with

well-defined boundaries and less noise.

By combining the local module with the global module,

we not only guarantee the statistical consistency of the gen-

erated face region with its surroundings but also encourage

the recovered face region to become highly informative. To

train these two discriminators, the following objectives are

minimized:

LDg
=− EIg

∈R logDg(I
g)

− EIs
∈K log(1−Dg(G(I, Is))),

(5)

LDl
=− EIg

∈R logDl(M⊙ (Ig))

− EIs
∈K log(1−Dl(M⊙G(I, Is))),

(6)

where the ⊙ denotes the element-wise multiplication and

R and K are real and generated image sets, respectively.

Our two discriminators have similar network structures that

consist of seven convolution layers. After the last layer, a

convolution is mapped to one-dimensional output, followed

by a sigmoid function. The outputs of the discriminators de-

termine whether the probability of the input is real or gen-

erated.

In addition, G attempts to fool the two discriminators in

identifying the generated image as real by minimizing the

following loss:

Ladvl
=− EIs

∈K log(Dl(M⊙G(I, Is)))

Ladvg =− EIs
∈K log(Dg(G(I, Is)))

(7)

4.3. Objective Function

To summarize, the final loss for our proposed 3DMM-

conditioned GAN is represented as a weighted sum of the

aforementioned losses:

L =λ1Lgen + λ2Ltv + λ3Ladvg+

λ4Ladvl
+ λ5LDl

+ λ6LDg

(8)

Weights λ1, λ2, λ3, λ4, λ5, and λ6 are used to balance dif-

ferent terms.

5. Experimental Result

5.1. Dataset

Occluded images, 3DMM synthesis, and correspond-

ing occlusion-free images are needed to train our face de-

occlusion model. Owing to the difficulty in collecting

sufficient occluded face images with their corresponding

occlusion-free images, we train our model on our synthe-

sized dataset. The datasets used for training and testing are

introduced in the following.

300W-3D This dataset consists of 7,700 300-W [23] sam-

ples with the fitted 3DMM parameters and 68 face land-

marks for each sample. All images in 300-W are real pho-

tos and cover variations in pose, illumination, background,

and image quality.

Figure 4: Samples of our synthesized dataset for training.

Occlusions are located semantically based on the face land-

marks.

AFLW2000-3D This dataset consists of the first 2,000

images in AFLW [16]. Similar to 300W-3D, 3DMM pa-

rameters and 68 landmarks are provided for each image.

CelebA [19] This dataset consists of 202,599 celebrity

images with each image cropped and roughly aligned by

the positions of the two eyes. We select occluded faces in

this dataset for testing.

We synthesize occlusions caused by six common objects

on occlusion-free faces in 300W-3D and AFLW2000-3D.

These objects include masks, eyeglasses, sunglasses, cups,

scarves, and hands. We layer these occlusions on the spe-

cific location of the face with reference to the face land-

marks. Figure 4 shows examples of the occluded faces gen-

erated using this approach. All occlusions are semantically

located on the face to augment the reality of our dataset.

Then, we generate the synthesized image of 3DMM for ev-

ery training sample by using 3DMM coefficients and cam-

era pose provided by 300W-3D and AFLW2000-3D. We

synthesize a dataset with a total of 134,233 occluded im-

ages. All faces in the dataset are resized 256×256 and with

head poses varying from 60◦ to 60◦. We select 132,233

images for training and 2,000 images for testing. Random

cropping and horizontal flipping are used in data augmenta-

tion to avoid overfitting. Besides using the synthesized im-

ages, we test our model on real images, which consist of the

occluded images from the aforementioned three datasets.

5.2. Implementation Details

We train our network with batch size 5 and utilize Adam

optimizer. Instead of jointly training all modules, we grad-

ually add them. In the first stage, we train the generator and

global discriminator with a learning rate of 0.0002 for 100

epochs. In the second stage, we add the local discriminator

and remove the total variation regularization to finetune the

network with a learning rate of 0.00005, and train another

10 epochs. During training, we set the value of λ1, λ2, λ3,

λ4, λ5, λ6 as 10, 10−5, 1, 1, 1, and 1, respectively. In the

testing stage, only the generation module is required. The
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(a)

(b)

(c)

Figure 5: Face de-occlusion results on the synthetic dataset. (a) Image with occlusion. (b) De-occlusion result. (c) Original

image (ground truth).

(a)

(b)

Figure 6: Face de-occlusion results on the real dataset. (a) Image with occlusion. (b) De-occlusion result.

entire training procedure takes approximately 4d on a single

GeForce GTX 1080Ti GPU. In the testing stage, a 256×256
color image can be processed in under a second.

5.3. Face De­occlusion

Qualitative Result Figure 5 and Figure 6 show the face

de-occlusion results on the synthetic and real images, re-

spectively. Note that the identities in the test dataset are

separated from the training dataset. As shown in Figure 5(b)

and Figure 6(a), test images have various types of occlusion

at arbitrary locations. The results show that the proposed

method successfully removes the occlusion and generates

a photorealistic de-occluded image for both synthetic and

real data even when a significant portion of the face re-

gion is occluded. As shown in the last two examples in

Figure 6, the proposed method model removes not only oc-

clusions similar to that in our training dataset but also those

that do not exist in our dataset (no occlusion with micro-

phones in the training dataset). The result confirms that the

proposed 3DMM-conditioned face de-occlusion model can

Type of occlusion PSNR SSIM

Lower face 27.3228 0.9615

Upper face 34.0024 0.9860

Left/right half of face 28.7785 0.9659

Three quarters of face 22.1680 0.8967

Table 1: Quantitative evaluation for different types of oc-

clusion.

remove different types of occlusions with challenging con-

ditions including various head poses and illumination.

Failure occurs when more than one type of occlusion ex-

ists on the face and when the occlusion is located out of the

synthesis range of the 3DMM parametric space, e.g., hands

above the forehead.

Quantitative Result To quantitatively measure the de-

occlusion performance, two popular metrics, i.e., PSNR and

SSIM, are evaluated on the de-occlusion result of the syn-
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(a) (b) (c) (d)

Figure 7: Comparison result with the state-of-the-art face

inpainting algorithm [30]. (a) Input image with occlusion.

(b) Masking the occluded region. (c) De-occlusion result

with the inpainting algorithm. (d) De-occlusion result with

the proposed algorithm.

thetic dataset and listed in Table 1. The performance of our

model slightly drops when more than half of the face is oc-

cluded, which is expected as a large occlusion size indicates

uncertainty in pixel values. The model also shows better de-

occlusion performance on the upper face than the lower face

because occlusions on the lower face region have complex

patterns, such as different scarves and cups.

Comparison The goal of the proposed face de-occlusion

model is to remove occlusions on face images and recover

the missing region. As the goal of the previous meth-

ods [27, 4, 31] is completely different (face recognition with

a low-resolution grayscale image), we do not compare our

results with theirs. Instead, we compare our approach with

the recent state-of-art face inpainting method [30] because

the recent face inpainting method shows potential applica-

tion in removing occlusions and reconstructing de-occluded

face regions. As the method proposed by Yu [30] is only

trained on the CelebA dataset, we conduct the experiment

on occluded images from that dataset to be fair. First, the

occluded region is masked with the provided pattern and the

inpainting algorithm is applied to reconstruct the masked

region. As shown in Figure 7, the inpainting algorithm

does not work effectively on face images. Face inpaint-

ing is usually utilized on a well-aligned dataset, thereby

failing to generate the semantic contents on difficult cases,

such as posed face and complex backgrounds. On the con-

trary, the proposed method can automatically remove oc-

clusions without any preprocessing on the occluded region

(a) (b) (c) (d) (e) (f)

Figure 8: Comparison result under different setting. (a)

Occluded face image. (b) Without 3DMM synthesis. (c)

With generator only. (d) With global discriminator. (e) With

global and local discriminators. (f) Ground truth.

while showing significantly better results.

Ablation Study To validate the effects of the 3DMM syn-

thesis, we train the other variants with similar hyperparame-

ters but different settings and compare the performance. We

remove 3DMM, global discriminator, and local discrimina-

tor in turn. Without 3DMM, the network generates noisy

outputs or fails to generate informative results. The re-

sult is sensible because generator with only pixel-wise re-

construction loss is too weak to learn the representation of

the face geometry from a challenging face dataset. Note

that, in face de-occlusion, we have to find and restore the

occluded region while handling the pose variation simul-

taneously which is a serious ill-posed problem. By using

3DMM as a prior, the ill-posedness can be alleviated and

de-occlusion on images with various head poses can be per-

formed properly. Without discriminators, the model can

generate images with semantical contents but artifacts re-

main on the recovered region. With only the global discrim-

inator, the result looks sharp and coherent, but lacks details

in the eyes. With the combined global and local discrimi-

nators, the face de-occlusion results look visually realistic.

The visual comparison results are summarized in Figure 8.

5.4. 3D Face Reconstruction

As our motivation is face de-occlusion for 3D face re-

construction, we conduct the experiments to investigate the

effect of our face de-occlusion model on 3D face recon-

struction. In our experiment, coarse 3D face model and de-

tailed face geometry are reconstructed with the de-occluded

face image. For this purpose, conventional landmark-

based 3DMM fitting is conducted first and the shape-from-

shading (SfS) method is employed to enhance details on the

coarse face model [14, 22, 13]. Based on the assumption

that Lambertian reflection on the face exists, the intensity
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(a) (b) (c) (d) (e)

Figure 9: Comparison results of detailed face reconstruction

from occluded image and de-occluded image. (a) Occluded

face image. (b) Face reconstruction result with (a). (c) De-

occluded image. (d) Face reconstruction result with (c). (e)

3D face model with de-occluded texture mapping.

formation of the face image can be represented as follows:

I(x, y) = ρ(x, y)~l Y (~n(x, y)), (9)

where Y (~n(x, y)) is the second-order spherical harmon-

ics [7], ~l represents lighting coefficients, ρ(x, y), and

~n(x, y) are the albedo and normal vector at pixel(x, y),
respectively. Following the work of Kemelmacher [14],

we estimate lighting ~l, albedo ρ(x, y), and normal vector

~n(x, y) in turn. Then, the estimated normal vector ~n(x, y)
is integrated to recover the detailed face geometry.

Figure 9 shows the comparison results of detailed 3D

face reconstruction using face images with occlusion and

de-occlusion. The results demonstrate that occlusion causes

significant noise on the face geometry. Note that the geom-

etry is not completely corrupted because the shape is still

controlled by 3DMM. On the contrary, by removing occlu-

sions using the proposed method, both face geometry and

textured 3D face model are reconstructed correctly.

5.5. Face Attributes Manipulation

The proposed face de-occlusion can be applied to future

studies, such as face editing and face recognition, to im-

(a) (b) (c) (d) (e)

Figure 10: Results of face attribute editing. (a) Occluded

face image. (b)(d) 3DMM synthesis with different expres-

sion coefficients. (c) Generated face guided by (b). (e) Gen-

erated face guided by (d).

prove performance. In this further experiment, we show the

application of the proposed model in face attribute editing.

As the proposed generative model recovers the occluded

face guided by the 3DMM synthesis, it allows face attribute

editing by simply adjusting the 3DMM coefficients to any

desired one. Therefore, the proposed model holds poten-

tial application in face editing to generate a novel portrait,

as shown in Figure 10. Given the same occluded image,

we can modify the attribute of the generated face by chang-

ing 3DMM expression coefficients as shown in Figure 10(b)

and (d).

6. Conclusion

In this paper, we proposed a 3DMM-conditioned GAN

framework to remove face occlusion and restore the oc-

cluded region. To the best of our knowledge, this study is

the first to explore the use of 3DMM in face de-occlusion on

challenging dataset. Experimental results show that our face

de-occlusion model can remove face occlusion on synthetic

and real images. The proposed method not only removes the

occlusion but also reconstructs the correct 3D face model

without occluded texture. Furthermore, our method allows

face attribute editing by simply modifying the 3DMM coef-

ficients.
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