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Abstract

In this paper, we propose the differentiable mask-

matching network (DMM-Net) for solving the video object

segmentation problem where the initial object masks are

provided. Relying on the Mask R-CNN backbone, we ex-

tract mask proposals per frame and formulate the matching

between object templates and proposals at one time step

as a linear assignment problem where the cost matrix is

predicted by a CNN. We propose a differentiable match-

ing layer by unrolling a projected gradient descent algo-

rithm in which the projection exploits the Dykstra’s algo-

rithm. We prove that under mild conditions, the matching

is guaranteed to converge to the optimum. In practice, it

performs similarly to the Hungarian algorithm during in-

ference. Meanwhile, we can back-propagate through it to

learn the cost matrix. After matching, a refinement head

is leveraged to improve the quality of the matched mask.

Our DMM-Net achieves competitive results on the largest

video object segmentation dataset YouTube-VOS. On DAVIS

2017, DMM-Net achieves the best performance without on-

line learning on the first frames. Without any fine-tuning,

DMM-Net performs comparably to state-of-the-art methods

on SegTrack v2 dataset. At last, our matching layer is very

simple to implement; we attach the PyTorch code (< 50
lines) in the supplementary material. Our code is released

at https://github.com/ZENGXH/DMM_Net.

1. Introduction

Video object and instance segmentation problems have

received significant attention [1, 35, 25] attributed to the

recent availability of high-quality datasets, e.g., YouTube-

VOS [45], DAVIS [29, 30]. Given an input video, the aim is

to separate the objects or instances from the background at

the pixel-level. This is a fundamental computer vision task

∗Equal contribution.

(a) RGMP [43] (b) CINM [2]

(c) PReMVOS [24] (d) Ours

Figure 1. Visual comparison with some competitive methods on

the last frame of the soapbox sequence of DAVIS 2017 dataset.

Even though video segmentation quality generally degrades as

time goes on, our model still provides better details.

due to its wide range of applications including autonomous

driving, video surveillance, and video editing.

Two main setups of this problem are unsupervised and

semi-supervised which differ from each other in whether the

ground-truth annotated masks of the object instances in the

first frame of the video are provided [29, 30] during infer-

ence. In this paper, we focus on the semi-supervised setting,

i.e., the instance masks are provided for the first frames of

the test videos. However, even with some annotated infor-

mation at test time, this task is still very challenging. For

example, the algorithm needs to deal with not only the dra-

matic appearance changes, occlusion and deformation but

also potentially with large camera and object motion. Fur-

thermore, the expectation from a good video instance seg-

mentation model is to produce temporally cohesive and sta-

ble predictions, which presents an additional challenge.

Existing algorithms typically leverage pretrained deep

neural networks to predict object instance masks. Some

of them, e.g., [25], directly predict the masks in a frame-

independent way and achieve surprisingly good perfor-
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mance which verifies the great transfer ability of deep neu-

ral networks. Many algorithms leverage the previously pre-

dicted masks in various ways thus enabling the mask prop-

agation over time. This strategy is demonstrated to im-

prove temporal coherence and segmentation quality. More-

over, template matching between the reference and current

frames is often exploited at pixel or mask level to deal

with the object disappearance-reappearance phenomenon,

occlusion, and fast motion. However, to the best of our

knowledge, none of the existing work integrates the optimal

matching algorithm into their framework, which may partly

be due to the non-differentiable nature of the problem.

In this paper, we propose the differentiable mask-

matching network (DMM-Net). We first extract mask pro-

posals via a pretrained Mask R-CNN [13] in a frame-

independent manner. For each time step, we then match

proposals with the templates in the reference frame such

that at most one mask proposal is assigned to one template

instance. The matching cost between a pair of the template

and proposal masks is determined based on the intersection-

over-union (IoU) of masks and the cosine similarity be-

tween their feature maps predicted by a deep convolutional

neural network (CNN). The key contribution of our paper

is that we introduce a differentiable matching layer which

solves the linear assignment problem.

Specifically, we unroll the projected gradient descent al-

gorithm in which the challenging projection step is achieved

by an efficient cyclic projection method known as Dykstra’s

algorithm. The proposed double-loop matching algorithm

is very simple to implement, guaranteed to converge, and

achieves similar performance to the optimal matching ob-

tained by the Hungarian algorithm [19, 26]. More impor-

tantly, it is fully differentiable which enables learning of

the matching cost, thus having a better chance of handling

large deformation and appearance changes. After matching,

we adopt a refine head to refine the matched mask. Note

that our main contribution is somewhat orthogonal to many

existing work in a way that our differentiable matching

can be integrated with other networks to potentially boost

their performance. On DAVIS 2017 [30], SegTrack v2 [20]

and YouTube-VOS [45] datasets, our model achieves either

state-of-the-art or comparable performance.

2. Related Work

The problem of video object/instance segmentation has

been extensively studied in the past [35, 1, 29, 30]. Many

algorithms in this field rely on techniques like template

matching which are popular in the object tracking and im-

age matching literature [47, 23, 3, 31]. However, video ob-

ject/instance segmentation is more challenging than track-

ing as it requires pixel-level object/instance mask as output

rather than the bounding box. Meanwhile, it is also very

different from matching in that it requires semantic under-

standing of the image rather than the similarities of low-

level cues like color, motion and so on. Related literature

can be classified based on the problem setup, i.e., unsuper-

vised vs. semi-supervised. Methods under the unsupervised

category [5, 12, 42, 34] typically exploit the dense optical

flow and appearance feature to group the pixels within the

spatio-temporal neighborhood. In this paper, we focus on

the semi-supervised setting. Based on whether an explicit

matching between template and proposal mask is performed

and at which level the matching is performed, we can fur-

ther divide the related work into three sub-categories.

Pixel-level Matching Pixel-level matching network

(PLM) [33] first exploits a Siamese type of CNN to extract

features of the current frame and the masked reference

frame. Based on the features, it computes the pixel-level

similarity scores and the instance masks. VideoMatch [15]

applies a CNN to extract features from the reference and the

current frames, respectively. The feature of the reference

frame is further split into the foreground and background

ones which are used to compute the similarity with the

feature of the current frame via a specially designed soft-

matching module. The similarity-weighted combination

of feature is used to predict the final mask. A fully con-

volutional Siamese network based approach (SiamMask)

is proposed in [40]. It computes the depth-wise cross

correlation between features of templates in the reference

and the current frames. It also consists of mask, box, and

score prediction heads similar to Mask R-CNN. Although

these methods do not solve the exact matching problem,

the pixel-level similarity scores output by a learnable CNN

are still helpful for the task of mask prediction. However,

since cross-correlation between different pixels from the

template and the current frame is required, they tend to be

intensive on computation and memory.

Mask-level Matching Instead of operating on the pixel-

level, some methods including our DMM-Net resort to the

mask-level matching. Based on pre-computed feature maps,

DyeNet [21] iteratively uses the re-identification and the re-

current mask propagation modules to retrieve disappearing-

reappearing objects and handle temporal variations of pose

and scale separately. Authors in [9] propose to track the

object parts in the video and also compute the similarity

scores between the proposal and template parts in the ref-

erence frame in order to deal with the missing of tracking

and background noises. In these work, matching is compu-

tationally light due to the number of masks/parts is signif-

icantly smaller than the number of pixels. However, they

all exploit the greedy solution for matching, i.e., for each

template, it returns the maximum-scored assignment if the

score is above some threshold otherwise returns no assign-

ment. In contrast, we solve the matching problem via an
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iterative solver which is better than the greedy solution in

most cases as verified by the experiments.

No Explicit Matching Some of the recent works di-

rectly exploit deep neural networks to predict the masks.

In [6, 25], a pretrained CNN is first fine-tuned to predict

both the segmentation mask and contour per frame and then

a boundary snapping step is applied to combine both re-

sults. Authors in [39] later extended this work by introduc-

ing an online adaptation step to bootstrap the foreground ob-

ject segmentation. Video propagation network (VPN) [16]

proposes a bilateral network along with a CNN to propagate

the previously predicted masks and images. MaskRNN [14]

exploits the optical flow, images and mask proposals in a

recurrent fashion to predict the masks per frame. Mask-

Track [28] uses a CNN which takes the last predicted in-

stance mask and the current frame as input and outputs

the refined mask. Spatial propagation network (SPN) [8]

performs foreground segmentation and instance recognition

simultaneously and then refines the instance masks using

a spatial propagation module. Pixel-wise metric learning

(PML) [7] formulates the video object segmentation as a

pixel-wise retrieval problem where the embedding space is

predicted by a CNN and then learned via triplet-constrained

metric learning. Based on optical flow and a spatial CNN,

a pixel-level spatio-temporal Markov random field (MRF)

is built in [2] where approximate inference is achieved by

a CNN. Authors in [46] propose two sub-networks to com-

pute the visual feature of the templates and spatial attention

map from the last frame respectively to guide the mask pre-

diction. Relying on a U-Net, authors in [43] combine the

concatenation of the current frame with last predicted mask

and the concatenation of the reference frame with the tem-

plate mask to predict the current mask. These works are or-

thogonal to ours in the sense that we can use some of their

networks as our feature extractor, while our matching layer

could also potentially improve their models.

3. Model

In this section, we introduce our approach which con-

sists of two key components: differentiable mask matching

and mask refinement. Our model assumes we have access

to mask proposals in each frame. We first explain how we

obtain the mask proposals. Then we describe our differen-

tiable mask matching approach and discuss the mask refine-

ment. Overview of our approach is illustrated in Fig. 2.

We assume a video has T frames. The mask templates in

the first frame are denoted as R = {ri|i = 1, . . . , n} where

n is the total number of instances throughout the video.

Mask Proposal Generation We first extract mask pro-

posals independently per frame with a COCO-pretrained

Algorithm 1 : Projected Gradient Descent for Matching

1: Input: Ngrad, Nproj, X, α, C
2: Initialization: X0 = X
3: For i = 1, 2, . . . , Ngrad:

4: Xi = Xi−1 − αC
5: Y0 = Xi, q1 = 0, q2 = 0, q3 = 0
6: For j = 1, 2, . . . , Nproj:

7: Y1 = P1(Y0 + q1), q1 = Y0 + q1 − Y1

8: Y2 = P2(Y1 + q2), q2 = Y1 + q2 − Y2

9: Y3 = P3(Y2 + q3), q3 = Y2 + q3 − Y3

10:

11: Xi = Y3

12: Return X̂ = 1

Ngrad

∑Ngrad

i=1
Xi

Mask R-CNN [13] (details in Sec. 4.1). We only keep the

top-50 proposals based on their scores, ensuring that recall

is sufficiently high. This step is performed off-line, i.e., our

method will run on top of these fixed proposals. We denote

mask proposals in frame t as P t = {ptj |j = 1, . . . ,mt}
where mt is the total number of proposals at time t.

Differentiable Mask Matching The main motivation for

performing object-level matching is to deal with the cases

where large deformation, motion and dramatic appearance

change are present. As aforementioned, proposal based

matching is typically superior to optical flow based meth-

ods when motion is large. Moreover, we design a learnable

matching cost which could potentially handle the dramatic

appearance change and deformation.

In particular, at time step t, we use a CNN, denoted as fθ,

to extract features for the mask proposals P t and the tem-

plates R in the first frame. Here θ denotes the learnable pa-

rameters. The details of the feature extractor is explained in

Sec. 4.1. For the i-th mask template ri (ground-truth mask

in first frame) and the j-th mask proposal ptj , we compute

their features as fθ(ri) and fθ(p
t
j), respectively. The match-

ing cost matrix Ct consists of the cosine similarity between

features and IoU between masks as below,

Ct
i,j = (λ− 1) cos

(

fθ(p
t
j), fθ(ri)

)

− λIoU(ptj , ri), (1)

where λ is a hyperparameter and 0 < λ < 1. The overall

cost matrix Ct is of size n×mt where each row and column

correspond to a template and a mask proposal, respectively.

From here on out, we drop the superscript t for simplicity.

We now introduce how we solve the bipartite matching

problem. In particular, we first formulate the minimum-cost

bipartite matching as the following integer linear program-
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Figure 2. The overall architecture of our model. The yellow box in the bottom indicates the process of bipartite matching and the corre-

sponding output masks as described in the Eq. (8).

ming (ILP) problem,

min
X

Tr
(

CX⊤
)

s.t. X1m = 1n

X⊤
1n ≤ 1m

X ≥ 0

Xi,j ∈ {0, 1} ∀(i, j) (2)

where X ∈ R
n×m is the boolean assignment matrix. 1n

and 1m are all one vectors with size n and m, respec-

tively. Here we slightly abuse the notation such that sub-

script i, j denotes the (i, j)-th entry of the matrix. We add

the constraint X ≥ 0 which will be helpful in understand-

ing the relaxed version introduced later. Note that the prob-

lem formulated in Eq. (2) and the standard linear assign-

ment problem (LAP) are slightly different in that we replace

X⊤
1 = 1 with X⊤

1 ≤ 1. This is due to the fact that the

number of proposals m is much larger than the number of

templates n in our case, i.e., X is a wide matrix.

To solve this ILP problem, one can introduce dummy

variables to make X a squared matrix and then use the Hun-

garian method to optimize the standard LAP. However, this

naive extension increases the time complexity to O(m3)
and is not easy to back-propagate through. Also, we may

not necessarily require the exact matching, i.e., real-valued

approximated assignment matrix X may be sufficient for

the later stage. Therefore, we resort to the following linear

programming (LP) relaxation,

min
X

Tr
(

CX⊤
)

s.t. X1m = 1n

X⊤
1n ≤ 1m

X ≥ 0. (3)

Although there are many standard solvers for LP, e.g., the

simplex method and the interior point methods, we here

introduce a differentiable and easy-to-implement projected

gradient descent algorithm. The algorithm is presented in

Alg. 1 where Ngrad, Nproj are the number of gradient decent

(outer-loop) steps and the number of projection (inner-loop)

steps, respectively.

At each iteration, we update X following the negative

gradient direction. The major challenge lies in projecting

the updated X onto the constraint set. It is not an easy task

since the constraint set in Eq. (3) is the intersection between

three closed convex sets.

To compute the projection, we adopt a cyclic constraint

projection method, known as Dykstra’s algorithm [11, 4]

which is proved to be convergent for projection onto the

non-empty intersection of finite closed convex sets. The

key idea is to break the whole constraint set into multiple

simple subsets such that we can easily find the projection

operator. In particular, we can split the constraint set C into

individual constraints, i.e., C = C1
⋂

C2
⋂

C3 where

C1 = {X|X1m = 1n}

C2 = {X|X⊤
1n ≤ 1m}

C3 = {X|X ≥ 0}. (4)

It is straightforward to derive the projection operators w.r.t.

each constraint as follows,

P1(X) = X −
1

m
(X1m − 1n)1

⊤
m (5)

P2(X) =

{

X if X⊤
1n ≤ 1m

X − 1

n1n(1
⊤
nX − 1

⊤
m) otherwise

(6)
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P3(X) = X+ (7)

Note that P3 is just the ReLU operator. All these projection

operators are differentiable and simple. Dykstra’s algorithm

works by iteratively projecting the corrected point onto in-

dividual constraint set in a cyclic order and then updating

the correction by the difference between pre-projection and

post-projection. The final solution is obtained by averaging

the intermediate projected assignment matrices.

The convergence results of the Dykstra’s algorithm are

established in [11, 4, 10]. Relying on the convergence anal-

ysis under the framework of inexact projection primal first-

order methods for convex optimization in [27], we derive

the following convergence result of our projected gradient

descent algorithm for matching.

Theorem 1. Let r0 = ‖X0 −X∗‖F where X0 and X∗ are

the initial and optimal assignment matrices, respectively.

Let the learning rate 0 < α < min(15r0, r0/‖C‖F ). There

exists some constants 0 ≤ c < 1 and ρ > 0 such that at any

iteration of outer loop i in Alg. 1, the error of projection

‖Xi − PC(X
i)‖F ≤ δ = ρcNproj where Xi and PC(X

i)
are the assignment matrix and its correct projection onto C,

respectively. Moreover, for any 0 < ǫ < 1, there exists a

Nproj ≥ log1/c

(

ρ
√

15K
αǫ

)

such that,

δ ≤
αǫ

15r0

and after at most K iterations where

K =

⌈

6r20
αǫ

⌉

,

the output of Alg. 1 X̂ is ǫ-optimal, i.e., ‖X̂−PC(X̂)‖F ≤ ǫ

and |Tr
(

CX̂⊤
)

− Tr
(

CX∗⊤
)

| ≤ ǫ.

We leave the proof to the supplementary material. In

practice, the convergence is typically observed with moder-

ately large Nproj and reasonable learning rate. The imple-

mentation of the overall algorithm is very simple. Please

see an example implementation using PyTorch (less than

50 lines) and empirical convergence analysis with different

hyperparameters in the supplementary material.

Mask Refinement After matching, for each template, we

need to output one mask which is fed to the refinement

stage. Recall that we obtain the optimal assignment X̂ (ap-

proximately optimal if the previous algorithm does not run

till convergence), we can compute a weighted combination

of the proposal masks P . Specifically, we first resize mask

proposals such that they have the same resolution as the in-

put image. We then paste them into void images to get the

full masks which have the same size as the input images,

denoted as P̃ . We obtain the matched mask P̂ as:

P̂ = X̂ ⊗ P̃ (8)

where X̂ ∈ R
n×m, P̃ ∈ R

m×H×W , P̂ ∈ R
n×H×W , and ⊗

indicates the tensor contraction operator along the last and

the first dimensions of X̂ and P̃ , respectively. Here H and

W denote the height and width of the input image. Each

spatial slice of P̂ denotes the matched mask corresponding

to a particular template. This process is shown in the yellow

box of Fig. 2. The matched mask for the template will be

used to compute the IoU score, shown in Eq. (1), at the next

time step. Therefore, we propagate the latest mask informa-

tion over time.

Given the output mask from matching, we then refine it

using the template of the same instance. In particular, we

construct the input by stacking multi-scale image features

from the backbone, the matched mask and template mask.

The multi-scale features are extracted from the last layer of

the conv 2-5 blocks in the feature extractor backbone, re-

spectively. Inspired by RVOS, we adopt a decoder contain-

ing four ConvLSTM [32] layers as the refinement module to

predict the masks of all objects at each time step and carry

over the memory and hidden states to the next time step.

4. Experiments

In this section, we compare our DMM-Net with a wide

range of recent competitors on YouTube-VOS, DAVIS 2017

and SegTrack v2 datasets. YouTube-VOS has 3, 471 and

474 videos for training and validation, respectively. Among

the 91 object categories in the validation set, 65 are seen in

the training set while the other 26 are unseen. DAVIS 2017

has 60 and 30 video sequences for training and validation

respectively and the average video length is around 70. The

average number of instances per sequence are 2.30 and 1.97
for training and validation, respectively. For the SegTrack

v2 dataset, there are 14 low resolution videos (947 frames

in total) with 24 generic foreground objects. All of our ex-

periments are conducted on NVIDIA Titan XP GPUs.

4.1. Implementation Details

We first introduce implementation details of our model.

Mask Proposal Generation In the stage of mask pro-

posal generation, we use Mask R-CNN with ResNeXt-

101-FPN as the backbone which is pretrained on COCO

dataset [22]. Score threshold of the ROI head is set to 0. We

resize the input image such that its short-side is no larger

than 800. We first train the class-agnostic binary mask

proposal network on COCO. Following the strategy used
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OL JS JU FS FU GM FPS

OSMN [46] ✘ 60.0 40.6 60.1 44.0 51.2 8.0

SiamMask [41] ✘ 60.2 45.1 58.2 47.7 52.8 55

RGMP [43] ✘ 59.5 - 45.2 - 53.8 7

OnAVOS [39] ✔ 60.1 46.6 62.7 51.4 55.2 -

RVOS [37] ✘ 63.6 45.5 67.2 51.0 56.8 24

S2S [44] ✘ 66.7 48.2 65.5 50.3 57.7 6

OSVOS [6] ✔ 59.8 54.2 60.5 60.7 58.8 -

S2S [44] ✔ 71.0 55.5 70.0 61.2 64.4 -

DMM-Net ✔ 59.2 47.6 62.6 53.9 55.8 -

DMM-Net+ ✘ 58.3 41.6 60.7 46.3 51.7 12

DMM-Net+ ✔ 60.3 50.6 63.5 57.4 58.0 -

Table 1. Results on YouTube-VOS (validation set) and frame-per-

second (FPS) during inference for methods withour online learn-

ing. ‘S’ and ‘U ’ denote the seen and unseen categories. ‘OL’:

online learning. ‘+’ means we use ResNet-101 as feature extractor

instead of ResNet-50

Methods JM FM GM

MaskRNN [14] 45.5 - -

OSMN [46] 52.5 57.1 54.8

FAVOS [9] 54.6 61.8 58.2

VideoMatch [15] 56.5 - -

MSK [28] 63.3 67.2 65.3

RGMP [43] 64.8 68.6 66.7

FEELVOS [38]∗ 65.9 72.3 69.1

DyeNet [21] 67.3 71.0 69.1

DMM-Net 68.1 73.3 70.7

Table 2. Results without online learning on the validation set of

DAVIS 2017 dataset. FEELVOS∗ also reports another better per-

formed model which is trained on YouTube-VOS [45]. ‘-’ means

no public results available.

in [41], we then finetune the proposal network on the combi-

nation of COCO and YouTube-VOS with learning rate 0.02,

batch size 8 and number of training iteration 200, 000.

Differentiable Mask Matching For the feature extrac-

tor fθ, we use a COCO-pretrained Mask R-CNN with a

ResNet-50-FPN backbone. We also try a ResNet-101 back-

bone of which the weights are initialized from the released

model of RVOS [37]. We denote this model as DMM-Net+.

Note that it is possible to share the backbone between the

proposal network and the feature extractor of matching such

that the overall model is more compact. However, sharing

backbone leads to worse results in our experiments which

may suggest that generating good proposals and learning

good feature for matching require different representations.

After we obtain the proposals for each frame, we perform

ROI pooling for each proposal to extract multi-scale fea-

ture from the backbone and then average the feature spa-

tially to obtain a single feature vector. Similar to the feature

fed to the refinement layer, we obtain the proposals feature

from the last layer of conv2-5 block in the backbone. In-

Methods
Online

mIoU∗ mIoU†

Learning

OSVOS [6] ✔ 61.9 65.4

OFL [36] ✔ 67.5 -

MSK [28] ✔ 67.4 70.3

RGMP [43] - 71.1

MaskRNN [14] 72.1 -

LucidTracker [17] ✔ - 77.6

DyeNet [21] - 78.3

DyeNet [21] ✔ - 78.7

DMM-Net 76.8 76.7

Table 3. Results on the SegTrack v2 dataset. mIoU∗ is averaged

over all frames whereas mIoU† is averaged over all instances.

put image of the feature extractor is resized such that the

short-side is no larger than 480 and 800 for DAVIS 2017

and SegTrack v2, respectively. For YouTube-VOS, we re-

size image to 255 × 448 in order to have a fair comparison

with S2S [44] and RVOS [37]. The score weight λ used to

compute the matching cost in Eq. (1) is set to 0.3 for DAVIS

2017 and YouTube-VOS, and 0.9 for SegTrack v2. For the

mask matching, we set Ngrad = 40, Nproj = 5 and learn-

ing rate α = 0.1. Ablation study on the hyperparameters of

the matching is left in the supplementary material. After the

matching assignment matrix X̂ is obtained, we also found it

helpful to remove the non-confident matching by applying

a differentiable masking X̂ = X̂ · 1[X̂ = max(X̂)].

Refinement Network A light version of refinement net-

work containing only four ConvLSTM layers is used for

experiments on YouTube-VOS to reduce the computational

cost. The weights are randomly initialized and trained with

the matching layer in an end-to-end manner. Input images

are resized to be 255× 448 for both training and inference.

The refinement network outputs our final predicted masks.

A heavier version of refinement network is used for

model trained on DAVIS 2017. We follow the U-Net style

architecture as RGMP [43] and initialize the weights from

their released model. The refinement network is also trained

together with the matching layer.

Fine-tune Since our DMM-Net is end-to-end differen-

tiable, we fine-tune it on the training sets of YouTube-VOS

and DAVIS 2017. We use the Adam [18] optimizer with the

learning rate 1.0e−4 for the weights initialized from pre-

trained model and 1.0e−3 for the weights from random ini-

tialization. We set batch-size to 24 and train on YouTube-

VOS dataset for 10 epochs in total. Data augmentation such

as random affine transformation is applied during training.

On DAVIS 2017, we use the same optimizer with learning

rate 1.0e−7 and batch size 1. We fine-tune the model for 8
epochs in total.
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Online Learning For online learning, we train both the

proposal generator and the DMM-Net with the refinement

module on the first frame of the validation set. We use the

same learning rate and batch size as Section 4.1 except that

the number of epochs is 100 for online learning.

Evaluation For YouTube-VOS and DAVIS 2017, we fol-

low [30] and use the region (J ), boundary (F) and their

average (G) score as the metrics. For SegTrack v2, there

are two types of mean IoU adopted in the existing litera-

ture. Specifically, one can compute the IoU averaging over

all instances per frame and then average over all frames as

in [14], denoted as mIoU∗. One can also compute the IoU

per instance, average over the frames where the instance has

appeared, and then average over all instances as in [21], de-

noted as mIoU†. We report both metrics on this dataset.

4.2. Main Results

YouTube-VOS We fine-tune both our DMM-Net and pro-

posal net on YouTube-VOS. We first split the official train-

ing set into train-train, train-val and train-test splits. Our

train-val split consists of 200 videos while the train-train

split consists of 3000 videos. Our training is performed on

the train-train split, and the best model is selected based

on the performance on the train-val split. The final per-

formance on the official validation set is reported in Ta-

ble 1. Compared to the state-of-the-art method S2S, our

model achieves competitive segmentation metrics with dou-

ble speed. In general, we obtain a good trade off between

the performance and running time. Moreover, we found

that using a stronger backbone, i.e., DMM-Net+, can fur-

ther boost the performance.

DAVIS 2017 We compare with a wide range of recent

competitors on the validation set of DAVIS 2017. For exper-

iments on DAVIS, we only fine-tune our DMM-Net on the

training set of DAVIS 2017 and use the proposal generator

pretrained on COCO. The models without online learning

are listed in Table 2. From the table, it is clear that with-

out online learning, our method achieves the state-of-the-art

performance. In Fig. 3, we show the qualitative results of

our DMM-Net at different time steps (uniformly sampled

percentage w.r.t. the whole video length) of each video se-

quence. From the figure, we can see that our model consis-

tently keeps a very good segmentation quality as time goes

on. We also show a visual comparison at the last frame

of the soapbox sequence with other strong competitors in

Fig. 1. It is clear that our model does a better job in seg-

menting the details of the persons and the soapbox. How-

ever, some failure cases still exist. For example, in the 100%
column and 4th row of Fig. 3, the segmentation of the gold-

fish in the bottom-right corner is unsatisfying.

Matching DMM-Net Prop. Net Train-val

Ft. Unroll Arch. +ytb JM FM

Greedy - - X101 57.1 68.1

Hungarian - - X101 57.3 68.4

Ours ✘ - X101 57.3 68.3

Ours ✔ 2 R50 58.5 71.4

Ours ✔ 2 X101 59.0 71.7

Ours ✔ 3 X101 58.2 71.4

Ours ✔ 2 X101 ✔ 60.2 73.0

Table 4. Ablation study evaluated on our train-val split of

YouTube-VOS. Prop. Net: mask proposal network. ‘+ytb’: us-

ing YouTube-VOS train-train split during the training of proposal

net or not. ‘Ft.’: fine-tuning, ‘Arch.’: architecture for the proposal

net, ‘R50’: ResNet-50, ‘X101’: ResNetXt-101.

SegTrack v2 We test our DMM-Net model (fine-tuned on

DAVIS 2017 training set) directly on the full SegTrack v2

dataset. We do not perform any fine-tuning on this dataset.

Moreover, for simplicity, we again do not adopt any on-

line learning such that we could fully test the generalization

ability of our model. The quantitative results are listed in

Table 3. From the table, we can see that without any fine-

tuning and online learning, our DMM-Net achieves compa-

rable performance to the state-of-the-art methods. We show

some visual examples in the bottom two rows of Fig. 3. We

can see that our model again has a consistently high seg-

mentation quality across different time steps.

4.3. Ablation Study

In this section, we conduct thorough ablation study to

justify the design choice and hyperparameters of our model.

Greedy vs. Hungarian vs. Our Matching Layer We

first test the matching layer against the optimal matching

using the Hungarian method and the popular greedy ap-

proximation during inference. For a fair comparison, we

use the same set of mask proposals, the same feature ex-

tractor network pretrained on COCO dataset. We show the

mean of J and F scores on YouTube-VOS dataset in Ta-

ble 4. All the ablation results are obtained by training on

our train-train split and evaluating on train-val split. From

the table, we can see that our matching layer has similar per-

formance compared to the optimal matching and is superior

to the greedy one during inference.

End-to-End Fine-tuning We now study the effect of fine-

tuning the whole model on the train-train split of YouTube-

VOS. As shown in Table 4, the performance is improved

significantly, which verifies the benefits of the end-to-end

training and the differentiability of our matching layer.
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(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure 3. Visualization of our results on YouTube-VOS, DAVIS 2017 and SegTrack v2 at different time steps (percentage w.r.t. the whole

video length). The first 2, the middle 2 and the last 2 rows correspond to the YouTube-VOS, DAVIS 2017 and SegTrack v2 datasets

respectively.

Mask Proposal Network We also try different backbones

for the mask proposal network and fine-tune the network on

YouTube-VOS dataset. As shown in Table 4, the perfor-

mance gain is pretty high by fine-tuning the proposal net on

large scale video dataset such as YouTube-VOS.

Number of Unrolled Steps At last, we investigate the

number of unrolled steps of the refinement network during

training. As shown in Table 4, unrolling more than 2 step

seems not helpful and increases the memory cost signifi-

cantly. Note that during test we unroll from the beginning

to the end of the video sequence.

5. Conclusion

In this paper, we propose the Differentiable Mask-

Matching Network (DMM-Net) for solving the problem of

video object segmentation. Relying on the pre-computed

masks proposals, DMM-Net first conducts the mask match-

ing between proposals and templates via a projected gra-

dient descent method which is guaranteed to converge and

fully differentiable. It enables the learning of the cost matrix

of matching. Based on the template mask, we then refine

the current matched mask to further improve the segmen-

tation quality. We demonstrate that our model achieves the

state-of-the-art or comparable performances under different

settings of several challenging benchmarks. In the future,

we would like to apply our differentiable matching layer to

other backbone networks for the purpose of further boosting

the performance. Moreover, exploring the mask matching

in a longer temporal window, i.e., a multi-partite matching

problem similar to tracking, would be very interesting.
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