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Abstract

Deep neural network based methods have made a sig-

nificant breakthrough in salient object detection. Howev-

er, they are typically limited to input images with low res-

olutions (400 × 400 pixels or less). Little effort has been

made to train neural networks to directly handle salien-

t object segmentation in high-resolution images. This pa-

per pushes forward high-resolution saliency detection, and

contributes a new dataset, High-Resolution Salient Objec-

t Detection (HRSOD). To our best knowledge, HRSOD is

the first high-resolution saliency detection dataset to date.

As another contribution, we also propose a novel approach,

which incorporates both global semantic information and

local high-resolution details, to address this challenging

task. More specifically, our approach consists of a Glob-

al Semantic Network (GSN), a Local Refinement Network

(LRN) and a Global-Local Fusion Network (GLFN). GSN

extracts the global semantic information based on down-

sampled entire image. Guided by the results of GSN, LRN

focuses on some local regions and progressively produces

high-resolution predictions. GLFN is further proposed to

enforce spatial consistency and boost performance. Experi-

ments illustrate that our method outperforms existing state-

of-the-art methods on high-resolution saliency datasets by a

large margin, and achieves comparable or even better per-

formance than them on some widely used saliency bench-

marks.

1. Introduction

Salient object detection, aiming at accurately detecting

and segmenting the most distinctive object regions in a

scene, has drawn increasing attention in recent years [8, 46,

47, 51, 48]. It is regarded as a very important task that can

facilitate a wide range of applications, such as image un-

derstanding [20, 53, 44], object segmentation [18], image

captioning [10, 7, 40] and light field 3D display [35].
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Figure 1. Pipeline comparison with state-of-the-art methods. (a)

Input image. (b) Ground truth mask. (c) Our method. (d) Amulet

[49]. Best viewed by zooming in.

Deep Neural Networks (DNNs), e.g., VGG [30],

ResNet [13], have achieved remarkable success in computer

vision tasks using the typical input size such as 224 × 224,

384 × 384, etc. For most applications, such as image clas-

sification, object detection and visual tracking, the typical

input size is enough to obtain satisfied results. For dense

prediction tasks, e.g., image segmentation and saliency de-

tection, deep learning based approaches also show impres-

sive performance. But the inherited defect is very apparent,

i.e., blurry boundary. Many research efforts have been made

to remedy this problem. For example, Zhang et al. [49]

employ deep recursive supervision and integrate multi-level

features for accurate boundary prediction. However, the im-

provement is not significant, as illustrated in Figure 1 (d).

Furthermore, the resolution of the images taken by elec-

tronic products (e.g., smartphones) becomes very high, e.g.,

720p, 1080p and 4K. When processing high-resolution im-

ages, the above defect becomes more severe. The state-

of-the-art saliency detection methods generally down-scale

the inputs to extract semantic information. In this process,

many details are inevitably lost. Thus, they are not suitable
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for high-resolution saliency detection task. Meanwhile,

there is little research effort to train neural networks to di-

rectly handle salient object segmentation in high-resolution

images.

However, this line of work is very important since it can

inspire or enable many practical tasks such as image edit-

ing [31, 39, 23], medical image analysis [4], etc. Specifi-

cally, when served as a pre-processing step of background

replacement and depth-of-field, high-resolution salient ob-

ject detection should be as accurate as possible to provide

users with realistic composite images [29]. If the predicted

boundaries are not accurate, there may be artifacts which

certainly affect users’ experience. Thus, this paper pushes

forward the task of high-resolution salient object detection.

To our best knowledge, our approach is the first work

for high-resolution salient object detection. Since there

is no high-resolution training and test dataset for salien-

cy detection, we contribute a new dataset, High-Resolution

Salient Object Detection (HRSOD). More details about our

HRSOD will be presented in Section 3.

As for developing high-resolution saliency detection

methods, there are three intuitive methods. The first is sim-

ply increasing the input size to maintain a relative high reso-

lution and object details after a series of pooling operations.

However, the large input size results in significant increases

in memory usage. Moreover, it remains a question that if

we can effectively extract details from lower-level layers in

such a deep network through back propagation. The second

method is partitioning inputs into patches and making pre-

dictions patch-by-patch. However, this type of method is

time-consuming and can easily be affected by background

noise. The third one includes some post-processing meth-

ods such as CRF [19] or graph cuts [28], which can address

this issue to a certain degree. But very few works attempted

to solve it directly within the neural network training pro-

cess. As a result, the problem of applying DNNs for high-

resolution salient object detection is fairly unsolved.

To address above issues, we propose a novel deep learn-

ing approach for high-resolution salient object detection

without any post-processing. It has a Global Semantic Net-

work (GSN) for extracting semantic information and a Lo-

cal Refinement Network (LRN) for optimizing local detail-

s. A global semantic guidance is introduced from GSN to

LRN in order to ensure global consistency. Besides, an At-

tended Patch Sampling (APS) scheme is proposed to en-

force LRN to focus on uncertain regions, and this scheme

provides a good trade-off between performance and effi-

ciency. Finally, a Global-Local Fusion Network (GLFN)

is proposed to enforce spatial consistency and further boost

performance at high resolution.

To summarize, our contributions are as follows:

• We contribute the first high-resolution salient objec-

t detection dataset (HRSOD) with rich boundary de-

tails and accurate pixel-wise annotations.

• We provide a new paradigm for high-resolution salient

object detection which first uses GSN for extracting se-

mantic information, and a guided LRN for optimizing

local details, and finally GLFN for prediction fusion.

• We perform extensive experiments to demonstrate that

our method outperforms other state-of-the-art methods

on high-resolution saliency datasets by a large margin,

and achieves comparable performance on some widely

used saliency benchmarks.

2. Related Work

In the past few decades, lots of approaches have been

proposed to solve the saliency detection problem. Early

researches are mainly based on low-level features, such as

image contrast [16, 6], texture [41, 42] and background pri-

or [22, 37]. These models are efficient and effective in sim-

ple scenarios, but they are not always robust in handling

challenging cases. A detailed survey of these methods can

be found in [2].

More recently, learning based saliency detection meth-

ods have achieved expressive performance, and they can

coarsely be divided into two categories, i.e., patch-based

saliency and FCN-based saliency.

2.1. Patch­based Saliency

Existing patch-based methods make saliency prediction

for each image patch. For example, Wang et al. [32] present

a saliency detection algorithm by integrating both local es-

timation and global search. Then, Li et al. [21] propose to

utilize multi-scale features in multiple generic CNNs to pre-

dict the saliency degree of each superpixel. With the same

purpose of predicting the saliency degree of each superpix-

el, Zhao et al. [52] use a multi-context deep CNN to predict

saliency maps taking global and local context into account.

The above methods include several fully connected layers

to make predictions in superpixel-level, resulting in expen-

sive computational cost and the loss of spatial information.

What’s more, all of them make very coarse predictions and

lack low-level details.

2.2. FCN­based Saliency

Liu et al. [24] design a deep hierarchical saliency net-

work and progressively recover image details via integrat-

ing local context information. Zhang et al. [49] propose

a generic framework to integrate multi-level features in-

to different resolutions for finer saliency maps. In order

to better integrate features from different levels, Zhang et

al. [45] propose a bi-directional message passing module

with a gate function to integrate multi-level features. Wang

et al. [36] use a boundary refinement network to learn prop-

agation coefficients for each spatial position.
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Lots of research efforts have been made to recover image

details in final predictions. However, for high-resolution

images, all existing FCN-based methods down-sample the

inputs, thus lose high-resolution details and fail to predict

fine-grained saliency maps.

Several researchers attempt to remedy this problem

by using post-processing techniques for finer predictions.

However, traditional CRF [19] and guided filtering are very

time-consuming and their improvement is very limited. Wu

et al. [38] propose a more efficient guided filtering lay-

er. However, their performance is just comparable with the

CRF. To reduce this gap, we propose a method to combine

the advantages of patch-based methods (maintaining details

and saving memory) and FCN-based methods (having rich

contextual information).

3. High-Resolution Saliency Detection Dataset

There exist several datasets for saliency detection, but

none of them is specifically designed for high-resolution

salient object detection. Three main drawbacks are appar-

ent. First, all images in current datasets have extremely

limited resolutions. Concretely, the longest edge of each

image is less than 500 pixels. These low-resolution images

are not representative for today’s image processing applica-

tions. Second, to relieve the burden of users, it is essential

to output masks with extremely high accuracy in boundary

regions. But images in existing saliency detection datasets

are inadequate in providing rich object boundary details for

training DNNs. In addition, widely used saliency datasets

also have some problems in annotation quality, such as fail-

ing to cover all saliency regions (Figure 2 (c)), including

background disturbance into foreground annotation (Figure

2 (d)), or low contour accuracy (Figure 2 (e)).

To address the above urgent issues, we contribute

a High-Resolution Salient Object Detection (HRSOD)

dataset, containing 1610 training images and 400 test im-

ages. The total 2010 images are collected from the website

of Flickr1 with the license of all creative commons. Pixel-

level ground truths are manually annotated by 40 subjects.

The shortest edge of each image in our HRSOD is more

than 1200 pixels. Figure 2 presents the image size compar-

ison between our HRSOD and existing saliency detection

datasets. For existing datasets, we only show the results on

HKU-IS dataset [21], and the results hold the same on other

datasets. Besides, we provide an analysis of shape com-

plexity in supplementary material. Compared with existing

saliency datasets, our HRSOD avoids low-level mistakes vi-

a careful check by over 5 subjects (an example shown in

Figure 2 (f)). To our best knowledge, HRSOD is currently

the first high-resolution dataset for salient object detection.

It is specifically designed for training and evaluating DNNs

1https://www.flickr.com

(a) (b)

(c) (d)

(e) (f)
Figure 2. (a) The histogram of diagonal length on HKU-IS [21]

(The maximum is less than 600.). (b) The histogram of diagonal

length on our HRSOD (The minimum is over 1000.). (c)-(f) Sam-

ple images from various dataset, with ground truth masks over-

layed. Concretely, (c) is from HKU-IS [21]. (d) is from DUTS-

Test [33]. (e) is from THUR [5]. And (f) is an example of our

HRSOD. Best viewed by zooming in.

aiming at high-resolution salient object detection. The w-

hole dataset is publicly available2.

4. Our Method

In this paper, we propose a novel method for detecting

salient objects in high-resolution images with limited G-

PU memory. Our framework includes three branches, i.e.,

Global Semantic Network (GSN), Local Refinement Net-

work (LRN) and Global-Local Fusion Network (GLFN).

Figure 3 shows an overall illustration of the proposed ap-

proach. GSN aims at extracting semantic knowledge in a

global view. Guided by GSN, LRN is designed to refine

uncertain sub-regions. Finally, GLFN takes high-resolution

images as inputs and further enforces spatial consistency of

the fused predictions from GSN and LRN.

To be specific, let {Xi = (Ii,Li)}
N
i=1 be the training

set, containing both the training image Ii and its pixel-wise

saliency label Li. The input image Ii is first fed forward

through GSN to obtain a coarse saliency map Fi, denoted

2https://github.com/yi94code/HRSOD
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Figure 3. Overview of the network architecture. GSN and LRN

takes downscaled entire images and attended sub-images as in-

put, respectively. The guidance from GSN provides some seman-

tic knowledge and ensures that our APS and LRN are attended to

uncertain regions. A GLFN is appended to directly leverage high-

resolution information to fuse the predictions from GSN and LRN.

as:

Fi = UP (GSN(DS(Ii),θ)) (1)

where DS(·) denotes down-sampling images to 384× 384
while UP (·) denotes up-sampling predictions to original

size. θ denotes all parameters in GSN. Then Ii is put into

our proposed Attended Patch Sampling (APS) scheme (Al-

gorithm 1) to generate sub-images {P Ii
m }Mm=1, which are

attended to uncertain regions (M is the total number of sub-

images for each input Ii). Subsequently, each P Ii
m is fed

forward through LRN to get a refined saliency mapRIi
m. Se-

mantic guidance is introduced from GSN to LRN (Section

4.2 ). Finally, the outputs of GSN and LRN are fused and

fed forward through GLFN for final prediction Si. These

two stages can be formulated as:

{RIi
m}Mm=1 = LRN({P Ii

m }Mm=1,φ) (2)

Si = GLFN(Ii, Fuse({RIi
m}Mm=1,Fi),ψ) (3)

where φ and ψ denote the parameters of LRN and GLFN,

respectively. Fuse(·) denotes fusion operation (more de-

tails can be seen in Section 4.4).

4.1. Network Architecture for GSN and LRN

Convolutional  layer Deconvolutional  layer  Global  information 

 (a) Network Architecture 

Dilated convolutional  layers  

(b) Global Guidance 

Input Output 

Figure 4. (a) Network architecture for both GSN and LRN. (b)

Incorporate global guidance only for LRN.

We adopt the same backbone for GSN and LRN. Our

model is simply built on the FCN architecture with the pre-

trained 16-layer VGG network [30]. The original VGG-16

network [30] is trained for image classification task while

our model is trained for saliency detection, a pixel-wise pre-

diction task. Therefore, we simply abandon all layers after

conv5 3 to maintain a higher resolution.

In order to enlarge receptive field, we employ dilated

convolutional layers [43] to capture contextual information.

Dilated convolution, also known as atrous convolution, has

a superior ability to enlarge the field of view without in-

creasing the number of parameters. As shown in Figure 4

(a), we add four dilated convolutional layers on the top of

conv3-3, conv4-3 and conv5-3 in our revised VGG-16. All

the dilated convolutional layers have the same kernel size

and output channels, i.e., k = 3 and c = 32. The rates of

the four dilated convolutional layers in the same block are

set with dilation = 1, 3, 5, 7 respectively.

To improve the output resolution, we first generate three

saliency score maps through the last three blocks. Secondly,

we add three additional deconvolutional layers, the first two

of which have 2× upsampling factors and the last of which

has a 4× upsampling factor. Thirdly, inspired by [25], we

build two skip connections from the saliency score maps

generated by block 3 and block 4 to combine high-level fea-

tures with meaningful semantic information and low-level

features with large amount of details (See Figure 4 (a)).

More details are provided in the supplementary material.

4.2. Semantic Guidance from GSN to LRN

The saliency maps generated by GSN are based on the

full image and embedded with rich contextual information.

Nevertheless, due to its small input size of 384×384, lot-

s of low-level details are lost, especially when the original

images have very high resolutions (e.g., 1920×1080). That

is to say, it barely learns to capture saliency properties at

a coarse scale. As a result, GSN is competent in giving a

rough saliency prediction but insufficient to precisely local-

ize salient objects. In contrary, LRN takes sub-images as

input, avoiding down-sampling which results in the loss of

details. However, since sub-images are too local to indicate

which area is more salient, LRN may be confused about

which region should be highlighted. Also, LRN alone may

have false alarms in some locally salient regions. Therefore,

we propose to introduce the semantic guidance from GSN

to LRN, in order to enhance global contextual knowledge

while maintain high-resolution details.

Specifically, we incorporate global semantic guidance in

the decoder part. As illustrated in Figure 4 (b), given the

coarse result Fi of GSN, a patch P Fi

m is first cropped ac-

cording to the location of patch P Ii
m in LRN. Then we con-

catenate P Fi

m with the corresponding feature maps in LRN.

4.3. Focus on Uncertain Regions

Compared with previous patch-based methods, our LRN

has a notable difference. Traditional patch-based methods

usually infer every patch in the image by sliding window
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Figure 5. Global-Local Fusion Network.

(a) (b) (c)
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Figure 6. Some sub-images produced by APS algorithm. (a) Orig-

inal input image. (b)-(f) Typical sub-images produced by APS.

or superpixels, which is extremely time-consuming. We

note that GSN has already succeeded to assign most pix-

els with right labels. Therefore, LRN only needs to focus

on harder regions. Such a hierarchical prediction manner

(GSN for easy regions and LRN for harder regions) makes

our method more efficient and accurate. An Attended Patch

Sampling (APS) scheme is proposed for this task. Guided

by the results of GSN, it can generate sub-images attended

to uncertain regions. Algorithm 1 presents a rough proce-

dure of APS (More details can be seen in supplementary

material.). We use the attention map Ai to indicate all un-

certain pixels and it can be formulated as:

Ai(x, y) =

{

1 T1 < Fi(x, y) < T2

0 otherwise
(4)

In Algorithm 1, w denotes the width of non-zero area in

Ai. XL and XR are the x coordinates of the leftmost and

rightmost non-zero pixels in Ai. n is a constant, which

controls the overlapping between different patches. r is

a random numbers for generating sub-images with varied

sizes. We have performed grid search for setting these

hyper-parameters and found that the results were not sen-

sitive to their specific choices. Therefore, we set them em-

pirically in this work. We set D = 384, n = 5, T1 = 50,

Algorithm 1 Attended Patch Sampling.

Input: RGB image Ii, ground truth labelLi, base cropping

size D.

Output: RGB patch set {P Ii
m }Mm=1, ground truth patch set

{PLi

m }Mm=1.

1: Generate attention mapAi from Fi, as in Equ. 4.

2: Nx = ⌈w/D⌉+ n
3: for t = 1, . . . , Nx + 1 do

4: C = D + r
5: Xt = min{XL + (t− 1)× ⌈w/Nx⌉, XR}
6: Y = {y | Ai(Xt, y) = 1}
7: Pick out J pixels (Xt, y(j))

J
j=1 from (Xt,Y ).

8: Taking C as cropping size, (Xt, y(j))
J
j=1 as center

pixels, crop {P Ii

j }Jj=1 and {PLi

j }Jj=1 from Ii and

Li, respectively.

9: end for

T2 = 200, and r ∈ [−D
6
, D

6
] in all our experiments. Some

image patches produced by APS are shown in Figure 6.

4.4. Global­Local Fusion Network

As illustrated in above sections, GSN and LRN are in-

herently complementary with each other. Our method lever-

ages GSN to classify easy regions and LRN to refine harder

ones. Then the final predictions can be obtained by fusing

their results. A simple way to do this is to replace the salien-

cy values of uncertain regions in Fi (the result of GSN) by

{RIi
m}Mm=1 (the result of LRN). Overlapped areas will be

averaged. However, this kind of fusion lacks spatial con-

sistency and does not leverage rich details in original high-

resolution images.

We propose to directly train a network to incorporate

high-resolution information to help the fusion of GSN and

LRN. To maintain all the high-resolution details from im-

ages, this network should not include any pooling layers or

convolutional layers with large strides. With limited GPU

memory, popular backbones (e.g., VGG and ResNet) can
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Method
HRSOD-Test DAVIS-S DUTS-Test HKU-IS THUR

Fβ S-m MAE Fβ S-m MAE Fβ S-m MAE Fβ S-m MAE Fβ S-m MAE

RFCN [34] 0.530 0.608 0.121 0.728 0.842 0.062 0.712 0.792 0.091 0.835 0.746 0.079 0.627 0.793 0.100

DHS [24] 0.746 0.848 0.059 0.774 0.865 0.034 0.724 0.817 0.067 0.855 0.746 0.053 0.673 0.803 0.082

UCF [50] 0.700 0.819 0.095 0.648 0.827 0.080 0.629 0.778 0.117 0.808 0.747 0.074 0.645 0.785 0.112

Amulet [49] 0.717 0.830 0.075 0.755 0.848 0.042 0.676 0.803 0.085 0.839 0.772 0.052 0.670 0.797 0.094

NLDF [26] 0.763 0.853 0.055 0.718 0.858 0.042 0.743 0.815 0.066 0.874 0.770 0.048 0.697 0.801 0.080

DSS [14] 0.756 0.840 0.060 0.728 0.865 0.041 0.791 0.822 0.057 0.895 0.779 0.041 0.731 0.801 0.073

RAS[3] 0.773 0.842 0.058 0.763 0.867 0.038 0.755 0.839 0.060 0.871 0.887 0.045 0.696 0.787 0.082

DGRL [36] 0.789 0.848 0.053 0.772 0.859 0.038 0.768 0.841 0.051 0.882 0.802 0.037 0.716 0.816 0.077

DGF [38] 0.795 0.824 0.058 0.785 0.847 0.037 0.776 0.803 0.062 0.893 0.869 0.043 0.734 0.799 0.070

Ours-D 0.857 0.876 0.040 0.850 0.875 0.029 0.796 0.827 0.052 0.891 0.882 0.042 0.740 0.820 0.067

Ours-DH 0.888 0.897 0.030 0.888 0.876 0.026 0.791 0.822 0.051 0.886 0.877 0.042 0.749 0.826 0.064

Table 1. Quantitative comparisons with other state-of-the-arts in term of F-measure (larger is better) and MAE (smaller is better) on five

dataset. The best results are shown in bold.

not be trained with such a high-resolution input size (more

than 1000 × 1000 pixels). Therefore, We propose a light-

weighted network, name as Global-Local Fusion Network

(GLFN). As shown in Figure 5, high-resolution RGB im-

ages and combined maps from GSN and LRN are concate-

nated together to be the inputs of GLFN. GLFN consists of

some convolution layers with dense connectivity as in [15].

We set the growth rate g to be 2 for saving memory. Simi-

lar to [15], we let the bottleneck layers (1 × 1 convolution)

produce 4g feature maps. On the top of these densely con-

nected layers, we add four dilated convolutional layers to

enlarge receptive field. All the dilated convolutional layers

have the same kernel size and output channels, i.e., k = 3
and c = 2. The rates of the four dilated convolutional layers

are set with dilation = 1, 6, 12, 18 respectively. At last, a

3 × 3 convolution is appended for final prediction. What

is worth mentioning is that our proposed GLFN has an ex-

tremely small model size (i.e., 11.9 kB).

5. Experiment

5.1. Experimental Setup

5.1.1 Datasets

High-Resolution Saliency Detection Datasets. We mainly

use our proposed HRSOD-Test to evaluate the performance

of our method along with other state-of-the-art methods. To

enrich the diversity, we also collect 92 images which are

suitable for saliency detection from DAVIS [27], a densely

annotated high-resolution video segmentation dataset. Im-

ages in this dataset are precisely annotated and have very

high resolutions (i.e.,1920×1080). We ignore the categories

of the objects and generate saliency ground truth masks for

this dataset. For convenience, the collected dataset is denot-

ed as DAVIS-S.

Low-Resolution Saliency Detection Datasets. In addition,

we evaluate our method on three widely used benchmark

datasets: THUR [5], HKU-IS [21] and DUTS [33]. THUR

and HKU-IS are large-scale datasets, with 6232 and 4447

images, respectively. DUTS is a large saliency detection

benchmark, contains 5019 test images.

5.1.2 Evaluation Metrics

We use four metrics to evaluate all methods: Precision-

Recall (PR) curves, Fβ measure, Mean Absolute Error

(MAE) and structure-measure [9]. PR curves are generated

by binarizing the saliency map with a varied threshold from

0 to 255, then comparing the binary maps with the ground

truth. Fβ measure is defined as Fβ =
(1+β2)·precision·recall

β2·precision+recall
.

The precision and recall are computed under the threshold

of twice the mean saliency value. β2 is set to 0.3 as sug-

gested in [1] to emphasize precision. MAE measures the

average error of saliency maps. Structure-measure simulta-

neously evaluates region-aware and object-aware structural

similarity between a saliency map and a ground truth mask.

For detailed implementations, we refer readers to [9].

5.1.3 Implementation Details

All experiments are conducted on a PC with an i7-8700

CPU and a 1080 Ti GPU, with the Caffe toolbox [17]. In

our method, every stage is trained to minimize a pixelwise

softmax loss function, by using the stochastic gradient de-

scent (SGD). Empirically, the momentum parameter is set

to 0.9 and the weight decay is set to 0.0005. For GSN and

LRN, the inputs are first warped into 384 × 384 and the

batch size is set to 32. The weights in block 1 to block 5

are initialized with the pre-trained VGG model [30], while

weight parameters of newly-added convolutional layers are

randomly initialized by using the “msra” method [12]. The

learning rates of the pre-trained and newly-added layers are

set to 1e-3 and 1e-2, respectively. GLFN is trained from

scratch, and its weight parameters of convolutional layers
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Image RFCN DHS UCF Amulet NLDF DSS RAS DGRL DGF Ours GT

Figure 7. Visual comparison. All images are from HRSOD-Test dataset. Best viewed by zooming in.

Image GT GSN+CRF GSN+APS+LRN GSN+APS+LRN+CRF GSN+APS+LRN+GLFN

Figure 8. Visual comparison of our method with variations using Dense CRF [19].

are also randomly initialized by using the “msra” method.

Its inputs are warped into 1024× 1024 and the batch size is

set to 2. Source code will be released.

5.2. Comparison with the State­of­the­arts

We compare our algorithm with 9 state-of-the-art meth-

ods, including RFCN [34], DHS [24], UCF [50], A-

mulet [49], NLDF [26], DSS [14], RAS [3], DGF [38] and

DGRL [36]. For a fair comparison, we use either the im-

plementations with recommended parameter settings or the

saliency maps provided by the authors. To demonstrate the

effectiveness of our approach, we provide two versions of

our results. Ours-D represents for training on DUTS while

Ours-DH represents for training on DUTS and HRSOD.

One thing deserves to be mentioned is that in our frame-

work, GSN and LRN can be any saliency detection model.

We just choose simple FCNs to validate the effectiveness of

our framework. With our method, even simple FCNs can

outperform other complicated models.

Quantitative Evaluation. Fβ measure, S-measure and

MAE scores are given in Table 1. As can be seen, our

method outperforms all the existing state-of-the-art meth-

ods on our new-built high-resolution datasets with a large

margin. It also achieves comparable or even superior per-

formance than them on some widely used saliency detection

datasets. We provide the PR curves in the supplementary

material due to limited space.

Qualitative Evaluation. Figure 8 shows a visual com-

parison of our method with respect to others. It can be seen

that our method is capable of accurately detecting salient

objects as well as suppressing the background clutter. Fur-

ther, our saliency maps have better boundary shape and are

much closer to the ground truth maps in various challenging

scenarios.

5.3. Ablation Analysis and Discussion

5.3.1 Ablation Analysis

In this section, we provide the results about different vari-

ants of our method to further verify our main contributions.

LRN, GLFN vs CRF. In our method, LRN learns to

refine uncertain regions under the guidance of GSN. To

demonstrate its effectiveness, We also compare it with CRF

[19], a widely used post-processing for saliency detection.

The parameters are set as in [14]. We employ the CRF to

refine predictions of GSN and LRN, denoted as GSN+CRF

and GSN+APS+LRN+CRF, respectively. The results in Ta-

ble 4 show that our method outperforms CRF by a large

margin. Figure 8 shows the qualitative results. We find

that our LRN and GLFN progressively improve details of

saliency maps while the CRF fails to recover lost details.

APS vs RPS. To demonstrate the effectiveness of the

proposed APS scheme, we train LRN on patches which are

randomly sampled. For fair comparison, we set the num-

ber and size of sampled patches to be the same with our

proposed APS. We denote this setting as GSN+RPS+LRN.
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Dataset Ours NLDF UCF DHS DSS Amulet RAS DGRL DGF RFCN

HRSOD-Test 17.57 22.34 22.84 22.85 25.53 25.75 26.26 30.10 32.91 68.98

DAVIS-S 8.18 23.56 15.69 18.34 19.35 21.11 18.49 14.48 19.77 21.00

Table 2. The Boundary Displacement Error (smaller is better) of the state-of-the-art methods on high-resolution datasets. The best results

are shown in bold.

Ours* Ours DGF DGRL RAS DSS NLDF Amulet UCF DHS RFCN

Time (s) 0.39 0.05 0.41 0.52 0.08 5.12 2.31 0.05 0.14 0.05 4.54

Model Size(MB) 129.6 129.6 248.9 648.0 81 447.3 425.9 132.6 117.9 376.2 1126.4

Table 3. Running time and model size of the state-of-the-art methods.

Network Structure Fβ S-m MAE

GSN 0.842 0.866 0.047

GSN+CRF 0.858 0.852 0.038

GSN+RPS+LRN 0.860 0.871 0.037

GSN+APS+LRN 0.877 0.883 0.036

GSN+APS+LRN+CRF 0.880 0.875 0.033

GSN+APS+LRN+GLFN 0.888 0.897 0.030

Table 4. Comparison of the different variants on HRSOD-Test.

Various metrics in Table 4 demonstrate that APS signifi-

cantly outperforms RPS, which indicates the important role

of our proposed APS.

Performance vs number of patches. For traditional

patch-based methods, refining more patches brings more

performance gain, but results in more computational cost.

It seems like a tricky trade-off problem. Our proposed APS

can ingeniously relieve this problem thanks to its focusing

on uncertain regions. Figure 9 shows that our APS is less

sensitive to number of patches.
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Figure 9. Refinement quality versus patch of numbers for different

approaches. (a) S-measure versus patch of numbers. (b) MAE

versus patch of numbers. Results are measured on the outputs of

LRN.

5.3.2 More Discussion

Running time and model size. Table 3 shows a compar-

ison of running time and model size. Since other methods

can not directly handle high-resolution images, the running

time analysis of the compared methods is conducted with

the same input size (384 × 384) for fair. Also, we provide

our running time for 1024× 1024 inputs, denoted as Ours*.

As it can be seen, our method is the fasted among all the

compared methods and is quite efficient when directly han-

dling high-resolution images.

Boundary quality. To further evaluate the precision of

boundaries, we compare different methods by the Boundary

Displacement Error (BDE) metric [11]. This metric mea-

sures the average displacement error of boundary pixels be-

tween two predictions, which can be formulated as:

BDE(X,Y ) =
1

2

[

1

NX

∑

x

infy∈Y d(x, y)

+
1

NY

∑

y

infx∈Xd(x, y)

]

where X and Y are two boundary pixel sets, and x, y are

pixels in them, respectively. NX and NY denote the num-

ber of pixels in X and Y . inf represents for the infimum

and d(·) denotes Euclidean distance. We only compute the

BDE on high-resolution datasets because other benchmark-

s are not qualified enough on boundaries in pixel-level due

to relatively poor annotations. The BDE for the state-of-

the-art methods on HRSOD-Test and DAVIS-S are listed in

Table 2. The results indicate that our predictions have bet-

ter boundary shape and are much closer to the ground truth

maps.

6. Conclusion

In this paper, we push forward high-resolution saliency

detection task and provide a high-resolution saliency de-

tection dataset (HRSOD) for facilitating studies in high-

resolution saliency prediction. A novel approach is pro-

posed to address this challenging task. It leverages both

global semantic information and local high-resolution de-

tails to accurately detect salient objects in high-resolution

images. Extensive evaluations on high-resolution datasets

and popular benchmark datasets verify the effectiveness of

our method. We will explore to develop weakly supervised

high-resolution salient object detection in the future.
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