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Abstract

This work tackles the problem of semi-supervised learn-

ing of image classifiers. Our main insight is that the field of

semi-supervised learning can benefit from the quickly ad-

vancing field of self-supervised visual representation learn-

ing. Unifying these two approaches, we propose the frame-

work of self-supervised semi-supervised learning (S4L)

and use it to derive two novel semi-supervised image classi-

fication methods. We demonstrate the effectiveness of these

methods in comparison to both carefully tuned baselines,

and existing semi-supervised learning methods. We then

show that S4L and existing semi-supervised methods can

be jointly trained, yielding a new state-of-the-art result on

semi-supervised ILSVRC-2012 with 10% of labels.

1. Introduction

Modern computer vision systems demonstrate outstand-

ing performance on a variety of challenging computer vi-

sion benchmarks, such as image recognition [32], object

detection [20], semantic image segmentation [8], etc. Their

success relies on the availability of a large amount of anno-

tated data that is time-consuming and expensive to acquire.

Many real-world computer vision applications are con-

cerned with visual categories that are not present in standard

benchmark datasets, or with applications of dynamic na-

ture where visual categories or their appearance may change

over time. Unfortunately, building large labeled datasets for

all these scenarios is not practically feasible. Therefore, it

is an important research challenge to design a learning ap-

proach that can successfully learn to recognize new con-

cepts by leveraging only a small amount of labeled exam-

ples. The fact that humans quickly understand new concepts

after seeing only a few (labeled) examples suggests that this

goal is achievable in principle.

Notably, a large research effort is dedicated towards

learning from unlabeled data that, in many realistic ap-

plications, is much less onerous to acquire than labeled

∗equal contribution

Full dataset Labelled images

0° 270° hat

... ...

270°hat0°

Figure 1. A schematic illustration of one of the proposed

self-supervised semi-supervised techniques: S
4
L-Rotation. Our

model makes use of both labeled and unlabled images. The first

step is to create four input images for any image by rotating it by

0
◦, 90◦, 180◦ and 270

◦ (inspired by [9]). Then, we train a single

network that predicts which rotation was applied to all these im-

ages and, additionally, predicts semantic labels of annotated im-

ages. This conceptually simple technique is competitive with ex-

isting semi-supervised learning methods.

data. Within this effort, the field of self-supervised visual

representation learning has recently demonstrated the most

promising results [16]. Self-supervised learning techniques

define pretext tasks which can be formulated using only un-

labeled data, but do require higher-level semantic under-

standing in order to be solved. As a result, models trained

for solving these pretext tasks learn representations that can

be used for solving other downstream tasks of interest, such

as image recognition.

Despite demonstrating encouraging results [16], purely

self-supervised techniques learn visual representations that

are significantly inferior to those delivered by fully-

supervised techniques. Thus, their practical applicability is

limited and as of yet, self-supervision alone is insufficient.

We hypothesize that self-supervised learning techniques

could dramatically benefit from a small amount of labeled
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examples. By investigating various ways of doing so, we

bridge self-supervised and semi-supervised learning, and

propose a framework of semi-supervised losses arising from

self-supervised learning targets. We call this framework

self-supervised semi-supervised learning or, in short, S4L.

The techniques derived in that way can be seen as new semi-

supervised learning techniques for natural images. Figure 1

illustrates the idea of the proposed S4L techniques. We

thus evaluate our models both in the semi-supervised setup,

as well as in the transfer setup commonly used to evalu-

ate self-supervised representations. Moreover, we design

strong baselines for benchmarking methods which learn us-

ing only 10% or 1% of the labels in ILSVRC-2012.

We further experimentally investigate whether our S4L

methods could further benefit from regularizations pro-

posed by the semi-supervised literature, and discover that

they are complementary, i.e. combining them leads to im-

proved results.

Our main contributions can be summarized as follows:

• We propose a new family of techniques for semi-

supervised learning with natural images that leverage

recent advances in self-supervised learning.

• We demonstrate that the proposed self-supervised

semi-supervised (S4L) techniques outperform care-

fully tuned baselines that are trained with no unlabeled

data, and achieve performance competitive with previ-

ously proposed semi-supervised learning techniques.

• We further demonstrate that by combining our best

S4L methods with existing semi-supervised tech-

niques, we achieve new state-of-the-art performance

on the semi-supervised ILSVRC-2012 benchmark.

2. Related Work

In this work we build on top of the current state-of-the-

art in both fields of semi-supervised and self-supervised

learning. Therefore, in this section we review the most rel-

evant developments in these fields.

2.1. Semisupervised Learning

Semi-supervised learning describes a class of algorithms

that seek to learn from both unlabeled and labeled samples,

typically assumed to be sampled from the same or simi-

lar distributions. Approaches differ on what information to

gain from the structure of the unlabeled data.

Given the wide variety of semi-supervised learning tech-

niques proposed in the literature, we refer to [4] for an ex-

tensive survey. For more context, we focus on recent devel-

opments based on deep neural networks.

The standard protocol for evaluating semi-supervised

learning algorithms works as such: (1) Start with a stan-

dard labeled dataset; (2) Keep only a portion of the labels

(say, 10%) on that dataset; (3) Treat the rest as unlabeled

data. While this approach may not reflect realistic settings

for semi-supervised learning [28], it remains the standard

evaluation protocol, which we follow it in this work.

Many of the initial results on semi-supervised learning

with deep neural networks were based on generative mod-

els such as denoising autoencoders [31], variational autoen-

coders [15] and generative adversarial networks [27, 33].

More recently, a line of research showed improved results

on standard baselines by adding consistency regularization

losses computed on unlabeled data. These consistency reg-

ularization losses measure discrepancy between predictions

made on perturbed unlabeled data points. Additional im-

provements have been shown by smoothing predictions be-

fore measuring these perturbations. Approaches of these

kind include Π-Model [18], Temporal Ensembling [18],

Mean Teacher [38] and Virtual Adversarial Training [22].

Recently, fast-SWA[1] showed improved results by train-

ing with cyclic learning rates and measuring discrepancy

with an ensemble of predictions from multiple checkpoints.

By minimizing consistency losses, these models implicitly

push the decision boundary away from high-density parts

of the unlabeled data. This may explain their success on

typical image classification datasets, where points in each

clusters typically share the same class.

Two additional important approaches for semi-

supervised learning, which have shown success both in the

context of deep neural networks and other types of models

are Pseudo-Labeling [19], where one imputes approximate

classes on unlabeled data by making predictions from a

model trained only on labeled data, and conditional entropy

minimization [10], where all unlabeled examples are

encouraged to make confident predictions on some class.

Semi-supervised learning algorithms are typically [28,

22, 2, 39, 1, 21] evaluated on small-scale datasets such as

CIFAR-10 [17] and SVHN [23]. We are aware of very

few examples in the literature where semi-supervised learn-

ing algorithms are evaluated on larger, more challenging

datasets such as ILSVRC-2012 [32]. To our knowledge,

Mean Teacher [38] currently holds the state-of-the-art result

on ILSVRC-2012 when using only 10% of the labels. Re-

cent concurrent work [40, 12] presents competitive results

on ILSVRC-2012.

2.2. Selfsupervised Learning

Self-supervised learning is a general learning framework

that relies on surrogate (pretext) tasks that can be formu-

lated using only unsupervised data. A pretext task is de-

signed in a way that solving it requires learning of a use-

ful image representation. Self-supervised techniques have a

variety of applications in a broad range of computer vision

topics [14, 35, 7, 29, 34].

In this paper we employ self-supervised learning tech-
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niques that are designed to learn useful visual representa-

tions from image databases. These techniques achieve state-

of-the-art performance among approaches that learn visual

representations from unsupervised images only. Below we

provided a non-comprehensive summary of the most impor-

tant developments in this direction.

Doersch et al. propose to train a CNN model that

predicts relative location of two randomly sampled non-

overlapping image patches [5]. Follow-up papers [24, 26]

generalize this idea for predicting a permutation of multiple

randomly sampled and permuted patches.

Beside the above patch-based methods, there are self-

supervised techniques that employ image-level losses.

Among those, in [41] the authors propose to use grayscale

image colorization as a pretext task. Another example is a

pretext task [9] that predicts an angle of the rotation trans-

formation that was applied to an input image.

Some techniques go beyond solving surrogate classifi-

cation tasks and enforce constraints on the representation

space. A prominent example is the exemplar loss from [6]

that encourages the model to learn a representation that is

invariant to heavy image augmentations. Another example

is [25], that enforces additivity constraint on visual repre-

sentation: the sum of representations of all image patches

should be close to representation of the whole image. Fi-

nally, [3] proposes a learning procedure that alternates be-

tween clustering images in the representation space and

learning a model that assigns images to their clusters.

3. Methods

In this section we present our self-supervised semi-

supervised learning (S4L) techniques. We first provide a

general description of our approach. Afterwards, we intro-

duce specific instantiations of our approach.

We focus on the semi-supervised image classification

problem. Formally, we assume an (unknown) data gen-

erating joint distribution p(X,Y ) over images and labels.

The learning algorithm has access to a labeled training set

Dl, which is sampled i.i.d. from p(X,Y ) and an unlabeled

training set Du, which is sampled i.i.d. from the marginal

distribution p(X).

The semi-supervised methods we consider in this paper

have a learning objective of the following form:

min
θ

Ll(Dl, θ) + wLu(Du, θ), (1)

where Ll is a standard cross-entropy classification loss of

all labeled images in the dataset, Lu is a loss defined on un-

supervised images (we discuss its particular instances later

in this section), w is a non-negative scalar weight and θ is

the parameters for model fθ(·). Note that the learning ob-

jective can be extended to multiple unsupervised losses.

3.1. Selfsupervised Semisupervised Learning

We now describe our self-supervised semi-supervised

learning techniques. For simplicity, we present our ap-

proach in the context of multiclass image recognition, even

though it can be easily generalized to other scenarios, such

as dense image segmentation.

It is important to note that in practice the objective 1 is

optimized using a stochastic gradient descent (or a variant)

that uses mini-batches of data to update the parameters θ.

In this case the size of a supervised mini-batch xl, yl ⊂ Dl

and an unsupervised mini-batch xu ⊂ Du can be arbitrary

chosen. In our experiments we always default to simplest

possible option of using minibatches of equal sizes.

We also note that we can choose whether to include the

minibatch xl into the self-supervised loss, i.e. apply Lself to

the union of xu and xl. We experimentally study the effect

of this choice in our experiments Section 4.4.

We demonstrate our framework on two prominent self-

supervised techniques: predicting image rotation [9] and

exemplar [6]. Note, that with our framework, more self-

supervised losses can be explored in the future.

S4L-Rotation. The key idea of rotation self-supervision is

to rotate an input image then predict which rotation degree

was applied to these rotated images. The loss is defined as:

Lrot =
1

|R|

∑

r∈R

∑

x∈Du

L(fθ(x
r), r), (2)

where R is the set of the 4 rotation degrees

{0◦, 90◦, 180◦, 270◦}, xr is the image x rotated by r,

fθ(·) is the model with parameters θ,L is the cross-entropy

loss. This results in a 4-class classification problem.

We follow a recommendation from [9] and in a single

optimization step we always apply and predict all four

rotations for every image in a minibatch.

We also apply the self-supervised loss to the labeled im-

ages in each minibatch. Since we process rotated supervised

images in this case, we suggest to also apply a classification

loss to these images. This can be seen as an additional way

to regularize a model in a regime when a small amount of

labeled image are available. We measure the effect of this

choice later in Section 4.4.

S4L-Exemplar. The idea of exemplar self-supervision [6]

is to learn a visual representation that is invariant to a wide

range of image transformations. Specifically, we use “In-

ception” cropping [37], random horizontal mirroring, and

HSV-space color randomization as in [6] to produce 8 dif-

ferent instances of each image in a minibatch. Follow-

ing [16], we implement Lu as the batch hard triplet loss [13]

with a soft margin. This encourages transformation of the

same image to have similar representations and, conversely,

different images to have diverse representations.
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Similarly to the rotation self-supervision case, Lu is ap-

plied to all eight instances of each image.

3.2. Semisupervised Baselines

In the following section, we compare S4L to several

leading semi-supervised learning algorithms that are not

based on self-supervised objectives. We now describe the

approaches that we compare to.

Our proposed objective 1 is applicable for semi super-

vised learning methods as well, where the loss Lu is the

standard semi supervised loss as described below.

Virtual Adversarial Training (VAT) [22]: The idea is

making the predicted labels robust around input data point

against local perturbation. It approximates the maximal

change in predictions within an ǫvat vicinity of unlabeled

data points, where ǫvat is a hyperparameter. Concretely, the

VAT loss for a model fθ is:

Lvat =
1

|Du|

∑

x∈Du

KL(fθ(x) ‖ fθ(x+∆x)), (3)

where ∆x = argmax
δ s.t. |δ|2=ǫ

KL(fθ(x) ‖ fθ(x+ δ)). (4)

While computing ∆x directly is not tractable, it can be ef-

ficiently approximated at the cost of an extra forward and

backwards pass for every optimization step [22].

Conditional Entropy Minimization (EntMin) [10]: This

works under the assumption that unlabeled data indeed has

one of the classes that we are training on, even when the par-

ticular class is not known during training. It adds a loss for

unlabeled data that, when minimized, encourages the model

to make confident predictions on unlabeled data. The con-

ditional entropy minimization loss for a model fθ (treating

fθ as a conditional distribution of labels over images) is:

Lentmin =
1

|Du|

∑

x∈Du

∑

y∈Y

−fθ(y|x) log fθ(y|x). (5)

Alone, the EntMin loss is not useful in the context of deep

neural networks because the model can easily become ex-

tremely confident by increasing the weights of the last layer.

One way to resolve this is to encourage the model predic-

tions to be locally-Lipschitz, which VAT does[36]. There-

fore, we only consider VAT and EntMin combined, not just

EntMin alone, i.e. Lu = wvatLvat + wentminLentmin.

Pseudo-Label [19] is a simple approach: Train a model

only on labeled data, then make predictions on unlabeled

data. Then enlarge your training set with the predicted

classes of the unlabeled data points whose predictions are

confident past some threshold of confidence. Re-train your

model with this enlarged labeled dataset. While [28] shows

that in a simple ”two moons” dataset, psuedo-label fails to

learn a good model, in many real datasets this approach does

show meaningful gains.

4. ILSVRC-2012 Experiments and Results

In this section, we present the results of our main ex-

periments. We used the ILSVRC-2012 dataset due to its

widespread use in self-supervised learning methods, and to

see how well semi-supervised methods scale.

Since the test set of ILSVRC-2012 is not available, and

numbers from the validation set are usually reported in the

literature, we performed all hyperparameter selection for all

models that we trained on a custom train/validation split of

the public training set. This custom split contains 1 231 121
training and 50 046 validation images. We then retrain the

best model on the full training set (1 281 167 images), pos-

sibly with fewer labels, and report final results obtained on

the public validation set (50 000 images).

We follow standard practice [38, 30] and perform exper-

iments where class-balanced labels are available for only

10% of the dataset. Note that 10% of ILSVRC-2012 still

corresponds to roughly 128 000 labeled images, and that

previous work uses the full (public) validation set for model

selection. While we use a custom validation set extracted

from the training set, using such a large validation set does

not correspond to a realistic scenario, as already discussed

by [31, 38, 28]. We also want to cover more realistic cases

in our evaluation. We thus perform experiments on 1% of

labeled examples (roughly 13 000 labeled images), while

also using a validation set of only 5000 images. We analyze

the impact of validation set size in Section 7.

We always define epochs in terms of the available labeled

data, i.e. one epoch corresponds to one full pass through the

labeled data, regardless of how many unlabeled examples

have been seen. We optimize our models using stochas-

tic gradient descent with momentum on minibatches of size

256 unless specified otherwise. While we do tune the learn-

ing rate, we keep the momentum fixed at 0.9 across all ex-

periments. Table 1 summarizes our main results.

4.1. Plain Supervised Learning

Whenever new methods are introduced, it is crucial to

compare them against a solid baseline of existing methods.

The simplest baseline to which any semi-supervised learn-

ing method should be compared to, is training a plain super-

vised model on the available labeled data.

Oliver et al. [28] discovered that reported baselines

trained on labeled examples alone are unfairly weak, per-

haps given that there is not a strong community behind tun-

ing those baselines. They provide strong supervised-only

baselines for SVHN and CIFAR-10, and show that the gap

shown by the use of unlabeled data is smaller than reported.

We observed the same in the case of ILSVRC-2012.

Thus, we aim to provide a strong baseline for future re-

search by performing a relatively large search over train-

ing hyperparameters for training a model on only 10% of

ILSVRC-2012. Specifically, we try weight-decay values

1479



in {1, 3} · 10{−2,−3,−4}, learning rates in {0.3, 0.1, 0.03},

four different learning rate schedules spanning 30 to 500
epochs, and finally we explore various model architectures:

ResNet50, ResNet34, ResNet18, in both “regular” (v1) and

“pre-activation” (v2) variants, as well as half-, double-,

triple-, and quadruple-width variants of these, testing the

assumption that smaller or shallower models overfit less.

In total, we trained several thousand models on our cus-

tom training/validation split of the public training set of

ILSVRC-2012. In summary, it is crucial to tune both weight

decay and training duration while, perhaps surprisingly,

model architecture, depth, and width only have a small in-

fluence on the final results. We thus use a standard, un-

modified ResNet50v2 as model, trained with weight decay

of 10−3 for 200 epochs, using a standard learning rate of

0.1, ramped up from 0 for the first five epochs, and decayed

by a factor of 10 at epochs 140, 160, and 180. We train

in total for 200 epochs. The standard augmentation proce-

dure of random cropping and horizontal flipping is used dur-

ing training, and predictions are made using a single central

crop keeping aspect ratio.

We perform a similar search when training our base-

line on 1% of ILSVRC-2012, but additionally include two

choices of data augmentation (whether or not to apply ran-

dom color augmentation) and two minibatch sizes (256 and

1024) in the hyperparameter search. Perhaps somewhat

surprisingly, the results here are similar, in that tuning the

weight decay and training duration is crucial, but model ar-

chitecture does not matter much. Additionally, performing

color augmentation becomes important. Here too, we use

a standard, unmodified ResNet50v2 as model, trained with

weight decay of 10−2 for 1000 epochs, using a learning rate

of 0.011, ramped up from 0.0 for the first ten epochs2, and

decayed by a factor of 10 at epochs 700, 800, and 900. We

train in total for 1000 epochs. A more detailed presentation

of the results is provided in the supplementary material.

Using this only slightly altered training procedure, our

baseline models achieve 80.43% top5 accuracy (56.35%
top1) on the public ILSVRC-2012 validation set when

trained on only 10% of the full training set. Our 1% base-

line achieves 48.43% top5 accuracy (25.39% top1). These

results form a solid baseline to compare to, considering

that the same standard ResNet50v2 model achieves 92.82%
top5 accuracy (75.89% top1) on 100% of the labels.

For all further experiments, we reuse the best hy-

perparameters discovered here, except that we try two

additional learning rates: {0.3, 0.1, 0.03} for 10% and

{0.03, 0.01, 0.003} for 1%, and two additional weight de-

cays: {10−4, 3·10−4, 10−3} for 10% and {3·10−3, 10−2, 3·
10−2} for 1%. We also try two different weights wu for the

1While the standard learning rate of 0.1 worked equally well, learning

curves seemed significantly less stable.
2This was likely not necessary, but kept for consistency.

Table 1. Top-5 accuracy [%] obtained by individual methods when

training them on ILSVRC-2012 with a subset of labels. All meth-

ods use the same standard width ResNet50v2 architecture.

ILSVRC-2012 labels: 10% 1%

(i.e. images per class) (128) (13)

Supervised Baseline (Section 4.1) 80.43 48.43

Pseudolabels [19] 82.41 51.56

VAT [22] 82.78 44.05

VAT + Entropy Minimization [10] 83.39 46.96

Self-sup. Rotation [16] + Linear 39.75 25.98

Self-sup. Exemplar [16] + Linear 32.32 21.33

Self-sup. Rotation [16] + Fine-tune 78.53 45.11

Self-sup. Exemplar [16] + Fine-tune 81.01 44.90

S4L-Rotation 83.82 53.37

S4L-Exemplar 83.72 47.02

additionally introduced loss Lu: wu ∈ {0.5, 1.0}.

4.2. Semisupervised Baselines

We train semi-supervised baseline models using (1)

Pseudo-Label, (2) VAT, and (3) VAT+EntMin. To the best

of our knowledge, we present the first evaluation of these

techniques on ILSVRC-2012.

Pseudo-Label Using the plain supervised learning mod-

els from Section 4.1, we assign pseudo-labels to the full

dataset. Then, in a second step, we train a ResNet50v2

from scratch following standard practice, i.e. with learning

rate 0.1, weight decay 10−4, and 100 epochs on the full

(pseudo-labeled) dataset.

We try both using all predictions as pseudo-labels, as

well as using only those predictions with a confidence above

0.5. Both perform closely on our validation set, and we

choose no filtering for the final model for simplicity.

Table 1 shows that a second step training with pseudo-

labels consistently improves the results with both 10% and

1% labels. This motivates applying the idea to our best

semi-supervised model, which is discussed in Section 5.

VAT We first verify our VAT implementation on CIFAR-

10. With 4000 labels, we are able to achieve 86.41% top-1

accuracy, which is in line with the 86.13% reported in [28].

Besides the previously mentioned hyperparameters com-

mon to all methods, VAT needs tuning ǫvat. Since it corre-

sponds to a distance in pixel space, we use a simple heuristic

for defining a range of values to try for ǫvat: values should

be lower than half the distance between neighbouring im-

ages in the dataset. Based on this heuristic, we try values of

ǫvat ∈ {50, 50 · 2−1/3, 50 · 2−2/3, 25} and found ǫvat ≈ 40.

VAT+EntMin VAT is intended to be used together with

an additional entropy minimization (EntMin) loss. Ent-
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Min adds a single hyperparameter to our best VAT model:

the weight of the EntMin loss, for which we try wentmin ∈
{0, 0.03, 0.1, 0.3, 1}, without re-tuning ǫvat.

The results of our best VAT and VAT+EntMin model are

shown in Table 1. As can be seen, VAT performs well in the

10% case, and adding adding entropy minimization consis-

tently improves its performance. In Section 5, we further

extend the co-training idea to include the self-supervised

rotation loss.

4.3. Selfsupervised Baselines

Previous work has evaluated features learned via self-

supervision in a “semi-supervised” way by either freezing

the features and learning a linear classifier, or by using the

self-supervised model as an initialization for fine-tuning,

with a subset of the labels in both cases. In order to compare

our proposed way to do self-supervised semi-supervised

learning to these evaluations, we train a rotation and an ex-

emplar model following the best practice from [16] but with

standard width (“4×” in [16]).

Following our established protocol, we tune the weight

decay and learning rate for the logistic regression, although

interestingly the standard values from [11] of 10−4 weight

decay and 0.1 learning rate worked best.

The results of evaluating these models with both 10%
and 1% are presented in Table 1 as “Self-sup. + Linear” and

“Self-sup. + Fine-tune”. Note that while our results for the

linear experiment are similar to those reported in [16], they

are not directly. This is due to 1) ours being evaluated on

the public validation set, while they evaluated on a custom

validation set, and 2) they used L-BFGS while we use SGD

with standard augmentations. Furthermore, fine-tuning ap-

proaches or slightly surpasses the supervised baseline.

4.4. Selfsupervised Semisupervised Learning

For training our full self-supervised semi-supervised

models (S4L), we follow the same protocol as for our semi-

supervised baselines, i.e. we use the best settings of the

plain supervised baseline and only tune the learning rate,

weight decay, and weight of the newly introduced loss. We

found that for both S4L-Rotation and S4L-Exemplar, the

self-supervised loss weight w = 1 worked best (though not

by much) and the optimal weight decay and learning rate

were the same as for the supervised baseline.

As described in Section 3.1, we apply the self-supervised

loss on both labeled and unlabeled images. Furthermore,

both Rotation and Exemplar self-supervision generate aug-

mented copies of each image, and we do apply the supervi-

sion loss on all copies of the labeled images. We performed

one case study on S4L-Rotation in order to investigate this

choice, and found that whether or not the self-supervision

loss Lself is also applied on the labeled images does not

have significant impact. On the other hand, applying the

Table 2. Comparing our MOAM to previous methods in the litera-

ture on ILSVRC-2012 with 10% of the labels. Note that different

models use different architectures, larger than those in Table 1.

labels Top-5 Top-1

MOAM full (proposed) 10% 91.23 73.21

MOAM + pseudo label (proposed) 10% 89.96 71.56

MOAM (proposed) 10% 88.80 69.73

ResNet50v2 (4×wider) 10% 81.29 58.15

VAE + Bayesian SVM [30] 10% 64.76 48.41

Mean Teacher [38] 10% 90.89 -
†UDA [40] 10% 88.52† 68.66†

†CPCv2 [12] 10% 84.88† 64.03†

Training with all labels: †marks concurrent work.

ResNet50v2 (4×wider) 100% 94.10 78.57

MOAM (proposed) 100% 94.97 80.17
†UDA [40] 100% 94.45† 79.04†

†CPCv2 [12] 100% 93.35† -

supervision loss Lsup on the augmented images generated

by self-supervision does indeed improve performance by

almost 1%. Furthermore, this allows to use multiple trans-

formed copies of an image at inference-time (e.g. four rota-

tions) and take the average of their predictions. While this

inference is 1% to 2% more accurate, the results we report

do not make use of this for fair comparison.

The results shown in Table 1 show that our proposed way

of doing self-supervised semi-supervised learning is indeed

effective for the two self-supervision methods we tried. We

hypothesize that such approaches can be designed for other

self-supervision objectives.

We additionally verified that our proposed method is not

sensitive to the random seed, nor the split of the dataset, see

Appendix ?? for details.

Finally, in order to explore the limits of our proposed

models and match capacity of the architectures used in con-

current papers (e.g. [12]), we train the S4L-Rotation model

with a more powerful architecture, such as ResNet152v2

2×wider, and also use large computational budget to tune

hyperparameters. In this case our model achieves even bet-

ter results: 86.41% top-5 accuracy with 10% labels and

57.50% with 1% labels.

5. Semi-sup. and S
4
L are Complementary

Since we found that different types of models perform

similarly well, the natural next question is whether they are

complementary, in which case a combination would lead to

an even better model, or whether they all reach a common

“intrinsic” performance plateau.

In this section, we thus describe our Mix Of All Mod-

els (MOAM). In short: in a first step, we combine S4L-
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Rotation and VAT+EntMin to learn a 4× wider [16] model.

We then use this model in order to generate pseudo labels

for a second training step, followed by a final fine-tuning

step. Results of the final model, as well as the models ob-

tained in the two intermediate steps, are reported in Table 2

along with previous results reported in the literature.

Step 1: Rotation+VAT+EntMin In the first step, we

jointly optimize the S4L-Rotation loss and the VAT and

EntMin losses. We iterated on hyperparameters for this

setup in a less structured way than in our controlled experi-

ments above (always on our custom validation set) and only

mention the final values here. Our model was trained with

batch size 128, learning rate 0.1, weight decay 2 · 10−4,

training for 200 epochs with 10 epoch linear learning rate

rampup up, then 10-fold decays at 100, 150, and 190

epochs. We use inception crop and horizontal mirroring

augmentations. We used the following relative loss weights:

wsup = 0.3, wrot = 0.7, wvat = 0.3, wentmin = 0.3. We tried

a few ways for setting those weights automatically, but man-

ually tuning them led to better performance. We also ap-

plied Polyak averaging to the model parameters, choosing

the decay factor such that parameters decay by 50% each

epoch. Joint training of these losses consistently improves

over a single objective. The model obtained after this first

step achieves 88.80% top-5 accuracy on ILSVRC-2012.

Step 2: Retraining on Pseudo Labels Using the above

model, we assign pseudo labels to the full dataset by av-

eraging predictions across five crops and four rotations of

each image3. We then train the same network again in the

exact same way (i.e. with all the losses) except for the fol-

lowing three differences: (1) the network is initialized using

the weights obtained in the first step (2) every example has

a label: the pseudo label (3) due to this, an epoch now cor-

responds to the full dataset; we thus train for 18 epochs,

decaying the learning rate after 6 and 12 epochs.

Step 3: Fine-tuning the model Finally, we fine-tune the

model obtained in the second step on the original 10% la-

bels only. This step is trained with weight decay 3·10−3 and

learning rate 5 · 10−4 for 20 epochs, decaying the learning

rate 10-fold every 5 epochs.

Remember that all hyper-parameters described here were

selected on our custom validation set which is taken from

the training set. The final model “MOAM (full)” achieves

91.23% top-5 accuracy, which sets the new state-of-the-art.

We conduct additional experiments and report perfor-

mance of MOAM (i.e. only Step 1) with 100% labels in

Table 2. Interestingly, MOAM achieves promising results

even in the high-data regime with 100% labels, outperform-

ing the fully supervised baseline: +0.87% for top-5 accu-

racy and +1.6% for top-1 accuracy.

3Generating pseudo-labels using 20 crops only slightly improved per-

formance by 0.25%, but is cheap and simple.
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Figure 2. Places205 learning curves of logistic regression on top of

the features learned by pre-training a self-supervised versus S4
L-

Rotation model on ILSVRC-2012. The significantly faster con-

vergence (“long” training schedule vs. “short” one) suggests that

more easily separable features are learned.

6. Transfer of Learned Representations

Self-supervision methods are typically evaluated in

terms of how generally useful their learned representation

is. This is done by treating the learned model as a fixed fea-

ture extractor, and training a linear logistic regression model

on top the features it extracts on a different dataset, usually

Places205 [42]. We perform such an evaluation on our S4L

models in order to gain some insight into the generality of

the learned features, and how they compare to those ob-

tained by pure self-supervision.

We closely follow the protocol defined by [16]. The

representation is extracted from the penultimate layer. We

use stochastic gradient descent (SGD) with momentum for

training these linear evaluation models with a batch size of

2048 and an initial learning rate of 0.1.

While Kolesnikov et al. [16] show that a very long train-

ing schedule (520 epochs) is required for the linear model

to converge using self-supervised representations, we ob-

serve dramatically different behaviour when evaluating our

self-supervised semi-supervised representations. Figure 2

shows the accuracy curve of the plain self-supervised rota-

tion method [16] and our proposed S4L-Rotation method

trained on 10% of ILSVRC-2012. As can be seen, the

logistic regression is able to find a good separating hyper-

plane in very few epochs and then plateaus, whereas in the

self-supervised case it struggles for a very long number of

epochs. This indicates that the addition of labeled data leads

to more separable representations, even across datasets.

We further investigate the gap between the representation

learned by an S4L model (MOAM) and a corresponding

baseline trained on 100% of the labels (the baseline from

Table 2). Surprisingly, we found that the representation
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Figure 3. Correlation between validation score on a (custom) validation set of 1000, 5000, and 50 046 images on ILSVRC-2012. Each

point corresponds to a trained model during a sweep for plain supervised baseline for the 1% labeled case. The best model according to

the validation set of 1 000 is marked in red. As can be seen, evaluating our models even with only a single validation image per class is

robust, and in particular selecting an optimal model with this validation set works as well as with the full validation set.

learned by “MOAM (full)” transfers slightly better than the

baseline, which used ten times more labelled data: 83.3%
accuracy vs. 83.1% accuracy, respectively. We provide full

details of this experiment in Supplementary Material.

7. Is a Tiny Validation Set Enough?

Current standard practice in semi-supervised learning is

to use a subset of the labels for training on a large dataset,

but still perform model selection using scores obtained on

the full validation set.4 But having a large labeled valida-

tion set at hand is at odds with the promised practicality

of semi-supervised learning, which is all about having only

few labeled examples. This fact has been acknowledged

by [31], but has been mostly ignored in the semi-supervised

literature. Oliver et al. [28] questions the viability of tun-

ing with small validation sets by comparing the estimated

model accuracy on small validation sets. They find that the

variance of the estimated accuracy gap between two mod-

els can be larger than the actual gap between those models,

hinting that model selection with small validation sets may

not be viable. That said, they did not empirically evaluate

whether it’s possible to find the best model with a small val-

idation set, especially when choosing hyperparameters for a

particular semi-supervised method.

We look at the many models we trained for the plain su-

pervised baseline on 1% of ILSVRC-2012. For each model,

we compute a validation score on a validation set of 1000
labeled images (i.e. one labeled image per class), 5000 la-

beled images (i.e. five labeled images per class), and com-

pare these scores to those obtained on a “full-size” valida-

tion set of 50 046 labeled images. The result is shown in

Figure 3 and it is striking: there is a very strong correlation

4To make matters worse, in the case of ILSVRC-2012, this validation

set is used both to select hyperparameters as well as to report final perfor-

mance. Remember that we avoid this by creating a custom validation set

from part of the training set for all hyperparameter selections.

between performance on the tiny and the full validation set.

Especially, while in parts there is high variability, those hy-

perparameters which work best do so in either case. Most

notably, the best model tuned on a small validation set is

also the best model tuned on a large validation set. We thus

conclude that for selecting hyperparameters of a model, a

tiny validation set is enough.

8. Discussion and Future Work

In this paper, we have bridged the gap between self-

supervised and semi-supervised learning by suggesting

an S4L framework which can be used to turn any self-

supervised method into a semi-supervised learning model.

We instantiated two such methods: S4L-Rotation and

S4L-Exemplar and have shown that they perform compet-

itively to methods from the semi-supervised literature on

the challenging ILSVRC-2012 dataset. We further showed

that S4L methods are complementary to existing semi-

supervision techniques, and MOAM, our proposed combi-

nation of those, leads to state-of-the-art performance.

While all of the methods we investigated show promis-

ing results for learning with 10% of the labels on ILSVRC-

2012, the picture is much less clear when using only 1%.

It is possible that in this low data regime, when only 13 la-

beled examples per class are available, the setting fades into

the few-shot scenario, and a very different set of methods

would be required for reaching much better performance.

Nevertheless, we hope that this work inspires other re-

searchers in the field of self-supervision to consider extend-

ing their methods into semi-supervised methods using our

S4L framework, as well as researchers in the field of semi-

supervised learning to take inspiration from the vast amount

of recently proposed self-supervision methods.
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