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Abstract

Recent adversarial learning research has achieved very

impressive progress for modelling cross-domain data shifts

in appearance space but its counterpart in modelling cross-

domain shifts in geometry space lags far behind. This paper

presents an innovative Geometry-Aware Domain Adapta-

tion Network (GA-DAN) that is capable of modelling cross-

domain shifts concurrently in both geometry space and ap-

pearance space and realistically converting images across

domains with very different characteristics. In the proposed

GA-DAN, a novel multi-modal spatial learning technique is

designed which converts a source-domain image into mul-

tiple images of different spatial views as in the target do-

main. A new disentangled cycle-consistency loss is intro-

duced which balances the cycle consistency in appearance

and geometry spaces and improves the learning of the whole

network greatly. The proposed GA-DAN has been eval-

uated for the classic scene text detection and recognition

tasks, and experiments show that the domain-adapted im-

ages achieve superior scene text detection and recognition

performance while applied to network training.

1. Introduction

A large amount of labelled or annotated images is critical

for training robust and accurate deep neural network (DNN)

models, but collecting and annotating large datasets are of-

ten extremely expensive. In addition, state-of-the-art DNN

models usually assume that images in the training and in-

ference stages are collected under similar conditions which

often experience clear performance drops while applied to

images from different domains. Such lack of scalability and

transferability makes collection and annotation even more

expensive while dealing with images collected under differ-

ent conditions from different domains. Unsupervised Do-

Figure 1. Domain adaptation by the proposed GA-DAN: For scene

text images with clear shifts from the Source Domain to the Tar-

get Domain, GA-DAN models the domain shifts in appearance

and geometry spaces simultaneously and generates Adapted im-

ages with high-fidelity in both appearance and geometry spaces.

main Adaptation (DA), which transfers images and features

from a source domain to a target domain, has achieved very

impressive performance especially with the recent advances

of Generative Adversarial Networks (GANs) [11]. Differ-

ent DA techniques have been developed and applied to dif-

ferent computer vision problems successfully such as style

transfer, image synthesis, etc.

State-of-the-art DA still faces various problems. In par-

ticular, most existing systems focus on learning feature shift

in appearance space only whereas the feature shift in geom-

etry space is largely neglected. On the other hand, images

from different domains often differ in both appearance and

geometry spaces. Take various texts in scenes as an ex-
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ample. They could suffer from motion blurs in appearance

space and perspective distortion in geometry space concur-

rently as shown in the target domain images in Fig. 1, and

both are essential features for learning robust and accurate

scene text detectors and recognizers. As a result, existing

techniques often suffer from a clear performance drop when

source and target domains have clear geometry discrepancy

as observed for images and videos from different domains.

We design an innovative Geometry-Aware Domain

Adaptation Network (GA-DAN), an end-to-end trainable

network that learns and models domain shifts in appear-

ance and geometry spaces simultaneously as illustrated in

the last two rows of Fig. 1. One unique feature of the pro-

posed GA-DAN is a multi-modal spatial learning structure

that learns multiple spatial transformations and converts a

source-domain image into multiple target-domain images

realistically as illustrated in Figs. 4 and 5. In addition, a

novel disentangled cycle-consistency loss is designed which

guides the GA-DAN learning towards optimal transfer con-

currently in both geometry and appearance spaces. The

GA-DAN takes the cycle structure as illustrated in Fig. 2,

where the spatial modules (SX and SY ) model the feature

shifts in geometry space and the generators (GX and GY )

complete the blank as introduced by the spatial transforma-

tion and model the feature shifts in appearance space. The

discriminators discriminate not only ‘fake image’ and ‘real

image’ but also ‘fake transformation’ and ‘real transforma-

tion’, leading to optimal modelling of domain and feature

shifts in geometry and appearance spaces.

The contributions of this work are threefold. First, it de-

signs a novel network that models domain shifts in geom-

etry and appearance spaces simultaneously. To the best of

our knowledge, this is the first network that performs do-

main adaptation in both spaces concurrently. Second, it

designs an innovative multi-modal spatial learning mech-

anism and introduces a spatial transformation discrimina-

tor to achieve multi-modal adaptation in geometry space.

Third, it designs a disentangled cycle-consistency loss that

balances the cycle-consistency for concurrent adaptation in

appearance and geometry spaces and can also be applied to

generic domain adaptation.

2. Related Works

2.1. Domain Adaptation

Domain adaptation is an emerging research topic that

aims to address domain shift and dataset bias [48, 61]. Ex-

isting techniques can be broadly classified into two cate-

gories. The first category focuses on minimizing discrepan-

cies between the source domain and the target domain in the

feature space. For example, [34] explored Maximum Mean

Discrepancies (MMD) and Joint MMD distance across do-

mains over fully-connected layers. [55] studied feature

adaptation by minimizing the correlation distance and then

extended it to deep architectures [56]. [4] modelled domain-

specific features to encourage networks to learn domain-

invariant features. [10, 62] improved feature adaptation by

designing various adversarial objectives.

The second category adopts Generative Adversarial Nets

(GANs) [11] to perform pixel-level adaptation via continu-

ous adversarial learning between generators and discrimi-

nators which has achieved great success in image genera-

tion [8, 45, 75], image composition [30, 74, 70] and image-

to-image translation [79, 19, 52]. Different approaches

have been investigated to address pixel-level image trans-

fer by enforcing consistency in the embedding space. [57]

translates a rendering image to a real image by using con-

ditional GANs. [3] studies an unsupervised approach to

learn pixel-level transfer across domains. [31] proposes an

unsupervised image-to-image translation framework using

a shared-latent space. [9] introduces an inference model

that jointly learns a generation network and an inference

network. More recently, CycleGAN [79] and its variants

[68, 26] achieve very impressive image translation by using

cycle-consistency loss. [16] proposes a cycle-consistent ad-

versarial model that adapts at both pixel and feature levels.

2.2. Scene Text Detection and Recognition

Automated detection and recognition of various texts in

scenes has attracted increasing interests as witnessed by

increasing benchmarking competitions [25, 51]. Different

detection techniques have been proposed from those ear-

lier using hand-crafted features [42, 36] to the recent us-

ing DNNs [77, 22, 69, 60, 72, 65]. Different detection ap-

proaches have also been explored including character based

[18, 59, 23, 15, 17], word-based [22, 28, 33, 14, 58, 78,

32, 63, 38, 39, 44, 73, 7, 35, 29] and the recent line-based

[76]. Meanwhile, different scene text recognition tech-

niques have been developed from the earlier recognizing

characters directly [20, 67, 47, 1, 12, 21] to the recent rec-

ognizing words or text lines using recurrent neural network

(RNN), [49, 53, 54, 50] and attention models [27, 5, 71].

Similar to other detection and recognition tasks, train-

ing accurate and robust scene text detectors and recognizers

requires a large amount of annotated training images. On

the other hand, most existing datasets such as ICDAR2015

[25] and Total-Text [6] contain a few hundred or thousand

training images only which has become one major factor

that impedes the advance of scene text detection and recog-

nition research. The proposed domain adaptation technique

addresses this challenge by transferring existing annotated

scene text images to a new target domain, hence alleviate

the image collection and annotation efforts greatly.
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Figure 2. The structure of the proposed GA-DAN: SX (or SY ) represents the spatial modules as enclosed in blue-color boxes which consist

of Spatial Code, transformation module T and localization network LNX (or LNY ) that predict transformation matrix and transform input

images. GX (or GY ) denote generators consisting of GXA
(or GYA

) and GXB
(or GYB

) as enclosed in green-color boxes that complete

the background and translate the image style, respectively. DX , DY and DT within orange-color boxes denote different discriminators.

3. Methodology

We propose an innovative geometry-aware domain adap-

tation network (GA-DAN) that performs multi-modal do-

main adaptation concurrently in both spatial and appearance

spaces as shown in Fig. 2. Detailed network architecture,

multi-modal spatial learning and adversarial training strat-

egy will be presented in the following three subsections.

3.1. GA­DAN Architecture

The GA-DAN consists of spatial modules, generators

and discriminators as enclosed within blue-color, green-

color and orange-color boxes, respectively, as shown in

Fig. 2. The overall network is designed in a cycle struc-

ture, where the mappings between the source domain X

and the target domain Y are learned by sub-modules X →
Adapted X (X → Y ) and Y → Adapted Y (Y → X), re-

spectively. In the X → Y mapping, the spatial module SX

transforms images in X to new images in Transformed X

that has similar spatial styles as Y . The generator GX then

completes the blank as introduced by the spatial transfor-

mation and translates the completed images to new images

in Adapted X that has similar appearance as Y . A discrim-

inator DY attempts to distinguish Adapted X and Y which

drives SX and GX to learn better spatial and appearance

mapping from X to Y . Similar processes happen in the

Y → X mapping as well.

The spatial modules SX (as well as SY ) has a localiza-

tion network LNX and a transformation module T for do-

main adaptation in geometry space, more details to be pre-

sented in the following subsection. The generator GX (as

well as GY ) consists of two sub-generators GXA
and GXB

for adaptation in appearance space. In particular, the spa-

tial module SX will produce a binary map with 1 denot-

ing pixels transformed from the original image and 0 for

padded black background (not shown but can be inferred

from the sample image in Transformed X in Fig. 2). Un-

der the guidance of the binary map, GXA
will learn from Y

for new contents to complete the black background of the

transformed image (as in Transformed X), and GXB
further

adapts the completed images to have similar appearance as

Y as illustrated in Fig. 2. Our study shows that the Adapted

X is quite blurry if a single generator is used to complete

the black background and adapt the appearance. The use

of the two dedicated generators GXA
and GXB

for back-

ground completing and appearance adaptation helps greatly

for realistic adaptation in appearance space.

Note directly concatenating an appearance-transfer GAN

(e.g. CycleGAN [79]) and a geometry-transfer GAN (e.g.

ST-GAN [30]) does not perform well for simultaneous im-

age adaptation in geometry and appearance spaces. Due to

the co-existence of spatial and appearance shifts between

the source and target domain images, the discriminator of

the geometry-transfer GAN (or appearance-transfer GAN)

will be confused by the appearance (or geometry) shift

which leads to poor adversarial learning outcome. Our GA-

DAN is an end-to-end trainable network that coordinates

the learning in geometry and appearance spaces simultane-

ously and drives the network for optimal adaptation in both
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spaces, more details to be presented in Section 3.3.

Table 1. Localization network LNX and LNY within the multi-

modal spatial learning shown in Fig. 2, N denotes the number of

parameters.

Layers Out Size Configurations

Block1 128× 128 3× 3 conv, 16, 2× 2 pool
Block2 64× 64 3× 3 conv, 32, 2× 2 pool

Block3 32× 32 3× 3 conv, 64, 2× 2 pool

Block4 16× 16 3× 3 conv, 128, 2× 2 pool
Block5 8× 8 3× 3 conv, 128, 2× 2 pool

FC1 512 -

FC2 N -

3.2. Multi­Modal Spatial Learning

To generate images with different spatial views and fea-

tures (similar to images in the target domain), we design

a multi-modal spatial learning structure that learns multi-

modal spatial transformations and maps a source-domain

image to multiple target-domain images with different spa-

tial views. Specifically, the multi-modal spatial learning

first samples Spatial Code (i.e., random vectors) from nor-

mal distributions and then regresses it to predict spatial

transformation matrix (according to the spatial features of

the input image) by using a localization network LNX (or

LNY ) as shown in Table 1. With the predicted transforma-

tion matrix that could be affine, homography or thin plate

spline [2], the input image can be transformed to a new im-

age with a different spatial view by T which performs actual

transformation. Multiple new spatial views can be gener-

ated by running GA-DAN and sampling the Spatial Code

multiple times, leading to the proposed multi-modal spatial

mapping as illustrated in Figs. 4 and 5.

The multi-modal spatial learning as guided by DX and

DY tends to be unstable and hard to converge as the con-

current learning in geometry and appearance spaces is over-

flexible and often entangled with each other. We address

this issue by including a new discriminator DT as shown in

Fig. 2 which imposes certain constraints to the cyclic spatial

learning and accordingly leads to more stable and efficient

learning of the whole network. As shown in Fig. 2, SX

predicts a transformation matrix HXY for mapping from

domain X to domain Y , and SY predicts another transfor-

mation matrix HY X for mapping from domain Y to domain

X . The inverse matrix H−1

XY can be derived from HXY

and it should be in the same transformation domain with the

HY X . DT thus attempts to discriminates H−1

XY and HY X

which drives the spatial transformations in two inverse di-

rections to learn from each other. It bridges the spatial learn-

ing in opposite directions and imposes extra constraints in

the geometry spaces, greatly improving the learning effi-

ciency and learning stability of the whole network.

Figure 3. Illustration of the disentangled cycle-consistency loss:

SX , SY , GX and GY denotes the spatial modules and genera-

tors, respectively, as shown in Fig. 2. x, x
S
−1

X

and xSY
refer to

the input images in domain X, reconstructed image by the inverse

transformation of SX and reconstructed image by SY . HXY and

HSY
refer to the predicted transformation matrices by SX and SY .

ACL and SCL denote appearance cycle-consistency loss and spa-

tial cycle-consistency loss which are obtained by calculating the

L1 loss between (x, x
S
−1

X

) and (H−1

XY
, HSY

), respectively.

3.3. Adversarial Training

Due to the adaptation in geometry and appearance

spaces, the adversarial learning needs to coordinate the min-

imization of cycle-consistency loss in both spaces properly.

In addition, the adversarial learning also needs to take care

of the new discriminator DT as shown in Fig. 2. We design

an innovative disentangled cycle-consistency loss and ad-

versarial objective to tackle these challenges, more details

to be described in the following two subsections.

Disentangled Cycle-Consistency Loss. We design a disen-

tangled cycle-consistency loss that decomposes the cycle-

consistency loss into a spatial cycle-consistency loss (SCL)

and an appearance cycle-consistency loss (ACL) and bal-

ances their weights during learning. With spatial transfor-

mation involved, a small shift (due to inaccurate prediction

of the spatial transformation matrix) in geometry space will

lead to a very large cycle-consistency loss which can easily

override the ACL and ruin the learning of the whole net-

work. The decomposition of the cycle-consistency loss into

ACL and SCL helps to address this issue effectively.

As shown in Fig. 3, the image x is fed into SX to predict

the transformation matrix HXY and the transformed image

is then fed to GX for translation in appearance space. The

translated image will be recovered in two different man-

ners. First, it will be transformed by the inverse of HXY

(i.e. H−1

XY ) and further translated by GY to generate xS
−1

X

.

Second, it will be passed to SY to predict the transforma-

tion matrix HSY
so as to be transformed by the estimated

HSY
and further translated by GY to produce xSY

. Note

the Spatial Code in SX and SY are identical here so that the

input image can be recovered in geometry space.

The xS
−1

X

can be fully recovered from x in geometry

space since the recovering matrix H−1

XY is simply the in-
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verse of HXY . But xS
−1

X

is different from x in appearance

space. The ACL can thus be computed by L1 loss between

x and xS
−1

X

(only appearance difference exists) as follows:

ACLX = Ex∼X [
∥

∥

∥
xS

−1

X

− x
∥

∥

∥
] (1)

Though xS
−1

X

and xSY
differ only in geometry space, SCL

cannot be obtained by computing L1 loss between them be-

cause a minor shift in geometry space will lead to a very

large L1 loss. To ensure the spatial cycle-consistency, we

obtain the SCL by directly computing the L1 loss of the

transformation matrix H−1

XY and HSY
as follows:

SCL = Ex∼X [
∥

∥H−1

XY −HSY

∥

∥] (2)

Further, the bordering regions of the original image may

be lost by the spatial transformation which could affect the

training seriously. While adapting an image from domain X

to domain Y , the adaptation should ensure that all image in-

formation within the domain X is well preserved. Given the

binary transformation map m from SX , we can directly ap-

ply the inverse transformation H−1

XY to m to obtain mH
−1

XY

.

As the missing region by the spatial transformation will not

be recovered, a region missing loss (RML) is defined for

better preserving the transformed image as follows:

RML = Ex∼X [
∥

∥

∥
mH

−1

XY

−m
∥

∥

∥
] (3)

The overall cycle-consistency loss in the domain X can thus

be formed as follows:

Lcyc = λaclACL+ λsclSCL+RML (4)

where λacl and λscl are the weights of ACL and SCL.

Adversarial Objective. The adversarial objective of the

mapping X → Y can be defined by:

LGAN = Ey∼Y [logDY (y)]

+ Ex∼X [log(1−DY (GX(SX(x)))]

+ Ey∼Y [logDT (H
−1

Y X)] + Ex∼X [log(1−DT (HXY ))]

(5)

where HXY and H−1

Y X are the transformation matrix for

X → Y and the inverse transformation for Y → X . SX

and GX aim to minimize this objective while DY and DT

try to maximize it, i.e. minSXGXmaxDY DTLGAN . The

objective of the mapping Y → X can be obtained similarly.

Note to ensure that the translated image preserves features

of the original image, an identity loss is included as follows:

Lidt = Ex∼X [‖GX(SX(x)) ∗m− SX(x) ∗m‖] (6)

where m refers to the binary mask as produced by SX .

4. Experiments

The proposed image adaptation technique has been eval-

uated over the scene text detection and recognition tasks.

4.1. Datasets

The experiments involve seven publicly available scene

text detection and recognition datasets as listed:

ICDAR2013 [24] is used in the Robust Reading Compe-

tition in the International Conference on Document Analy-

sis and Recognition (ICDAR) 2013. The images explicitly

focused around the text content of interest. It contains 848

word images for network training and 1095 for testing.

ICDAR2015 [25] is used in the Robust Reading Compe-

tition under ICDAR2015. It contains incidental scene text

images that appears in the scene without taking any specific

prior action to improve its positioning / quality in the frame.

MSRA-TD500 [66] dataset consists of 500 natural im-

ages (300 for training, 200 for test), which are taken from

indoor and outdoor scenes using a pocket camera. The

indoor images mainly capture signs, doorplates and cau-

tion plates while the outdoor images mostly capture guide

boards and billboards with complex background.

IIIT5K [41] has 2000 training images and 3000 test

images that are cropped from scene texts and born-digital

images. Each word in this dataset has a 50-word lexicon

and a 1000-word lexicon, where each lexicon consists of a

ground-truth word and a set of randomly picked words.

SVT [64] is collected from the Google Street View im-

ages that were used for scene text detection research. 647

words images are cropped from 249 street view images and

most cropped texts are almost horizontal.

SVTP [43] has 639 word images that are cropped from

the SVT images. Most images in this dataset suffer from

perspective distortion which are purposely selected for eval-

uation of scene text recognition under perspective views.

CUTE [46] has 288 word images most of which are

curved. All words are cropped from the CUTE dataset

which contains 80 scene text images that are originally col-

lected for scene text detection research.

4.2. Scene Text Detection

The proposed GA-DAN is evaluated by the performance

of the scene text detectors that are trained by using its

adapted images. In evaluations, the training set of IC-

DAR2013 (IC13) is used as the source dataset and the train-

ing sets of ICDAR2015 (IC15) and MSRA-TD500 (MT)

are used as the target datasets which contain very different

images as compared with those in IC13. GA-DAN gener-

ates two sets of images ‘AD-IC13’ and ‘10-AD-IC13’ for

each of the two target datasets. The ‘AD-IC13’ is generated

by 1-to-1 adaptation where each IC13 image is transformed

to a single image that has similar geometry and appearance
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Table 2. Scene text detection over the test images of the target datasets ICDAR2015 and MSRA-TD500: ‘IC13’, ‘Target’, ‘AD-IC13’ and

‘10-AD-IC13’ denote the dataset ICDAR2013, target dataset (ICDAR2015 or MSRA-TD500), 1-to-1 adapted ICDAR2013 and 1-to-10

adapted ICDAR2013, respectively. ‘SynthText’ refers to 800K synthetic images as reported in [13].

ICDAR2015 MSRA-TD500

Method Recall Precision F-score Recall Precision F-score

RRD [29] [SynthText + Target] 79.0 85.6 82.2 73.0 87.0 79.0

TextSnake [35] [SynthText + Target] 80.4 84.9 82.6 73.9 83.2 78.3

EAST [IC13] 43.7 68.2 53.3 34.9 71.2 46.8

EAST [AD-IC13] 59.6 69.9 64.4 51.5 67.7 58.5

EAST [10-AD-IC13] 71.6 67.3 69.4 55.8 69.9 62.1

EAST [Target] 76.9 81.1 79.0 64.4 73.8 68.7

EAST [IC13 + Target] 77.0 83.2 80.0 66.2 74.8 70.3

EAST [AD-IC13 + Target] 79.2 83.7 81.4 67.7 77.5 72.3

EAST [10-AD-IC13 + Target] 81.6 85.6 83.5 71.1 80.5 75.5

as the target dataset. The ‘10-AD-IC13’ is produced by 1-

to-10 adaptation where each IC13 image is transformed to

10 adapted images by sampling 10 different spatial codes.

Scene text detector EAST [78] is adopted for evaluation.

Table 2 shows quantitative results on the test set of two

target datasets. Seven EAST models are trained for each tar-

get dataset by using different training images including 1)

[IC13]: the training set of IC13, 2) [AD-IC13]: the 1-to-1

adapted IC13, 3) [10-AD-IC13]: the 1-to-10 adapted IC13,

4) [Target]: the training set of each target dataset, 5) [IC13

+ Target]: the combination of the IC13 training set and the

training set of each target dataset, 6) [AD-IC13 + Target]:

the combination of AD-IC13 and the training set of each tar-

get dataset, and 7) [10-AD-IC13 + Target]: the combination

of 10-AD-IC13 and the training set of each target dataset.

As Table 2 shows, the effectiveness of GA-DAN adapted

images can be observed from three aspects. First, EAST

[AD-IC13] outperforms EAST [IC13] by f-scores of

11.1% (53.3% → 64.4%) and 11.7% (46.8% → 58.5%)

on the target datasets IC15 and MT, respectively, demon-

strating the effectiveness of GA-DAN in adapting images

from IC13 to IC15 and MT. Second, EAST [10-AD-IC13]

improves EAST [AD-IC13] by f-scores of 5% (64.4% →
69.4%) and 3.6% (58.5% → 62.1%) on IC15 and MT,

respectively. This shows the effectiveness of the multi-

modal spatial learning that transforms a source-domain im-

age to multiple target-domain images that are complemen-

tary with different spatial views. Third, EAST [10-AD-

IC13+Target] improves EAST [IC13+Target] by a f-score

of 3.5% (80.0% → 83.5%) and 5.2% (70.3% → 75.5%) on

IC15 and MT, respectively. This shows that the adapted im-

ages are clearly more useful when combined with the train-

ing images of the target datasets for model training.

In addition, EAST [10-AD-IC13+Target] achieves

state-of-the-art performance on the dataset IC15 by includ-

ing only 2.3K GA-DAN adapted images (from 230 IC13

training images). As a comparison, TextSnake and RRD

use 800K synthetic images in ‘SynthText’ [20] and they

are also more advanced scene text detectors. Though the

‘10-AD-IC13’ is much smaller than SynthText, it con-

tributes more to the detection improvement largely because

of the large domain shifts between SynthText and IC15.

For the target dataset MT, the f-score of EAST [10-AD-

IC13+Target] is slightly lower than that of state-of-the-art

detectors TextSnake and RRD, largely because the domain

shifts between MT and SynthText are relatively small and

the much larger amount of images in SynthText help more

on the performance improvement. We believe higher f-

score can be achieved when a higher number of GA-DAN

adapted images are included in model training.

Table 3 shows the detection performance of different do-

main adaptation methods when EAST are trained by using

their adapted images from IC13 to IC15 (the Baseline is

trained using the original IC13 training images). Note for

CycleGAN we adopt patch-wise training to minimize the

effect of geometry differences in adversarial training. As

ST-GAN is originally for image composition, we adapt it

to achieve image translation in geometry space and restrict

the transformation parameters to avoid boundary losing in

testing phase. As Table 3 shows, all three adaptation mod-

els GA-DAN, CycleGAN and ST-GAN outperform Base-

line clearly, and GA-DAN achieves clearly better f-score
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Figure 4. Comparing our GA-DAN with state-of-the-art adaptation methods: The first and last columns show source-domain (IC13) and

target-domain (IC15) images. GA-DAN 1, GA-DAN 2 and GA-DAN 3 show three GA-DAN adapted images of different spatial views.

(64.4% vs. 57.2% and 57.6%), demonstrating its superi-

ority in adapting more realistic images. We also evaluate

a new model ST-GAN + CycleGAN that directly concate-

nates ST-GAN and CycleGAN for adaptation in both ge-

ometry and appearance spaces. It shows that our GA-DAN

still performs better by a large margin in f-score (64.4% vs.

60.8%), demonstrating its advantages in concurrent learn-

ing of geometric and appearance features.

Fig. 4 compares our GA-DAN with several state-of-

the-art image adaptation methods. As Fig. 4 shows, GA-

DAN adapts in both appearance and geometric spaces real-

istically, whereas SimGAN and CycleGAN can only adapt

appearance features and ST-GAN can only adapt geomet-

ric features. In addition, GA-DAN 1, GA-DAN 2 and GA-

DAN 3 show three GA-DAN adapted images with different

spatial views, demonstrating the effectiveness of our pro-

posed multi-modal spatial learning.

Table 3. Scene text detection on the IC15 test images: The detec-

tion models are trained using the adapted IC13 training images

(from IC13 to IC15) by different adaptation methods as listed.

(Baseline is trained by using the original IC13 training images)

Method Recall Precision F-score

CycleGAN [79] 50.3 66.3 57.2

ST-GAN [30] 52.9 63.4 57.6

ST-GAN + CycleGAN 57.3 64.7 60.8

Baseline 43.7 68.2 53.3

GA-DAN 59.6 69.9 64.4

4.3. Scene Text Recognition

For scene text recognition experiment, we select the

CUTE [46] and SVTP [43] as the target datasets. As current

scene text recognition datasets are all too small, we combine

all images from datasets IC13 [24], IIIT5K [41] and SVT

[64] as the source dataset denoted by ‘COMB’. As scene

texts in CUTE and SVTP are most curved or in perspective

views but most COMB texts are horizontal, we use the thin

plate spline for spatial transformation which is flexible for

various spatial transformations.

Table 4 shows recognition accuracy when COMB im-

ages are adapted by different adaptation methods and then

used to train the scene text recognition model: MORAN

[37]. As Table 4 shows, GA-DAN [WM] (GA-DAN with

1-to-1 spatial transformation) outperforms other adaptation

methods with a large margin. Additionally, most compared

adaptation methods do not show clear improvement over the

Baseline (trained by using the original COMB images with-

out adaptation). In particular, CycleGAN and CyCADA im-

prove the accuracy by 1.0% and 1.3% only for CUTE be-

cause they only adapt in appearance space but the main dis-

crepancy between COMB and CUTE is in geometry space.

CoGAN and UNIT tend to over-adapt the text appearance

which may even change the text semantics and make texts

unrecognizable.

Table 4 also shows the ablation study results. Two GA-

DAN models are trained for image adaptation. The first

model is a complete GA-DAN with all newly designed fea-

tures and components includes. The second is GA-DAN

[WD] which is trained with a normal instead of disentan-

gled cycle-consistency loss. For fair comparison, the region

missing loss is also included in GA-DAN [WD]. For the

complete GA-DAN, three sets of adapted images are gen-
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Figure 5. Comparing GA-DAN with state-of-the-art adaptation methods: Rows 1-2 show adaptation from COMB to CUTE, Rows 3-4 show

adaptation from COMB to SVTP. GA-DAN 1, GA-DAN 2 and GA-DAN 3 show GA-DAN adapted images of different spatial views.

Table 4. Ablation study and comparisons with state-of-the-art

adaptation methods: Recognition models are trained by different

adaptations of the COMB images to the target domains CUTE and

SVTP (Baseline uses the original COMB images and ‘Random’

applies random spatial transformation in adaptation).

Methods COMB-CUTE COMB-SVTP

SimGAN [40] 30.7 42.6

UNIT [31] 28.7 40.8

CoGAN [68] 28.3 40.2

DualGAN [40] 31.5 42.7

CycleGAN [79] 31.9 43.0

CyCADA [16] 32.2 43.6

Baseline 30.9 42.5

Random 28.8 42.7

GA-DAN [WD] 32.6 44.9

GA-DAN [WA] 36.1 45.2

GA-DAN [WM] 38.2 47.1

GA-DAN [10

AD]

43.1 51.7

erated to train the recognition model. The first set is GA-

DAN [WA] that just takes the output of SX without appear-

ance adaptation as shown in Fig. 2. The second set is GA-

DAN [WM] that performs 1-to-1 adaptation and transforms

each source-domain image into a single target-domain im-

age. The third set is GA-DAN [10 AD] that performs 1-

to-10 adaptation and transforms each source-domain image

into 10 target-domain images. As Table 4 shows, GA-DAN

[WA] clearly outperforms Baseline and ‘Random’ (adapted

using a random spatial transformation matrix) as well as

state-of-the-art adaptation methods, showing the superiority

of our spatial module in learning correct and accurate spa-

tial transformations. GA-DAN [WD] outperforms state-of-

the-art methods but clearly performs worse than GA-DAN

[WM], demonstrating the effectiveness of the proposed dis-

entangled cycle-consistency loss. GA-DAN [10 AD] out-

performs GA-DAN [WM] clearly, demonstrating the effec-

tiveness of our proposed multi-modal spatial learning.

Fig. 5 compares our GA-DAN with several state-of-

the-art adaptation methods. As Fig. 5 shows, GA-DAN

adapts in both appearance and geometry spaces realistically

whereas CycleGAN and SimGAN can only adapt in ap-

pearance space. In addition, GA-DAN 1, GA-DAN 2 and

GA-DAN 3 show that the proposed GA-DAN is capable

of transforming a source-domain image to multiple target-

domain images of different spatial views.

5. Conclusions

This paper presents a geometry-aware domain adaptation

network that achieves domain adaptation in geometry and

appearance spaces simultaneously. A multi-modal spatial

learning technique is proposed which can generate multiple

adapted images with different spatial views. A novel disen-

tangle cycle-consistency loss is designed which greatly im-

proves the stability and concurrent learning in both geome-

try and appearance spaces. The proposed network has been

validated over scene text detection and recognition tasks

and experiments show the superiority of the adapted images

while applied to train deep networks.
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