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Abstract

Image emotion recognition attracts much attention in re-

cent years due to its wide applications. It aims to under-

stand the emotional response of humans, where candidate

emotion categories are generally defined by specific psycho-

logical theories. However, with the development of psycho-

logical theories, emotion categories become increasingly

diverse, fine-grained, and difficult to collect samples. In

this paper, we investigate zero-shot learning (ZSL) problem

in the emotion recognition task, which aims to recognize the

new unseen emotions. Specifically, we propose an affective

structural embedding framework, utilizing mid-level seman-

tic representation, i.e., adjective-noun pairs (ANP) features,

to construct an intermediate embedding space. By doing

this, the learned intermediate space can bridge the affective

gap between low-level visual features and high-level seman-

tics. In addition, we introduce an adversarial constraint to

combine the visual and affective embeddings so as to re-

tain the discriminative capacity of visual features and the

affective structural information of semantic features during

training process. Our method is evaluated on five widely-

used affective datasets and the experimental results show

that the proposed algorithm outperforms the state-of-the-

art approaches.

1. Introduction

With the rapid development of social media, more and

more people prefer to record their lives and express opinions

via visual contents, e.g., images and videos [47]. In particu-

lar, computational understanding emotions of online images

has attracted increasing attention from academia and indus-

try due to its various applications, e.g., opinion mining [30],

online advertisement [15] and social networks [18].

In the past few years, many methods [38, 39, 43, 49]

have made huge progress for image emotion recognition,

which aims to classify emotions evoked by image content.

Most existing methods follow the general view in psychol-

ogy that a specific emotion can be recognized as a fixed
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Figure 1. Overview of zero-shot emotion recognition problem.

Each class has a prototype (denoted by a star). Training classes

are on the manifold with different colors. Test unseen classes are

in red and side information is provided to determine where an un-

seen classes locates. To classify an unseen image, we assign it a

label that corresponds to the nearest unseen prototypes.

number of basic emotions. Peng et al. [28] train regres-

sion models to predict the probabilities of Ekman’s six ba-

sic emotions [11, 10], including happiness, sadness, disgust,

anger, fear, and surprise. There are also methods employing

different psychological theory for emotion modeling. For

example, Yang et al. [40] jointly optimize emotion classifi-

cation and distribution learning task according to Mikels’

wheel [24], which replace happiness and surprise in Ek-

man’s basic emotions with amusement, content, awe, and

excitement. However, with the development of psychologi-

cal theories, basic emotion categories become increasingly

fine-grained. Traditional supervised learning methods can

only recognize the seen classes, e.g., happiness, anger and

other four emotions on the manifold as shown in Fig. 1.

Such recognition model trained on the pre-defined cate-

gories cannot recognize emotions dynamically, when new

categories are explored according to different psycholog-

ical theories. In addition, it is labor-intensive and time-

consuming to collect samples for rare emotion categories.

Zero-shot learning (ZSL) [37] aims to recognize new cat-

egories that are not exists in the training set, which has been

widely used in various vision tasks [9, 34, 51]. The conven-

tional zero-shot learning methods usually build a common
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space based on the correspondence between the seen images

and their class semantic representations. The space are also

shared by both seen and unseen classes, which rely on the

side information (e.g. attributes and Word2vec) about how

unseen classes are semantically related to the seen classes.

Then zero-shot learning can be simplified into a nearest

neighbor search task, and test images will be assigned to

the nearest unseen class in the common embedding space.

Such ZSL paradigm relies on the cross-modality similarity

between visual features and class semantic representations.

There exists an affective gap between low-level image fea-

tures and high-level emotional semantics [23, 46, 50] and

directly computing similarities is hard to describe the simi-

larity relationship correctly between them. Thus, zero-shot

emotion recognition becomes more challenging.

In this paper, we propose an affective structural embed-

ding framework using the mid-level semantic representa-

tions, i.e. adjective-noun pairs (ANP) [6] features, to con-

struct an intermediate embedding space. Both visual and

class semantic features are embedded into the learned em-

bedding space and aligned with the affective structure of

the ANP features. Therefore, our method can effectively

bridge the affective gap , which addresses the zero-shot as

well as generalized zero-shot learning problems in emotion

recognition. Note that in the zero-shot setting, training and

test classes are disjoint and in the more realistic generalized

zero-shot setting, training classes are present at test time.

In the training process, both visual embedding and affective

embedding are dynamically changing, and it is difficult to

combine them directly and effectively. We further introduce

an affective adversarial constraint to force the visual em-

bedding to choose an embedding space that preserves the

affective structural information.

Our contributions are summarized as follows: 1. We pro-

pose an end-to-end affective structural embedding frame-

work to learn an intermediate space and preserve emotion-

related information, in which both visual and class semantic

features are learned. To the best of our knowledge, this is

the first zero-shot learning work on image emotion recog-

nition. 2. We apply an affective adversarial constraint to

retain the discriminative capacity of visual features and the

affective structural information of semantic features during

training process. The experimental results show the superi-

ority of the proposed method over the state-of-the-art meth-

ods on five public datasets.

2. Related Work

2.1. Image Emotion Recognition

Previous approaches for image emotion recognition

mainly focus on the classification problem utilizing hand-

crafted features or deep learning features. In the early years,

many methods design hand-crafted features with different

levels to recognize image emotion. For low-level features,

Machajdik et al. [23] define a combination of hand-crafted

features according to aesthetics and psychology theory, in-

cluding color, texture, and composition. Zhao et al. [48]

further investigate more robust visual features related to art

principles as the mid-level representation. In another re-

search [7], adjective-none pairs are regarded as mid-level

semantic features, and a bank of visual sentiment classifiers

(SentiBank) is proposed for image affective analysis.

Recently, Convolutional Neural Network (CNN) [17, 14]

has been applied to image emotion recognition tasks and

achieved satisfactory results. Inspired by the research [7],

DeepSentiBank [8] adopts a deep CNN model to construct a

detector for visual sentiment concept based on the adjective-

noun pairs. You et al. [42] propose a novel progressive CNN

architecture PCNN, to make use of large noisy web data for

binary sentiment classification. Yang et al. [38] explore the

relation between emotions via deep metric learning and em-

ploy a multi-task framework to optimize retrieval and clas-

sification simultaneously. Later several methods [41, 39]

consider both global and local information for image emo-

tion recognition.

All the above methods employ a supervised manner to

learn the relationship between image visual content and

emotions, which depends on the pre-defined psychological

theories. In addition, many recent methods [5, 22] suggest

the types of emotions are much more various than previ-

ously assumed. Because of the diversity of emotional de-

scriptions, it is difficult to assign an emotional image to an

existing stereotypical label practically. The focus of our re-

search is to classify a novel emotion class which does not

appear in the training set.

2.2. Zero-Shot Learning

Zero-shot learning aims to classify unseen classes with-

out any training data. To cope with the challenge, most

methods [12, 45, 1, 35] utilize semantic attributes describ-

ing cross-class properties to transfer the semantic knowl-

edge from the seen classes to the novel unseen classes.

However, semantic attributes need manual definition and

annotation, which limits the scalability of the above ap-

proaches. Several methods [13, 2, 31] explore zero-shot

learning using word vector representations [25], which is

constructed by the large-scale text corpora in an unsuper-

vised way. For the affective datasets without attribute anno-

tations, we choose word vector representations as the class

semantic features.

Many zero-shot learning methods use the embedding-

based method seek to measure the similarities between the

visual features and class semantic features in different em-

bedding space. For example, DeViSE [13] directly learns a

linear mapping from the image space to the semantic space

using a ranking loss function. SJE [2] optimizes the struc-
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Figure 2. Pipeline of the proposed approach for zero-shot emotion recognition. Given the training image, we first extract the ANP features

using the pre-trained DeepSentiBank detector and feed them into an auto-encoder to conduct the latent ANP space. Meanwhile, visual

features are also embedded in the latent ANP space to align with the embedded semantic features and measure the similarities for zero-shot

emotion recognition. The whole framework is trained by optimizing the multi-loss function in an end-to-end manner.

tural SVM loss function to learn the bilinear compatibil-

ity between visual and semantic space. SAE [21] proposes

a semantic autoencoder to regularize the model. It firstly

projects the image features to the semantic space and fur-

ther reconstructs them back to the visual space. DEM [44]

chooses to embed the semantic features to the visual space.

PSR [3] further considers the inter-class semantic rela-

tionships during the mapping process. Moreover, many

zero-shot learning approaches [19, 20, 32] learn to embed

both visual and semantic features into a latent intermediate

space.

However, all the above ZSL methods fail to capture the

specific emotion information for emotion recognition prob-

lem. The visual and class semantic features are located in

different structural spaces, both of which are independent of

emotions. Our model utilizes the mid-level semantic repre-

sentations to construct an intermediate space. It can reserve

emotion-related information and effectively bridge the af-

fective gap.

There are also a few recent methods that tackle the

zero-shot learning problem utilizing adversarial learn-

ing methods and generative adversarial networks (GAN).

GAZSL [52] leverages GANs to imagine the visual fea-

tures given the noisy textual descriptions from Wikipedia.

CVAE-ZSL [27] proposes to use conditional variational

autoencoder to generate samples for unseen classes. f-

CLSWGAN [36] applies GAN to generate image features

conditional on class attributes. The idea of GAN and ad-

versarial learning methods are to train a generator that can

fool a discriminator to confuse the distributions of the gen-

erated and true samples. The max-min training procedure

can lead the generator to model the data distribution. Our

method is similar to the GAN applied in the feature level.

In this paper, we employ adversarial learning to bridge the

gap between visual and affective features.

3. Methodology

In this section, we first formalize the zero-shot emo-

tion task and then introduce the proposed affective struc-

tural embedding model. As shown in Fig. 2, we propose

an independent affective structural embedding with tradi-

tional visual-semantic embedding. Specifically, the ex-

tracted ANP features are fed into an auto-encoder to learn

the latent ANP space, and then both visual and class seman-

tic features are embedded into the learned ANP space so as

to effectively bridge the affective gap. In addition, we intro-

duce an affective adversarial constraint to effectively com-

bine visual and ANP features so as to retain the discrimina-

tive capacity and the affective structural information.

3.1. Problem Definition

Following conventional zero-shot learning problem, we

split the affective dataset with s seen classes and u un-

seen classes. The training set is then defined as DS =
{(xs

i , y
s
i )}

ns

i=1
, where xs

i ∈ XS denotes the i-th image of

the seen class and ysi ∈ YS is the corresponding class la-

bel. We define the test set as DU = {(xu
j , y

u
j )}

nu

j=1
, where

xu
j ∈ XU denotes the j-th unseen image and yuj ∈ YU is

the class label. The seen and unseen classes are disjoint, i.e.

YS ∩ YU = ∅. Additionally, we choose the word vector

zsi and zuj obtained by the NLP model [29] as the class se-

mantic features. Note that during the training stage, only

seen class images are used to learn the classifier model with

the assistance of semantic information zs. Given a test im-

age xu and the semantic feature zu, we aim to predict the

corresponding class yu.
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3.2. Affective Structural Alignment

ZSL problems are usually addressed by measuring sim-

ilarities between the visual and class semantic features.

Since affective datasets, e.g., the FI dataset, lack the at-

tribute annotations for class semantic features, we utilize

a text-based model, i.e. Word2vec [26], which is learned

from a large-scale text corpus in an unsupervised manner re-

quiring little or no human labor to annotate. However, they

only capture the weakly semantic relationship between dif-

ferent classes and are not discriminative enough to classify.

What’s more, visual features directly extracted from pre-

trained CNN model are also limited by the affective gap. In

order to align visual and class semantic features with more

emotional structure in the latent intermediate space, we in-

troduce an independent affective structural embedding.

First, we utilize the mid-level semantic representations

ANP features to construct an intermediate latent space.

Given a training image x, we choose the pre-trained ANP

detector DeepSentiBank [8] S(·) to extract the ANP fea-

ture S(x) ∈ R
d. To learn an effective latent space for

compact affective representation of original affective fea-

tures S(x), we adopt an auto-encoder model. Suppose the

input of the auto-encoder as the d-dimension ANP feature

S(x) ∈ R
d×n which contains n samples. The encoding part

of the auto-encoder embeds the input into the l-dimension

latent space h(x) using FC layers, which can be defined as:

h(x) = f(W1S(x)). Similarly, the decoder aims to recon-

struct the input as ˆS(x) ∈ R
d×n: ˆS(x) = f(W2h(x)). W1

and W2 are the weight matrices of the FC layers and f(·)
is the activation function. To learn the auto-encoder param-

eters, the input and output of the auto-encoder should be

close enough by optimizing the following loss:

Lre = ‖ ˆS(x)− S(x)‖2
2
. (1)

Meanwhile, the class semantic feature z corresponding

to the training image x is also projected into the learned la-

tent ANP space by the non-linear embedding φ(·). In other

words, we hope to minimize the distance between embed-

ded class semantic features φ(z) and learned latent ANP

features h(x). So the first part of loss function is defined as

‖h(x) − φ(z)‖2
2
. On the other hand, class semantic space

and learned latent space have different inter-class structures.

As the auto-encoder is used to reconstruct the ANP features

and make the latent features preserving emotion-relevant

information, we seek to match the structures of class se-

mantic features and the ANP features in the learned latent

space. Inspired by [16, 33], we project the class semantic

features to the mean of the ANP features of the correspond-

ing classes. Thus the second part of loss function is de-

fined as ‖Ch − φ(z)‖2
2
, where Ch denotes the mean vector

of the latent ANP features h(x) for each class. By opti-

mizing all the above constraints, embedded class semantic

features could learn emotion-relevant class representations,

which are better associated with the latent emotional con-

cepts. The affective structural alignment loss is formulated

as:

Las = ‖h(x)− φ(z)‖2
2
+ ‖Ch − φ(z)‖2

2
. (2)

The total affective structural embedding is optimized by

the combination of reconstruction loss and the affective

structural alignment loss:

Lae = Lre + Las. (3)

3.3. Affective Adversarial Constraint

To address the zero-shot learning problem, we also em-

bed visual and class semantic features to construct visual-

semantic embedding model and measure similarities. Sup-

pose θ(·) denotes the visual features embedding process, the

loss to align the visual and semantic features is defined as:

Lzl = ‖θ(x)− φ(z)‖2
2
. (4)

Currently, both the traditional visual-semantic embed-

ding and proposed affective structural embedding con-

tribute to recognizing unknown emotions. Visual fea-

tures have a better discriminative capacity while ANP fea-

tures contain some affective structural information, which

bridges the affective gap and useful for the zero-shot emo-

tion learning. However, it is difficult to combine both em-

beddings effectively during training process as both visual

and affective structural embedding are dynamically chang-

ing. Our goal is to retain the discriminative capacity of vi-

sual features θ(x) and combine the rich affective structural

information preserved in h(x). To this end, we apply an

adversarial constraint, which try to fool a discriminator net-

work D so that the output visual features are as similar as

embedded ANP features:

Ladv = Ex (logD(h(x))) + Ex (log [1−D(θ(x))]) , (5)

where θ(·) tries to minimize Ladv against D that tries to

maximize it. Considering this kind of adversarial learning

is tricky to optimize, in order to obtain better train stability,

we adopt the strategy of WGAN [4]. Please refer to [4] for

more details.

Combining all above mentioned constraints, the whole

model is trained by the following loss function:

L = Lzl + Lae + Ladv. (6)

3.4. ZSL Prediction

Given the test image x and the set of class semantic fea-

tures Z of candidate emotion classes, we can classify the

unseen emotion class via the simple nearest-neighbor re-

search. More specifically, the test image and candidate class
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semantic features are fed into the visual and semantic em-

bedding branch separately to get θ(x) and φ(Z). Then the

test image is recognized by calculating its distance to the

class semantic embedding features in the latent space:

ŷt = min
y∈YU

‖θ(x)− φ(Zy)‖2
2
, (7)

where Z denotes the semantic features associated with the

emotion label y. For the generalized ZSL setting, we only

need to modify the candidate space of labels as y ∈ YU ∪
YS .

4. Experiments

In this section, we first introduce the detailed experi-

mental setup, including the datasets, implementation de-

tails, and evaluation metrics. And then we compare with

the state-of-the-art approaches and analyze the results.

4.1. Datasets

We perform our experiments on five datasets, including

Flickr and Instagram (FI) [43], IAPSa [24], ArtPhoto [23]

,Emotion6 [28] and Abstract Paintings [23]. The FI dataset

is collected from 3 million weakly labeled web images

Flickr and Instagram by labeling with Mikels’ eight emo-

tion categories. A group of 225 Amazon Mechanical Turk

workers was employed to label the images. In total, 23,308

images receiving at least three agreements between workers

are included in the FI dataset. The International Affective

Picture System (IAPS) is widely used in visual sentiment

analysis research, which contains 395 pictures from IAPS

and is also labeled with Mikel’s eight emotion categories.

ArtPhoto includes 806 art photographs from photo sharing

sites and the owner of each image provides the ground truth

labels. Abstract Paintings includes 228 abstract paintings

consisting of texture and color. Emotion6 is collected from

Flickr for the sentiment prediction, which contains 1980 im-

ages and is annotated by seven emotional categories.

4.2. Implementation Details

We employ the ResNet-50 model as the backbone CNN

network and initialize our framework with the weights from

the pre-trained model on ImageNet. In addition, we apply

the pre-trained DeepSentiBank [8] detector to extract 2089-

dimension ANP features. For the auto-encoder, the dimen-

sion of the latent ANP feature is fixed to 1024. We utilize a

fully connected layer before the ReLU layer in order to em-

bed both the visual and semantic features to the latent ANP

space. The discriminator D is composed of two fully con-

nected layers and a ReLU layer, and takes 1024-d features

as input. The learning rate of stochastic gradient descent

(SGD) is 1e-4 and the weight decay is 1e-3. The momen-

tum is set as 0.9. We implement our model with Pytorch

and run all experiments on an NVIDIA GTX 1080Ti GPU.

For the class semantic feature, we choose to use

Word2vec [26], where each instance is represented by a

300-dimensional vector. The features are constructed au-

tomatically from large unlabeled text corpora without addi-

tional manual annotation.

4.3. Evaluation Metrics

Following previous ZSL methods [37], we employ the

average per-class accuracy as the evaluation metric. For the

generalized ZSL setting [37], we compute the average per-

class accuracy on unseen classes (AU→T ) and average per-

class accuracy on seen classes (AS→T ) when the prediction

label set is the union of seen and unseen classes. We also

compute the harmonic mean (H) on seen classes and unseen

classes, i.e., H = 2 ∗ (AU→T ∗AS→T )/(AU→T +AS→T ).

4.4. Results and Analysis

To evaluate the effectiveness of our model for zero-

shot emotion recognition, we compare with a variety

of ZSL methods, including common ZSL methods (i.e.

LATEM [35], SSE [45], SAE [21] and DEM [44]) and

the recent ZSL methods (i.e. LAD [20], CDL [19] and

RN [32]). Since the ANP features extracted by the

DeepSentiBank detector can be used as visual features in

image emotion recognition, we also report the zero-shot

recognition results using extracted ANP features.

We evaluate the performance of the proposed zero-shot

emotion recognition method on five affective datasets. As

shown in Table 1, we conduct the experiment on each

dataset with two kinds of split strategies in order to prove

the effectiveness and robustness of the proposed method. In

detail, for the datasets with 8 emotions, the splits of training

classes and testing classes are 6:2 and 4:4; for the Emotion6

dataset with 6 emotions, the splits of training classes and

testing classes are 4:2 and 3:3. For the FI dataset with 6 : 2
split setting, our method attains 68.87%, which is slightly

higher than the state-of-the-art reported by CDL (67.07%).

Among the comparison methods, CDL gets the best per-

formance followed by DEM (65.49%) while SSE gets the

worst performance. Our method and CDL both consider

the structural information of different space during the em-

bedding process, so the performance is much better than

other methods. Besides, our method further considers the

specific affective structural information which is relevant

to the emotion recognition. What’s more, we could utilize

the affective adversarial constraint to automatically find the

optimal solution of combining the two features when both

features are changing during the training process. Thus, our

method could obtain the best performance. For the 4 : 4
split setting, our method has achieved gains up to 3.77%

than DEM (50.96%). For the other small datasets, our

method can still achieve 1.29% ∼ 3.97% improvements.

We also observe that the ANP features (S) have a similar
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Table 1. Zero shot emotion recognition accuracy (%) of all methods on the FI, ArtPhoto, Abstract, IAPSa and Emotion6 datasets. We

evaluate the proposed model with several baseline zero-shot learning methods. S denotes the DeepSentiBank features, while D denotes

the CNN-based features, and M denotes the concatenation of the DeepSentiBank and CNN-based features.

FI ArtPhoto Abstract IAPSa Emotion6

Setting 6 : 2 4 : 4 6 : 2 4 : 4 6 : 2 4 : 4 6 : 2 4 : 4 4 : 2 3 : 3

D 53.32± 0.42 32.73 ± 0.32 38.57 ± 0.25 27.66 ± 0.76 56.71± 0.54 24.64 ± 0.48 49.81 ± 0.31 25.57± 0.22 52.88 ± 0.52 32.42 ± 0.44

[35] S 57.79 ± 0.44 38.59 ± 0.53 42.98 ± 0.32 25.26 ± 0.86 49.04 ± 0.22 22.39 ± 0.30 43.74 ± 0.74 25.26 ± 0.63 55.91± 0.15 29.89 ± 0.32

M 58.25± 0.36 37.57 ± 0.42 44.35 ± 0.88 24.17 ± 0.19 42.37 ± 0.79 25.68 ± 0.11 41.24 ± 0.52 29.35± 0.43 55.12 ± 0.21 34.82 ± 0.31

D 42.67 ± 0.04 33.61 ± 0.04 45.57 ± 0.02 26.55 ± 0.01 47.36 ± 0.05 21.41 ± 0.04 41.34 ± 0.01 22.97 ±0.07 42.12± 0.11 28.99 ±0.07

[45] S 43.37 ± 0.03 21.04 ± 0.04 42.85 ± 0.04 26.83 ±0.06 44.73 ±0.05 17.64 ± 0.02 50.73 ± 0.07 27.47± 0.02 53.18 ± 0.04 27.98 ± 0.07

M 42.02 ± 0.01 33.55 ±0.05 40.63 ± 0.08 20.51 ± 0.05 49.64 ± 0.04 22.33 ± 0.02 44.51± 0.09 30.62 ±0.01 52.85± 0.05 31.21 ±0.06

D 61.12 ± 0.00 37.34± 0.00 49.66± 0.00 23.45± 0.00 60.53± 0.00 29.41± 0.00 49.04± 0.00 29.73± 0.00 44.24± 0.00 38.89 ± 0.00

[21] S 54.66± 0.00 31.60± 0.00 51.70± 0.00 22.88± 0.00 42.11± 0.00 25.49± 0.00 53.85± 0.00 32.43± 0.00 45.45± 0.00 37.88 ± 0.00

M 57.82± 0.00 26.57± 0.00 45.58± 0.00 23.45± 0.00 52.63± 0.00 28.43± 0.00 48.08± 0.00 29.28 ± 0.00 54.55± 0.00 35.86 ± 0.00

D 51.44 ± 0.13 34.94 ± 0.31 41.27 ± 0.24 20.53 ± 0.22 43.21 ± 0.18 13.75 ± 0.42 38.42 ± 0.25 27.66 ± 0.17 45.36 ± 0.33 33.65 ± 0.29

[20] S 43.97 ± 0.17 29.36 ± 0.34 43.51 ± 0.20 22.34± 0.16 45.44± 0.10 15.24± 0.32 35.71 ± 0.14 22.68 ± 0.41 40.04 ± 0.26 28.34 ± 0.21

M 44.18 ± 0.11 26.53 ± 0.25 42.18± 0.18 22.03±0.28 42.11 ±0.27 23.53± 0.33 50.96±0.14 18.83± 0.25 47.27± 0.25 32.93 ± 0.18

D 65.49 ± 0.52 49.37 ± 0.73 48.30 ± 0.39 29.66 ± 0.48 63.42 ± 0.88 32.35 ± 0.63 47.12 ± 0.71 34.69 ± 0.83 50.61 ± 0.57 33.74 ± 0.49

[44] S 62.06 ± 0.48 34.70 ± 0.63 48.97 ± 0.53 31.35 ± 0.66 60.53 ± 0.74 32.35 ± 0.60 46.15 ± 0.53 30.18 ± 0.77 51.66 ± 0.61 36.36 ± 0.51

M 64.73 ± 0.43 50.96 ± 0.78 50.33 ± 0.49 27.97 ± 0.64 60.71 ± 0.88 30.72 ± 0.53 44.52 ± 0.76 31.38 ± 0.78 50.43 ± 0.62 31.28 ± 0.46

D 64.97 ± 0.83 47.83 ± 0.92 40.45 ± 0.87 28.86 ± 0.68 57.85 ± 0.69 26.69 ± 0.74 40.57 ± 0.85 32.43 ± 0.67 56.51 ± 0.82 39.49 ± 0.93

[32] S 50.34 ± 0.79 31.57 ± 1.02 44.23 ± 0.88 23.79 ± 0.71 42.51 ± 0.72 16.55 ± 0.65 43.31 ± 0.61 30.76 ± 0.77 52.45 ± 0.98 29.21 ± 0.91

M 63.99 ± 0.80 49.31 ± 0.89 47.14 ± 0.91 25.32 ± 0.53 56.16 ± 0.82 29.52 ± 0.64 43.98 ± 0.76 33.62 ± 0.88 49.85 ± 1.07 33.64 ± 0.84

D 67.03 ± 0.54 41.28 ± 0.45 50.52 ± 0.72 30.46 ± 0.61 52.11 ± 0.53 24.11 ± 0.51 52.88 ± 0.76 30.56 ± 0.69 51.67 ± 0.70 36.36 ± 0.48

[19] S 61.44 ± 0.51 36.88 ± 0.42 48.57 ± 0.79 25.81 ± 0.67 53.64 ± 0.62 22.62 ± 0.46 51.00 ± 0.59 35.74 ± 0.60 56.97 ± 0.78 40.10 ± 0.67

M 67.07 ± 0.48 41.37 ± 0.52 48.35 ± 0.70 29.22 ± 0.72 55.19 ± 0.64 27.42 ± 0.53 48.73 ± 0.73 33.92 ± 0.78 53.86 ± 0.64 37.91 ± 0.60

Ours 68.87 ± 0.79 54.73 ± 0.64 53.22 ± 0.97 35.58 ± 1.03 64.71 ± 1.17 34.45 ± 0.93 57.82 ± 0.82 38.30 ± 0.75 59.94 ± 0.86 42.83 ± 1.14

Table 2. Generalized ZSL recognition accuracy on the FI dataset

following 6 : 2 split setting and cross dataset recognition accu-

racy of all methods between the FI dataset and Emotion6 datase.

AU→T denotes the recognition accuracy on unseen classes, while

AS→T denotes the average recognition accuracy on seen classes.

H denotes the harmonic mean. ’FI→Emo6’ denotes using the im-

ages of FI dataset belong to the common categories as training set

and the images of Emotion6 dataset belong to the other categories

as the test set. ’Emo6→FI’ denotes the similar setting but change

the dataset.

Method AU→T AS→T H FI→Emo6 Emo6→FI

LATEM [35] 1.82 55.31 3.54 51.21 26.43

RN [32] 3.23 62.56 6.14 59.85 29.22

SSE [45] 7.51 53.57 13.17 51.32 29.40

DEM [44] 13.43 56.25 21.68 56.52 22.36

LAD [20] 20.83 59.46 30.85 52.27 21.03

SAE [21] 24.25 65.59 35.42 54.70 30.03

CDL [19] 26.48 54.87 35.72 55.15 32.34

Ours 28.12 66.57 39.54 61.94 34.48

performance with the deep features (D) extracted by deep

learning models pre-trained on ImageNet. For example, on

the Emotion6 dataset, the results of using ANP features are

generally better than using deep features, e.g. LATEM, SSE,

SAE, DEM, and CDL. For other datasets such as the FI

dataset, the performance of using ANP features is slightly

lower in most cases. This demonstrates that the ANP fea-

tures contain some affective structural information, which

may be not discriminative for classification tasks, but use-

ful for the zero-shot learning problem. Our method uti-

lizes deep features with the ANP features as a supplement

and shows the effectiveness of considering both discrimina-

tive visual features and affective structural information. We

have also validated all the comparison methods using both

ANP and deep features and reported the results in the rows

marked with M in Table 1. That also shows that apply-

ing both two features directly induces no performance gain,

while our method effectively improves zero-shot emotion

recognition performance.

We further report the generalized ZSL recognition accu-

racy of all methods on the FI dataset following 6 : 2 split

setting in Table 2. For the accuracy on unseen classes

AU→T , CDL obtains the best performance 26.48% among

the comparison methods, while SAE achieves 65.59% when

it comes to the accuracy on seen classes AS→T , which is

much better than CDL. For AU→T and AS→T , our method

obtains 28.12% and 66.57%. Compared with the most com-

petitive CDL, our method improves the harmonic mean by

3.82% on the FI dataset. Our method outperforms all com-

pared methods in all three cases.

4.5. Ablation Study

We conduct ablation experiments to illustrate the effec-

tiveness of the affective structural alignment and the affec-

tive adversarial constraint in Table 3. In particular, ”Base”

denotes the basic visual-semantic embedding to conduct
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Table 3. Ablation experiment on the FI dataset. ‘Base’ denotes

using the basic visual-semantic embedding to conduct zero-shot

emotion recognition. Las and Lre denote two parts of affective

structural embedding. L∗

as denotes the structural alignment loss

without the second part. Ladv denotes using the affective adver-

sarial constraint.

Base Ladv L∗

as Las Lre FI
√

65.12√ √
65.46√ √
66.41√ √ √
67.53√ √ √
67.28√ √ √ √
68.87

(a) Traditional visual space

(b) Our ANP latent space

6:2

6:2

4:4

4:4

disgust anger awe excitement

Figure 3. t-SNE plots of the distribution of unseen class visual

samples from the FI dataset in traditional visual space and our

ANP latent space. “6:2” and “4:4” denote the two splits for zero-

shot emotion recognition.

zero-shot emotion recognition, where visual and class se-

mantic features are directly embedded into the common

space and measured similarities. From the results, we can

clearly see that the affective adversarial constraint plays a

significant role in improving the zero-shot recognition ac-

curacy by 1.12% on the FI dataset. The results validate that

adversarial learning combining two embedded visual and

ANP features is superior to those direct combination or in a

manual combination rule.

Affective structural embedding optimized by Las and

both Las and Lre further boost the ZSL accuracy by 1.29%

and 2.16%. Among the affective structural embedding,

aligning the class semantic features with the center of the

latent ANP features also results in 0.95% performance im-

provement. The results demonstrate that considering emo-

tional structural information to align the visual and semantic

features contributes a lot to zero-shot emotion recognition.

Fig. 3 illustrates the distribution of unseen class visual sam-

ples in traditional visual space and our ANP latent space.

It clearly shows that the embedded visual features are more

separated from other classes in the ANP space. Finally, we

obtain the best performance by training all the components,

Table 4. Zero-shot emotion recognition accuracy (%) on the FI

dataset with different choices of testing classes. Note that ∗ means

that we choose different testing classes under the same train/test

radio corresponding to Table 1. Here, we take “excitement” and

“sadness” as test classes for the 6:2 split setting and all the negative

emotions as test classes for the 4:4 split setting.

Setting LATEM SSE SAE LAD CDL DEM RN Ours

6 : 2
∗ 70.47 63.73 67.78 61.84 68.70 71.98 72.41 74.03

4 : 4
∗ 27.09 37.94 42.24 38.30 41.95 37.84 39.87 42.92

which shows the complementarity of these contributions.

We also explore the influence of different testing classes

in Table 4 under the same train/test radio in Table 1. For the

6 : 2∗ split setting, we take the “excitement” and “sadness”

as test classes and others as training classes while in Table 1

we choose two negative emotions as test classes. For the

4 : 4∗ split setting, we take all the negative emotions as test

classes (i.e. “fear”, “sad”, “disgust” and “anger”) and all the

positive emotions as training classes while in Table 1 train-

ing and test classes are both two positive emotions and two

negative emotions. We can see that, the performance of al-

most all the compared methods is improved when test emo-

tions are in two polarities and is decreased when test emo-

tions are all negative and close to each other. Our method

achieves the state-of-the-art results consistently with differ-

ent emotion prediction configurations.

4.6. Cross Datasets Recognition

To better evaluate the performance of zero-shot learning

on image emotion recognition tasks, we further conduct the

cross datasets experiment for emotion recognition. Conven-

tional zero-shot learning methods assume the testing images

are sampled from the same distribution with the training

images, which is inconsistent with the real situation. Thus

we try to recognize unseen emotion categories in different

datasets. The FI and Emotion6 datasets share the four emo-

tion categories including sadness, disgust, fear and anger.

Specifically, we take the four emotion categories from one

dataset as the training set and other categories from another

dataset as the test set. Ideally, we focus on the image emo-

tion recognition, which means the more emotion-related

features and embedding, the higher the performance.

Table 2 shows the results of the cross datasets recogni-

tion. The proposed method obtains the best results com-

pared with the other zero-shot methods in both two ex-

periments. In particular, the proposed method achieves

2.08% improvements under FI→Emo6 setting and im-

proves the recognition accuracy by 2.14% improvements

under Emo6→FI setting. Affective structural information

provided by ANP features are shared by different datasets.

Considering both the affective structural information and af-

fective enhanced visual features ensure the ability of our

method to cross datasets recognition.
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Figure 4. Qualitative results of CDL and our method on FI (a) and Emotion6 (b). Predictions of unseen class labels for both two datasets

are listed from top to bottom in probability and the most probable prediction is at the top. The ground truth labels are in red. “ex, aw, di,

an, jo, sa and su” denote excitement, awe, disgust, anger, joy, sadness and surprise respectively.
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Figure 5. Qualitative results for cross dataset recognition on the FI

and Emotion6 datasets. Misclassified images are marked with red

bounding boxes.

4.7. Qualitative Results

We present some qualitative analysis for our proposed al-

gorithm and CDL on FI and Emotion6 dataset in Fig. 4. As

shown in Fig. 4 (a), the image of the class “excitement” and

“anger” can be correctly predicted among the four unseen

classes. While the example image of the class “disgust” is

predicted to the class “anger”. Both emotion classes are

similar in the emotion theories and the same image may

evoke two emotions in different situations. Actually, the

ground truth “disgust” comes in second just following “dis-

gust” in the predictions. For the last examples in the Emo-

tion6 dataset Fig. 4 (b), our model predictions confuse the

class “sadness” and “surprise”. These results further prove

the ambiguity of emotions that even people will feel difficult

to distinguish such similar emotions. Compared with the

most competitive method, we can also see that our method

significantly outperforms CDL in these examples. Although

CDL still gives some correct results in cases, the predic-

tions do not show the relationship between emotions. On

the other hand, our method can not only output the correct

prediction, but also output higher prediction probability for

the emotions that are close to the ground truth, while the

probability of the opposite emotion is lower.

Fig. 5 shows some results of cross datasets recognition.

When unseen classes belong to the Emotion6 dataset, our

model distinguishes the “joy” and “surprise” classes suc-

cessfully. For the last examples, when unseen classes be-

long to the FI dataset, our model predicts the “awe” class

to the “excitement”. This is probably because such mili-

tary images could evoke different emotions among different

people. Interestingly, we train the model with images of

four negative emotions and our model could recognize dif-

ferent positive emotions in the FI and Emotion6 dataset.

5. Conclusion

In this paper, we propose a novel affective structural em-

bedding framework for the zero-shot emotion recognition

problem. By utilizing ANP features to construct an affec-

tive embedding space, the affective gap between visual and

semantic features can be effectively bridged. In addition,

we introduce an affective adversarial constraint to force the

visual embedding to choose an embedding space that pre-

serves the affective structural information and retains the

discriminative capacity simultaneously. Experiments on

five widely-used affective datasets show that our method

significantly outperforms the state-of-the-art approaches for

zero-shot emotion recognition.
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