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Abstract

We propose a novel video inpainting algorithm that si-

multaneously hallucinates missing appearance and motion

(optical flow) information, building upon the recent ‘Deep

Image Prior’ (DIP) that exploits convolutional network ar-

chitectures to enforce plausible texture in static images. In

extending DIP to video we make two important contribu-

tions. First, we show that coherent video inpainting is pos-

sible without a priori training. We take a generative ap-

proach to inpainting based on internal (within-video) learn-

ing without reliance upon an external corpus of visual data

to train a one-size-fits-all model for the large space of gen-

eral videos. Second, we show that such a framework can

jointly generate both appearance and flow, whilst exploit-

ing these complementary modalities to ensure mutual con-

sistency. We show that leveraging appearance statistics spe-

cific to each video achieves visually plausible results whilst

handling the challenging problem of long-term consistency.

1. Introduction

Video inpainting is the problem of synthesizing plausible

visual content within a missing region (‘hole’); for exam-

ple, to remove unwanted objects. Inpainting is fundamen-

tally ill-posed; there is no unique solution for the missing

content. Rather, the goal is to generate visually plausible

content that is coherent in both space and time. Priors play

a critical role in expressing these constraints. Patch-based

optimization methods [16, 27, 33, 44] effectively leverage

different priors such as patch recurrence, total variation, and

motion smoothness to achieve state-of-the-art video inpaint-

ing results. These priors, however, are mostly hand-crafted

and often not sufficient to capture natural image priors,

which often leads to distortion in the inpainting results, es-

pecially for challenging videos with complex motion (Fig.

1). Recent image inpainting approaches [18, 31, 35, 48]

learn better image priors from an external image corpus

∗This work was done primarily during Haotian Zhang’s internship at

Adobe Research.

via a deep neural network, applying the learned appearance

model to hallucinate content conditioned upon observed re-

gions. Extending these deep generative approaches to video

is challenging for two reasons. First, the coherency con-

straints for video are much stricter than for images. The

hallucinated content must not only be consistent within its

own frame, but also be consistent across adjacent frames.

Second, the space of videos is orders of magnitude larger

than that of images, making it challenging to train a sin-

gle model on an external dataset to learn effective priors for

general videos, as one requires not only a sufficiently ex-

pressive model to generate all variations in the space, but

also large volumes of data to provide sufficient coverage.

This paper proposes internal learning for video inpaint-

ing inspired by the recently proposed ‘Deep Image Prior’

(DIP) for single image generation [40]. The striking result

of DIP is that ‘knowledge’ of natural images can be encoded

through a convolutional neural network (CNN) architecture;

i.e. the network structure rather than actual filter weights.

The translation equivariance of CNN enables DIP to exploit

the internal recurrence of visual patterns in images [37], in

a similar way as the classical patch-based approaches [19]

but with more expressiveness. Furthermore, DIP does not

require an external dataset and therefore suffers less from

the aforementioned exponential data problem. We explore

this novel paradigm of DIP for video inpainting as an alter-

native to learning priors from external datasets.

Our core technical contribution is the first internal learn-

ing framework for video inpainting. Our study establishes

the significant result that it is possible to internally train

a single frame-wise generative CNN to produce high qual-

ity video inpainting results. We report on the effectiveness

of different strategies for internal learning to address the

fundamental challenge of temporal consistency in video in-

painting. Therein, we develop a consistency-aware train-

ing strategy based on joint image and flow prediction. Our

method enables the network to not only capture short-

term motion consistency but also propagate the informa-

tion across distant frames to effectively handle long-term
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Figure 1: Video inpainting results for the ‘parkour’ sequence. Our video-based internal learning framework enables much

more coherent video inpainting results compared to the frame-based baseline [40] (2nd row), even for content unseen in

multiple frames (orange box). As a network-based synthesis framework, our method can employ natural image priors to

avoid shape distortions, which often occur in patch-based methods such as [16] (3rd row) for challenging videos (red box).

consistency. We show that our method, whilst trained in-

ternally on one (masked) input video without any external

data, can achieve state-of-the-art video inpainting result. As

a network-based framework, our method can incorporate

natural image priors learned from CNN to avoid shape dis-

tortions which occur in patch-based methods. (Fig. 1)

A key challenge in extending DIP to video is to ensure

temporal consistency; content should be free from visual

artifacts and exhibit smooth motion (optical flow) between

adjacent frames. This is especially challenging for video

inpainting (e.g. versus video denoising) due to the reflexive

requirements of pixel correspondence over time to generate

missing content, as well as such correspondence to enforce

temporal smoothness of that content. We break this cycle by

jointly synthesizing content in both appearance and motion

domains, generating content through an Encoder-Decoder

network that exploits DIP not only in the visual domain but

also in the motion domain. This enables us to jointly solve

the inpainted appearance and optical flow field – maintain-

ing consistency between the two. We show that simultane-

ous prediction of both appearance and motion information

not only enhances spatial-temporal consistency, but also im-

proves visual plausibility by better propagating structural

information within larger hole regions.

2. Related Work

Image/Video Inpainting. The problem of image inpaint-

ing/completion [3] has been studied extensively, with clas-

sical approaches focusing on patch-based non-parametric

optimization [2, 11, 12, 14, 15, 23, 26, 28, 39, 46] as

well as more recent work using deep generative neural net-

works [18, 31, 35, 47, 48]. On the other hand, the video

inpainting problem has received far less attention from re-

search community. Most existing video inpainting meth-

ods build on patch-based synthesis with spatial-temporal

matching [16, 27, 33, 44] or explicit motion estimation and

tracking [1, 6, 8, 9]. Very recently, deep convolutional net-

works have been used to directly inpaint holes in videos and

achieve promising results [24, 41, 45], leveraging large ex-

ternal video corpus for training along with specialized re-

current frameworks to model spatial-temporal coherence.

Different from their works, we explore the orthogonal direc-

tion of learning-based video inpainting by investigating an

internal (within-video) learning approach. Video inpainting

has also been used as a self-supervised task for deep feature

learning [32] which has a different goal from ours.

Internal Learning. Our work is inspired by the recent

‘Deep Image Prior’ (DIP) work by Ulyanov et al. [40]

which shows that a static image may be inpainted by a

CNN-based generative model trained directly on the non-

hole region of the same image with a reconstruction loss.

The trained model encodes the visible image contents with

white noise, which at the same time enables the synthesis

of plausible texture in the hole region. The idea of inter-

nal learning has also been shown effective in other applica-

tion domains, such as image super-resolution [37], seman-

tic photo manipulation [4] and video motion transfer [5].

Recently, Gandelsman et al. [7] further proposes ‘Double-

DIP’ for unsupervised image decomposition by reconstruct-

ing different layers with multiple DIP. Their framework can

also be applied for video segmentation. In this paper, we ex-

tend a single DIP to video and explore the effective internal
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Figure 2: Overview of our video inpainting framework.

Given the input random noise Ni for each individual frame,

a generative networkGθ is used to predict both frame Îi and

optical flow maps F̂i,i±t. Gθ is trained entirely on the in-

put video (with holes) without any external data, optimizing

the combination of the image generation loss Lr, perceptual

loss Lp, flow generation loss Lf and consistency loss Lc.

learning strategies for video inpainting.

Flow Guided Image/Video Synthesis. Only encoding

frames with a 2D CNN is insufficient to maintain the tem-

poral consistency of a video. Conventionally, people have

used optical flow from input source videos as guidance to

enhance the temporal consistency of target videos in vari-

ous video processing tasks such as denoising [20], super-

resolution [17], frame interpolation [21], and style trans-

fer [10]. Our work incorporates the temporal consistency

constraint of inpainted area by jointly generating images

and flows with a new loss function.

3. Video Inpainting via Internal Learning

The input to video inpainting is a (masked) video se-

quence V̄ = {Ii ⊙Mi}i=1..T where T is the total number

of frames in the video. Mi is the binary mask defining the

known regions in each frame Ii (1 for the known regions,

and 0 otherwise). ⊙ denotes the element-wise product. Let

I∗i denote the desired version of Ii where the masked region

is filled with the appropriate content. The goal in video in-

painting is to recover V ∗ = {I∗i }i=1..T from V̄ .
In this work, we approach video inpainting with an in-

ternal learning formulation. The general idea is to use V̄ as
the training data to learn a generative neural network Gθ to
generate each target frame I∗i from a corresponding noise
map Ni. The noise map Ni has one channel and shares the
same spatial size with the input frame. We sample the input

noise maps independently for each frame and fix them dur-
ing training. Once trained, Gθ can be used to generate all
the frames in the video to produce the inpainting results.

I
∗

i = Gθ∗(Ni) (1)

where θ denotes the network parameters which are opti-

mized during the training process. We implement Gθ as an

Encoder-Decoder architecture with skip connections. For

each input video, we train an individual model from scratch.

One may concern that a generative model Gθ defined

in this way would be too limited for the task of video in-

painting as it does not contain any temporal modeling struc-

ture required for video generation, e.g. recurrent prediction,

attention, memory modeling, etc. In this paper, however,

we intentionally keep this extreme form of internal learn-

ing and focus on exploring appropriate learning strategies

to unleash its potential to perform the video inpainting task.

In this section, we discuss our training strategies to trainGθ

such that it can generate plausible V ∗.

3.1. Loss Functions

Let Îi = Gθ(Ni) be the network output at frame i. We

define a loss function L at each frame prediction Îi and ac-
cumulate the loss over the whole video to obtain the total
loss to optimize the network parameters during training.

L = ωrLr + ωfLf + ωcLc + ωpLp (2)

where Lr, Lf , Lc, and Lp denote the image generation
loss, flow generation loss, consistency loss, and percep-

tual loss, respectively. The weights are empirically set as

ωr=1, ωf=0.1, ωc=1, ωp=0.01 and fixed in all of our ex-

periments. We define each individual loss term as follows:
Image Generation Loss. In the context of image inpaint-
ing, [40] employs the L2 reconstruction loss defined on the
known regions of the image. Our first attempt to explore
internal learning for video inpainting is to define a similar
generation loss on each predicted frame.

Lr(Îi) =‖Mi ⊙
(

Îi − Ii
)

‖22 (3)

Flow Generation Loss. Image generation loss enables the
network to reconstruct individual frames, but fails to cap-
ture the temporal consistency across frames. Therefore, it
is necessary to allow information to be propagated across
frames. Our key idea is to encourage the network to learn
such propagation mechanism during training. We first aug-
ment the network to jointly predict the color and flow values

at each pixel: (Îi, F̂i,j) = Gθ(Ni), where F̂i,j denotes the
predicted optical flow from frame i to frame j (Fig. 2). To
increase the robustness and better capture long-term tempo-
ral consistency, our network is designed to jointly predict
flow maps with respect to 6 adjacent frames of varying tem-
poral directions and ranges: j ∈ {i ± 1, i ± 3, i ± 5}. We
define the flow generation loss similarly as the image gener-
ation loss to encourage the network to learn the ‘flow priors’
from the known regions:

Lf (F̂i,j) =‖ Oi,j ⊙M
f
i,j ⊙

(

F̂i,j − Fi,j

)

‖22 . (4)
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Figure 3: Effectiveness of consistency loss. By warping the

predicted frame Îj into frame Îi, part of the hole region in

Îj can be spatially matched to the visible regions in Îi (red

boxes). This not only provides useful training signal to con-

strain the inpainting of that region in Îj , but also effectively

propagates the content in the visible regions from one frame

into the hole regions of its neighboring frames.

The known flow Fi,j is estimated using PWC-NET [38]

from the original input frame Ii to Ij , which also estimates

the occlusion map Oi,j through the forward-backward con-

sistency check. M
f
i,j = Mi ∩Mj(Fi,j) represents the reli-

able flow region computed as the intersection of the aligned

masks of frame i and j.
Consistency Loss. With the network jointly predicts im-
ages and flows, we define the image-flow consistency loss
to encourage the generated frames and the generated flows
to constrain each other: the neighboring frames should be
generated such that they are consistent with the predicted
flow between them.

Lc(Îj , F̂i,j) =‖ (1−M
f
i,j)⊙

(

Îj(F̂i,j)− Îi
)

‖22 (5)

where Îj(F̂i,j) denotes the warped version of the generated

frame Îj using the generated flow F̂i,j through backward

warping. We constrain this loss only in the hole regions

using the inverse mask 1−Mf
i,j to encourage the training

to focus on propagating information inside the hole. We

find this simple and intuitive loss term allows the network to

learn the notion of flow and leverage it to propagate training

signal across distant frames (as illustrated in Fig. 3).

Perceptual Loss. To further improve the frame generation

quality, we incorporate the popular perceptual loss, defined

according to the similarity on extracted feature maps from

the pre-trained VGG16 model [22].

Lp(Îi) = Σk∈K ‖ ψk(Mi)⊙
(

φk(Îi)− φk(Ii)
)

‖22 (6)

where φk(Ii) denotes the feature extracted from Ii using

the kth layer of the pre-trained VGG16 network, ψk(Mi)
denotes the resized mask with the same spatial size as the

feature map. This perceptual loss has been used to improve

the visual sharpness of generated images [22, 30, 34, 49].

We use 3 layers {relu1 2, relu2 2, relu3 3} to define our

perceptual loss.

3.2. Network Training

While the standard stochastic training works reasonably,

we use the following curriculum-based training procedure

during network optimization: Instead of using pure random

frames in one batch, we pick N frames which are consec-

utive with a fixed frame interval of t as a batch. While

training with the batch, the flow generation loss and consis-

tency loss are computed only using the corresponding flows

(Fi,i±t). We find this helps propagate the information more

consistently across the frames in the batch. In addition, in-

spired by DIP, we perform the parameter update for each

batch multiple times continuously, with one forward pass

and one back-propagation each time. This allows the net-

work to be optimized locally until the image and flow gen-

eration reach their consistent state. We find that using 50-

100 updates per batch gives the best performance through

experiments of hyper-parameter tuning.

3.3. Implementation Details

We implement our method using PyTorch and run our

experiments on a single NVIDIA TITAN Xp GPU. We ini-

tialize the model weights using the initialization method de-

scribed in [29] and use Adam [25] with the learning rate

of 0.01 and batch size of 5 during training.

Our network is implemented as an Encoder-Decoder ar-

chitecture with skip connections, which is found to perform

well for image inpainting [40]. The details of the network

architecture is provided in the supplementary material.

4. Experiments

We evaluate our method on a variety of real-world videos

used in previous works, including 28 videos collected by

Huang et al. [16] from the DAVIS dataset [36], and 13

videos collected from [8, 9, 33].

To facilitate quantitative evaluation, we create an addi-

tional dataset in which each video has both the foreground

masks and the ground-truth background frames. We re-

trieved 50 background videos from Flickr using different

keywords to cover a wide range of scenes and motion types.

We randomly select a segment of 60 frames for each video

and compose each video with 5 masks randomly picked

from DAVIS. This results in 250 videos with real video

background and real object masks, which is referred as our

Composed dataset.

4.1. Ablation Study

We first compare the video inpainting quality between

different internal learning approaches. In particular, we

compare our final method, referred to as DIP-Vid-Flow,

with the following baselines:

DIP: This baseline directly applies the ‘Deep Image Prior’

framework [40] to video in a frame-by-frame manner.

DIP-Vid: This is our framework when the model is trained

only using the image generation loss (Eq. 3).

DIP-Vid-3DCN: Besides directly using the DIP framework
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Figure 4: Result comparison between different internal learning frameworks (videos provided in [16]). Frame-wise DIP

tends to copy textures from known regions, generating incoherent structures. Optimizing over the whole video (DIP-Vid and

DIP-Vid-3DCN) improves the visual quality but does not capture temporal consistency well (blue boxes in 3rd and 4th rows).

Our proposed consistency loss (DIP-Vid-Flow) improves long-term temporal consistency.

Method FID Consistency PSNR/SSIM

DIP [40] 22.3 18.8/0.532 25.2/.926

DIP-Vid 16.1 23.6/0.768 28.7/.956

DIP-Vid-3DCN 12.1 26.7/0.871 30.9/.966

DIP-Vid-Flow 10.4 28.1/0.895 32.1/.969

Table 1: Ablation Study. Visual plausibility (FID), tempo-

ral consistency (PSNR/SSIM), and reconstruction accuracy

(PSNR/SSIM) on our Composed dataset. Our full model

outperforms all the baselines in all the metrics.

in [40] with pure 2D convolution, we modify the network to

use 3D convolution and apply the image generation loss.

We evaluate the video inpainting quality in terms of

frame-wise visual plausibility, temporal consistency and re-

construction accuracy on our Composed dataset for which

the ‘ground-truth’ background videos are available. For

visual plausibility, we compute the Fréchet Inception Dis-

tance (FID) score [13] of each inpainted frame indepen-

dently against the full collection of ground-truth frames and

aggregate the value over the whole video. For temporal con-

sistency, we use the consistency metric introduced in [10].

For each 50×50 patch sampled in the hole region at frame

t we search within the spatial neighborhood of 20 pixels at

time t + 1 for the patch that maximizes the peak signal-

to-noise ratio (PSNR) between the two patches. We com-

pute the average PSNR from all the patches as the met-

ric. Similar metric is also computed using SSIM [43]. For

reconstruction accuracy, we compute the standard PSNR

and SSIM on each frame, accumulate the metrics over each

video, and report the average performance for each method.

Tab. 1 shows the results of different methods. For all

metrics, the video-wise methods significantly improve over

the frame-wise DIP method. Incorporating temporal infor-

mation can further improve the results. Explicitly model-

ing the temporal information in the form of flow prediction

leads to the best results.

Fig. 4 shows some visual examples. DIP often borrows

textures from known regions to fill in the hole, generating

incoherent structures in many cases. Training the model

over the whole video (DIP-Vid) allows the network to gen-

erate better structures, improving the visual quality in each

frame. Using 3D convolution tends to constrain the large

hole better than 2D due to the larger context provided by the

spatial-temporal volume. The result, however, tends to be

more blurry and distorted as it is in general very challeng-

ing to model the space of spatial-temporal patches. Training

the model with our full internal learning framework allows

the information to propagate properly across frames which

constrains the hole regions with the right information.

Fig. 5 visualizes temporal consistency of different video

inpainting results on two video sequences.We visualize the

video content at a fixed horizontal stride across the whole

video. Note that the strides cut through the hole regions

in many frames. As the video progresses, the visualization

from a good video inpainting result should appear smooth.

Applying the image inpainting methods [40, 48] result in in-

consistency between the hole regions and non-hole regions

across the video. DIP-Vid and DIP-Vid-3DCN result in

smoother visualizations compared to DIP yet still exhibit in-

consistent regions while our full model gives the smoothest

visualization, indicating high temporal consistency.
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Figure 5: Temporal consistency comparison (videos provided in [16]). We stack the pixels in a fixed row (indicated by the

yellow line) from all the frames of the video. Our full model (DIP-Vid-Flow) shows the smoothest temporal transition.

Figure 6: Video inpainting results on the videos provided in [16] (1st row) and [8](2nd row) as well as our Composed dataset

(3rd). Our results are less prone to shape distortion compared to those generated by patch-based methods.

4.2. Video Inpainting Performance

We compare the video inpainting performance of our

internal-learning method with different state-of-the-art in-

painting methods, including the inpainting results obtained

from one state-of-the art image inpainting method by Yu et

al. [48], Vid2Vid (Wang et al. [42]) model trained on video

inpainting data, and two state-of-the-art video inpainting

methods by Newson et al. [33] and Huang et al. [16].

For Vid2Vid, we train the model on a different composed

dataset created for video inpainting. The training set con-

taining 1000 videos of 30-frames each is constructed with

the same procedure used for our Composed dataset.

For quantitative evalution, we report PSNR and SSIM

on our Composed dataset in Tab. 2. The results show that

our method produces more accurate video inpainting re-

sults than most of the existing methods, except for Huang

et al. [16]. Fig. 6 shows some visual examples of the in-

painted frames from different methods. Please refer to our

supplementary video for more results.

Interestingly, we observe that our results complement

those of the patch-based methods when videos have more

complex background motion or color/lighting changes.

Method

PSNR/SSIM
All Complex Simple

Yu et al. [48] 24.9/.929 24.7/.926 25.1/.931

Wang et al. [42] 26.0/.914 25.3/.908 26.6/.920

Newson et al. [33] 30.6/.962 30.9/.963 30.4/.960

Huang et al. [16] 32.3/.971 31.6/.968 33.0/.974

Ours 32.1/.969 31.9/.970 32.2/.968

Table 2: Quantitative Evaluation. PSNR/SSIM on our Com-

posed dataset as well as its two partitions. Our method pro-

duces more accurate video inpainting results than most of

the existing methods. Our method performs favorably for

challenging videos with complex motion.

Patch-based methods rely on explicit patch matching and

flow tracking during synthesis, which often fail when the

appearance or motion varies significantly. This leads to

distorted shapes inconsistent with the known regions (see

Fig. 6 for visual examples). On the other hand, our network-

based synthesis tends to capture better natural image priors

and handles those scenarios more robustly.

To further understand this complementary behavior, we

separate our Composed dataset into two equal partitions ac-
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Video complexity Video complexity

Figure 7: Comparison between our method and the state-of-

the-art video inpainting method [16]. We plot the average

performance of videos whose complexity metric are above

the threshold in x-axis. Our method performs consistently

better when the appearance and motion gets more complex.

Figure 8: Intermediate results during training. Generated

frames: red curve outlines the hole region. Generated flow

maps (forward flow with range 1): hue denotes the flow

orientation, value denotes the magnitude. As the training

progresses, the model captures more accurate texture and

motion (the flow map becomes smoother and more consis-

tent with the actual video scene).

cording to video complexity defined by the metric as the

sum of two terms: the standard deviation of average pixel

values across the frames, which measures the appearance

change; and the mean of the flow gradient magnitude, which

reflects the motion complexity. We report PSNR and SSIM

for these two partitions in Tab. 2, as well as in Fig. 7,

where we plot the average performance of videos whose

complexity metric is above certain threshold. It shows that

our method tends to perform slightly better compared with

patch-based methods when the video complexity increases.

Fig. 8 shows our generated frames and flow maps dur-

ing training process. After one pass through all the frames,

our model is able to reconstruct the global structure of the

frames. Ghosting effect is usually observed at this stage

because the mapping from noise to image is still not well

established for individual frames. During the next several

passes, the model gradually learns more texture details of

the frames, both inside and outside the hole region. The

inpainting result is generally good after just a few passes

through the whole video. In practice, we keep training

longer to further improve the long-term temporal consis-

tency, since it takes more iterations for the contents from

distant frames to come into play via the consistency loss. In

Fig. 8, we observe that the predicted flow in the hole region

is coherent with their neighboring content, indicating effec-

tive flow inpainting. We also note that the predicted flow

orientation (represented by the hue in the visualized flow

maps) is also consistent with the camera motion, thereby

serving as a guidance for the image generation.

5. Discussion

In this section, we visualize the encoded latent feature

and investigate the influence of input window length to fur-

ther understand our model.

5.1. Visualization of Encoded Latent Feature

Recall that our generator Gθ has an Encoder-Decoder

structure that encodes random noise to latent features and

decodes the features to generate image pixels. To better

understand how the model works, it is helpful to inspect

the feature learned by the encoder. In Fig. 9, we visualize

the feature similarity between a reference patch and all the

other patches from neighboring locations and other frames.

Specifically, we select a reference patch from the middle

frame with patch size 32x32 matching the receptive field

of the encoder, and calculate the cosine similarity between

the features of the reference and other patches. The fea-

ture vector of a patch is given by the neuron responses at

the corresponding 1x1 spatial location of the feature map.

The patch similarity map is shown on the middle frame as

well as 4 nearby frames, encoded in the alpha channel. A

higher opacity patch indicates a higher feature similarity.

As a comparison, we show the similarity map calculated

with both our learned feature (middle row) and VGG16-

pool5 feature (bottom row). It can be observed from the

example in Fig. 9 that the most similar patches identified

by our learned feature are located on the exact same ob-

ject across a long range of frames; VGG feature can capture

general visual similarity but fails to identify the same object

instance. This interesting observation provides some indi-

cation that certain video specific features have been learned

during the internal learning process.

5.2. Influence of Window Length

In our framework, the input video can be considered as

the training data with which the inpainting generative net-

work is trained. To investigate how the inpainting perfor-

mance is affected by the input window length, we perform

an experiment on a subset of 10 videos randomly selected

from our Composed dataset. We divide each video into clips

of window length k and apply our inpainting method on
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Figure 9: Visualization of feature similarity of our model compared with VGG. A higher opacity patch indicates higher

feature similarity. Our learned feature is able to track the exact patch instead of only searching for visually similar patches.

Window length (frames) Window length (frames)

Figure 10: Influence of window length: As the window

length increases, the reconstruction quality in the non-hole

region decreases. However, the overall inpainting quality

improves, indicating the improvement in generalization in

the hole regions as more frames become available.

each clip independently. We experiment with different win-

dow length k ∈ {1, 3, 5, 10, 15, 25, 50, 100}. We plot the

average PSNR and SSIM scores of both generated non-hole

region and full frame (the generated hole fused with the in-

put non-hole region), as well as the consistency metric in-

troduced in Sec. 4.1 under each setting in Fig. 10.

Interestingly, while the overall inpainting quality im-

proves as k increases, the reconstruction quality in the non-

hole region decreases. This indicates overfitting when train-

ing on limited data. In fact, when k=1, it reduces to running

DIP frame-wise which gives the best reconstruction quality

on the non-hole region. The fact that our method achieves

better inpainting results with larger window length indicates

the capability of the model in leveraging distant frames to

generate better results in the hole region.

5.3. Limitation and Future Work

As is the case with DIP [40] and many other back-

propagation based visual synthesis system, long processing

time is the main limitation of our method. It often takes

hours to train an individual model for each input video. Our

method can fail when the hole is large and has little motion

relative to the background. In those cases, there is too little

motion to propagate the content across frames. Neverthe-

less, the value of our work lies in exploring the possibilities

of internal learning on video inpainting and identifying its

strength that complements other learning-based methods re-

lying on external training data. In future work, we plan to

further investigate how to combine representations learned

internally with externally trained models to enable powerful

learning systems.

It remains an open question that, in the context of inter-

nal learning, what network structure can best serve as a prior

to represent video sequence data. In this work, we have in-

tentionally restricted the network to a 2D CNN structure

to study the capability of such a simple model in encod-

ing temporal information. In future work, we plan to study

more advanced architectures with explicit in-network tem-

poral modeling, such as recurrent networks and sequence

modeling in Vid2Vid [42].

6. Conclusion

In this paper, we introduce a novel approach for video

inpainting based on internal learning. In extending Deep

Image Prior [40] to video, we explore effective strategies

for internal learning to address the fundamental challenge

of temporal consistency in video inpainting. We propose

a consistency-aware training framework to jointly gener-

ate both appearance and flow, whilst exploiting these com-

plementary modalities to ensure mutual consistency. We

demonstrate that it is possible for a regular image-based

generative CNN to achieve coherent video inpainting re-

sults, while optimizing directly on the input video without

reliance upon an external corpus of visual data. With this

work, we hope to attract more research attention to the inter-

esting direction of internal learning, which is complemen-

tary to the mainstream large-scale learning approaches. We

believe combining the strengths from both directions can

potentially lead to better learning methodologies.
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