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Abstract

Facial action unit (AU) intensity estimation is a funda-

mental task for facial behaviour analysis. Most previous

methods use a whole face image as input for intensity pre-

diction. Considering that AUs are defined according to their

corresponding local appearance, a few patch-based meth-

ods utilize image features of local patches. However, fusion

of local features is always performed via straightforward

feature concatenation or summation. Besides, these meth-

ods require fully annotated databases for model learning,

which is expensive to acquire. In this paper, we propose a

novel weakly supervised patch-based deep model on basis

of two types of attention mechanisms for joint intensity es-

timation of multiple AUs. The model consists of a feature

fusion module and a label fusion module. And we augment

attention mechanisms of these two modules with a learn-

able task-related context, as one patch may play different

roles in analyzing different AUs and each AU has its own

temporal evolution rule. The context-aware feature fusion

module is used to capture spatial relationships among lo-

cal patches while the context-aware label fusion module is

used to capture the temporal dynamics of AUs. The latter

enables the model to be trained on a partially annotated

database. Experimental evaluations on two benchmark ex-

pression databases demonstrate the superior performance

of the proposed method.

1. Introduction

Facial Action Coding System (FACS) [5] defines a set

of AUs to depict the movements of facial muscles. Each

AU is associated with one or a set of muscles. AUs can

be treated as basic elements to encode nearly all anatomi-

cally possible human expressions [22]. AU intensity is used

to describe the extent of muscle movement, which presents

detailed information of facial behaviours. It is quantified
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Figure 1. The training and inference phases of the proposed

method. During training, we use a sequence as input and use

the sequence level labels (intensity annotations of peak and valley

frames) to provide supervision. Feature fusion and label fusion in-

volve the enhanced attention mechanisms. During inference, we

use a single frame as input as well as the learned task-related con-

text to perform context-aware AU intensity estimation.

into six-point ordinal scales in FACS. Automatic AU inten-

sity estimation is valuable for facial behaviour analysis, but

it is more challenging than AU detection since distinguish-

ing subtle changes between neighbor intensities are more

difficult than recognizing the existence of AU.

Most previous methods in AU detection [56, 54, 57, 19,

53] and AU intensity estimation [47, 50] focus on extract-

ing features from a whole face image. A few region or

patch-based methods [61, 12] extract features from local

regions, since AUs are defined according to the facial ap-

pearance of local regions which contain informative pat-

terns. Most deep learning methods such as [43, 48] directly

feed a whole image into deep models, while only several

methods [62, 20, 17, 25] consider extracting deep features

from local patches. And these methods simply fuse features

via concatenation, summation, or a multilayer perceptron

(MLP) [17] (see Fig. 2). Note that these patch-based meth-

ods treat each patch equally during feature fusion without

considering connections among patches or the relevance of

a patch to the given AU. However, when annotating the in-

tensity of an AU, we focus on the AU-related regions and

ignore unrelated regions. Hence, patches should be treated
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Figure 2. Existing strategies for feature fusion of multiple patches

and dynamics modeling of sequence.

differently according to their associations to the given AU.

Though FACS provides the description of facial appear-

ance of AUs at each intensity, it is quite laborious and ex-

pensive to annotate a large scale database [4]. A few meth-

ods leverage partially annotated databases to learn mod-

els for intensity estimation, including both shallow mod-

els [63, 35, 60, 59] and deep models [58]. These methods

incorporate knowledge to provide additional supervision to

compensate for the lack of intensity annotations. However,

shallow models can only take pre-extracted features as in-

puts rather than raw images and they have limited represen-

tation capability. The end-to-end deep model [58] considers

temporal relationships among only four frames randomly

sampled from a video segment. It can not precisely reflect

the temporal evolution of AUs in a consecutive segment.

Besides, these methods train a model for each AU and can

not perform joint intensity estimation of multiple AUs.

To alleviate the burden of labeling AU intensities and

utilize informative local facial appearance, we propose a

weakly supervised patch-based deep model on basis of two

types of attention mechanisms to simultaneously estimate

the intensities of multiple AUs. The whole pipeline is

shown in Fig. 1. We only use intensity annotations on peak

and valley frames (key frames) in videos instead of spar-

ing efforts on labeling every frame. Then annotations of

key frames are treated as sequence-level labels. Our model

consists of a feature fusion module and a label fusion mod-

ule, which are designed based on the following two obser-

vations. First, for each AU, its intensity label is only de-

termined by local appearance of its related regions. Un-

related regions should be ignored. And each patch should

contribute differently when analyzing different AUs. Sec-

ond, each AU has its own rule to evolve temporally in se-

quences. When modeling the dynamics of AUs, each AU

should be treated differently. Both the importance of a patch

and the temporal dynamics should be modeled according to

the given AU, rather than being the same for all AUs. To

this end, we augment the two attention mechanisms with a

learnable task-related (AU-related) context for feature and

label fusion. The context-aware feature fusion is used to

capture spatial relationships among local patches while the

context-aware label fusion is used to capture temporal dy-

namics of AUs. The latter is the key that enables the model

to be learned with partially labeled data. Enhanced attention

mechanisms allow the model to predict feature attention and

label attention adaptively according to the given AU.

Our contributions are two folds:

• We propose a novel weakly supervised patch-based

deep model consisting of a feature fusion module and

a label fusion module. The model can be trained on

a partially annotated database, which greatly saves the

effort of labeling AU intensities.

• We introduce a new strategy for better feature and label

fusion by incorporating a learnable task-related con-

text into two attention mechanisms. The enhanced at-

tention mechanisms allow to learn task-related features

and capture task-related temporal evolution of AUs.

2. Prior Work

Supervised learning methods. Most existing methods

of AU intensity estimation are supervised learning meth-

ods which require a large set of fully annotated samples

to achieve good performance, including frame-based and

sequence-based methods. Frame-based methods [12, 14,

13, 26, 26, 52, 28, 27] learn an estimator to predict AU

intensity from a single image, including relevance vector

machine [12, 14], latent tree [13], multi-kernel SVM [26],

and copula ordinal regression [47]. Sequence-based meth-

ods [31, 38, 32, 1, 33, 18] model the dynamics by con-

sidering the relations among multiple frames. Probabilis-

tic graphical models are effective tools to capture the spa-

tial and temporal dependencies of AU intensities, including

Hidden Conditional Ordinal Random Field (H-CORF) [31],

Kernel CORF [32], context-sensitive CORF [33], and Dy-

namic Bayesian Network[18]. Recently, several deep learn-

ing methods [7, 48, 43, 64, 15, 37, 49] are proposed for

AU intensity estimation, including CNN [7], CCNN [48],

2DC [43], and HBN [49]. These supervised learning meth-

ods require that the database should be fully annotated, i.e.,

every frame of sequences has the annotation of AU inten-

sity, so that a good performance can be achieved. However,

annotating the intensity of AU is more difficult than anno-

tating the existence of AU even for trained AU coders. It is

expensive and laborious to annotate a large scale database.

Weakly and semi-supervised learning methods. A few

weakly or semi-supervised methods use sequence level la-

bels or labels of partial frames for model learning. Multi-

instance learning (MIL) [65] is a commonly used strategy to

use sequence level labels, which has been applied to facial

event detection [36, 41] and key frame detection [42, 40].
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There is also a set of deep MIL methods [51] that combine

the idea of MIL and deep learning. However, these meth-

ods focus on binary classification problem, which can not

generalize to AU intensity estimation due that AU intensity

has six ordinal scales. Several attention-based MIL meth-

ods [46, 29, 11] are proposed to predict the bag-level label

rather than the instance-level label, which are not applica-

ble for frame-level AU intensity estimation. Only two MIL

methods are proposed for frame-level AU intensity estima-

tion, i.e., MI-DORF [34] and BORMIR [60]. MI-DORF

uses the intensities of peak frames for training and requires

a sequence as input for inference. BORMIR uses only the

annotations of peak and valley frames and exploits different

types of domain knowledge to provide weak supervision.

Except for MIL, there are also several methods that use par-

tial annotations for learning. Fernando et al. [3] propagate

the AU label of peak frames to unlabeled frames by com-

puting the similarity between features of one frame and the

peak. Zhao et al. [63] combine ordinal regression and SVM

and train a linear model by using the annotations of key

frames. Zhang et al. [58] use the annotations of key frames

and the relationships among four frames in tuples to learn

a deep model. However, only four frames are not sufficient

to capture detailed dynamics in sequences. Similarly, our

method uses key frames to learn an AU intensity estimator

as [3, 60, 63, 58]. Differently, we model the temporal dy-

namics adaptively according to the given task by integrat-

ing a task-related context to the attention mechanism. A

Long Short-Term Memory (LSTM) network, which is used

to capture temporal relations among frames, is designed to

predict the label attention of each frame (see Fig. 4), rather

than the AU labels [16, 2] (see Fig. 2d).

Patch-based methods. Patch-based methods extract fea-

tures from informative local regions to reduce side effects

of unrelated regions. Features of patches are fused via con-

catenation, summation, or MLP. Zhao et al. [61] extract fea-

tures from regions around landmarks to form the final fea-

ture vector by concatenation. They further propose a deep

region multi-label learning (DRML) method [62] for the de-

tection of multiple AUs. Feature maps of patches are fused

by convolution. Li et al. [17] multiply pre-defined attention

map with feature maps of VGG and fuse cropped local fea-

ture maps by MLP. The fusion of cropped feature maps is

also used in [16] and [21], along with LSTMs to capture

temporal dynamics. Li et al. [20] use the same strategy as

[61] to extract features around landmarks. They use an at-

tention mechanism (i.e., an additional branch to predict a

weight map) to extract features for each patch and then fuse

local features via MLP. No relations among patches are ex-

plicitly considered. Unlike these methods, our method uses

enhanced attention mechanisms to capture the spatial rela-

tions among patches for feature fusion rather than feature

extraction. We introduce a learnable task-related context to

augment the attention mechanism since each patch should

be treated differently for different AUs. We also consider

the fusion of local and global features.

3. Proposed Approach

In this work, we propose a novel weakly supervised

patch-based deep model on basis of two attention mech-

anisms for AU intensity estimation. The framework is

demonstrated in Fig. 1. We first present the problem state-

ment and then the feature and label fusion modules in

Sec. 3.1 and Sec. 3.2, respectively. The objective function

is defined in Sec. 3.3

Problem statement. Given a set of expression sequences

with only AU intensity annotations of peak and valley

frames (key frames), our goal is to learn a frame-level in-

tensity estimator for multiple AUs. Key frames are identi-

fied following [63, 58, 23]. Given the key frames of an AU,

sequences can be split into segments. In each segment, the

AU intensity monotonically increases, decreases, or stays

the same. We invert the frame order of segments that have

decreasing AU intensity. Then, each segment evolves from

a valley frame to a peak frame. Since locations of key

frames are different for each AU, sequences are split for

each AU individually.

Let one-hot vector v ∈ RK specify the category of AU,

which we call task. For example, v = [1, 0, ..., 0] repre-

sents the first AU. K is the number of AUs. Let Xv =
{X1, ..., XT } denote a segment with T frames of AU v. Xt

is the raw image of the t-th frame. Let yv
v
∈ R denote the

intensity of the valley frame X1 and yp
v
∈ R that of the peak

frame XT . They are sequence-level labels of Xv. Given a

partially labeled database D = {Xv,n, y
v
v,n, y

p
v,n,vn}

N
n=1,

we learn a frame-level intensity estimator for multiple AUs,

where N is the number of training segments.

3.1. Context­aware feature fusion

Previous patch-based methods simply fuse local features

via concatenation, summation, or MLP (see Fig. 2). They

treat each patch equally without considering their spatial re-

lationships, namely the patch importance. We improve this

by designing an attention module to fulfill the spatial rela-

tion. However, AU intensity is ought to be annotated ac-

cording to the AU-related local patches regardless of unre-

lated ones, and the related patches of different AUs are dif-

ferent. To this end, we incorporate a learnable task-related

context to augment attention mechanism for capturing spa-

tial relations among local patches.

The framework of feature fusion module is shown in

Fig. 3. The input face image is decomposed into M patches

which contain local appearance of AUs. Features of patches

are extracted and then fused by the enhanced attention

mechanism along with the task-related context. Our method
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Figure 3. Context-aware feature fusion module

captures spatial relations by placing different importance on

different spatial patches. Then, the fused features are con-

catenated with the global features which are extracted by

feeding the whole face image into a dedicated CNN. Let

X = {P1, P2, ..., PM} denote local patches of a frame X
and P0 denotes the resized image of X . The extraction of

local and global features can be represented as

hm = gm(Pm; Θg,m),m ∈ {0, 1, 2...,M}, (1)

where gm is the m-th CNN and Θg,m is its parameters.

Previous methods such as [46] make the assumption

that the bag-level features are the weighted summation of

features of all instances, i.e., h =
∑M

m=1
am hm where

{am}Nm=1 is a set of variables to learn. The variables

do not depend on image representation. Then, methods

such as [55] directly use latent features to predict attention

weights as h =
∑M

m=1
a(Pm;X) hm. The patch atten-

tion a(Pm;X) depends on only the image. Attention val-

ues predicted by these methods are the same for different

tasks. However, each patch plays different roles for ana-

lyzing different AUs. The attention value of a patch should

be different when predicting different AUs. The attention

mechanisms of these methods do not properly model the

task-related spatial relationships among local patches.

To alleviate this issue, we improve the attention mecha-

nism by incorporating a learnable task-related context. Let

C ∈ RK×dc denote task-related context, which is a vari-

able to learn. Each row is a context vector for one AU and

dc is the dimension of the context. The context for AU v is

c = Cv. The fusion of local features can be represented as

h =

M∑

m=1

a(Pm;X,C,v) hm, (2)

where a(Pm;X,C,v) is a function to compute the spatial

attention of Pm with consideration of all patches in X , the

task v, and the task-related context C. The function of our

context enhanced attention mechanism is

a(Pm;X,C,v) =
exp{wT tanh(WcCv +Whhm)}∑
j exp{w

T tanh(WcCv +Whhj)}
,

where w, Wc, and Wh are learnable parameters. Note

that spatial relationships among patches are reflected in the

1

2

T

Figure 4. Context-aware label fusion module

computation of the attention which involves all patches, the

task, and the context. When the task v varies, the attention

of each patch changes accordingly. This design is consis-

tent with the annotation process of AU intensity, where the

same patch plays different roles in the intensity estimation

of different AUs. The above fused features are local, but

global features are also important. So we combine local and

global features via concatenation since they are extracted

under two different scales, i.e.,

f = [h,h0]. (3)

3.2. Context­aware label fusion

Facial muscles cooperate with each other to perform

meaningful expressions. Each AU has its own rule to evolve

temporally. For example, appearance of some AUs changes

rapidly during a period while appearance of some others

changes slowly and smoothly. The temporal dynamics

should be modeled according to the given AU, rather than

using the same way for all AUs. Hence, we incorporate the

learnable task-related context in the attention mechanism

for label fusion to learn task-related dynamics of AUs. The

framework of context-aware label fusion is shown in Fig. 4.

Given a segment of AU v and the intensity annotations of

its peak frame and valley frame, i.e., {Xv, y
v
v
, yp

v
,v}, fea-

tures are first extracted for each frame of the input segment

by using the feature fusion module (see Fig. 3). We de-

note output features of all frames as Fv = {f1, f2, ..., fT },

where ft ∈ Rdf and df is the dimension of fused features.

Features Fv are then fed into a one-layer Long Short-term

Memory (LSTM) network along with the context Cv. For

each time stamp, LSTM takes the concatenation of ft and

Cv as input, and outputs are a set of two-element pairs,

{r̂t, ŝt}
T
t=1 = glstm(F,C,v; Θlstm), (4)

where Θlstm denotes the parameters of LSTM, r̂t =
r̂(ft;F,C,v), and ŝt = ŝ(ft;F,C,v). We normal-

ize the outputs through a softmax function, i.e., rt =
exp{r̂t}/

∑
j exp{r̂j} and st = exp{ŝt}/

∑
j exp{ŝj}. rt

is the temporal label attention with respect to the peak label

at time stamp t and st is the temporal label attention with

respect to the valley label. Note that each segment of T
frames has only the intensity annotations of sequence-level
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labels (i.e., the annotations of the peak frame and the val-

ley frame). Other frames are unlabeled. Inspired by [29]

and [60], we use the assumption that the sequence-level la-

bel is a linear combination of frame-level labels for weakly

supervised learning. The estimation of the sequence-level

label is defined as

ỹp
v
=

T∑

t=1

r(ft;F,C,v) yt
v
, (5)

ỹv
v
=

T∑

t=1

s(ft;F,C,v) yt
v
, (6)

where yt
v

is the estimated intensity of AU v for the t-th
frame by yt

v
= f

T
t Wov. Wo ∈ RK×df is an output ma-

trix that maps the features to intensity labels of multiple

AUs. wv = Wov is the vector that corresponds to AU

v. The label attention r(ft;F,C,v) and s(ft;F,C,v) de-

pend on the features of all frames and the task-related con-

text. Here, the context-aware attention mechanism plays a

similar role as feature fusion part, i.e., allowing to model

the temporal dynamics of AUs accordingly with respect to

the given task. Note we use LSTMs to capture temporal

dynamics in a novel way by predicting the temporal label

attention, rather than predicting AU labels [16]. This en-

ables the weakly supervised learning on partially labeled

data. Previous works [29, 60] capture temporal information

by optimizing weights to sum intensities from all frames.

However, these weights do not depend on its corresponding

image and do not explicitly encode the temporal relation-

ships among multiple frames. Unlike them, our label atten-

tion function not only involves the image and the relation-

ships among frames, but also incorporates the task-related

context to model the dynamics according to the given task.

3.3. Objective functions

The proposed method requires only the intensity annota-

tions of key frames. Given a partially labeled database D =
{Xv,n, y

v
v,n, y

p
v,n,vn}

N
n=1, we define the loss of sequence-

level labels for one sequence by computing L2 loss between

the estimated sequece-level labels and the ground-truth, i.e.,

L0 = (ỹp
v
− yp

v
)2 + (ỹv

v
− yv

v
)2. (7)

Since AU intensity evolves from a valley frame to a peak

frame in each training sequence, frames that are closer to the

peak frame should have larger label attention values with

respect to the peak label. Thus, the predicted label attention

should satisfy r1 ≤ r2... ≤ rT and s1 ≥ s2... ≥ sT . Let

r = [r1, r2, ..., rT ] and s = [s1, s2, ..., sT ]. The loss is

defined as

L1 =
∑

j

[max{Ar, 0}+max{−As, 0}]j , (8)

where A ∈ RT−1×T is a matrix with Ai,i = 1, Ai,i+1 =
−1, and other elements being 0’s.

In expression sequences, facial appearance changes

smoothly, thus neighbor frames have similar facial appear-

ance. We constrain label attention with a smoothness regu-

larization,

L2 =
1

2
(rTLr+ s

T
Ls), (9)

where L = B −C is a Laplacian matrix. C is an adjacent

matrix with Ci,j = 1 if |i − j| = 1. Other elements are

0’s. B is a matrix with Bi,i =
∑

j Ci,j with other elements

being 0’s. The objective function is defined as

L = L0 + λ1L1 + λ2L2. (10)

3.4. Training and Inference

As shown in Fig. 1, during training, we use a seg-

ment as input of the patch-based deep model. The anno-

tations of key frames are used as sequence-level labels to

provide supervison. We capture temporal dynamics of AUs

by a LSTM based context-aware attention mechanism. It

builds the connection between labeled key frames and un-

labeled frames, and enables the model to be trained with

partially labeled data. During testing, the network takes a

single frame as input and outputs its intensity of the given

AU. Given a task (AU) v, the learned task-related context

(c = Cv) and the input frame X are fed into the feature

fusion module. The fused feature vector f is mapped to the

corresponding AU intensity through the learned output ma-

trix Wo, i.e.,

yv = f
T
Wov.

4. Experiments

4.1. Experimental setup

Datasets. FERA 2015 [44] and DISFA [24] are currently

the two largest spontaneous expression databases for AU

intensity estimation. FERA 2015 contains about 140,000

images from 41 subjects. Intensities are annotated for 5

AUs. Following the protocol of [44], we use 21 subjects

for training and the other 20 subjects for testing. DISFA

contains about 130,000 images from 27 subjects. Intensi-

ties are annotated for 12 AUs. We perform 3-fold subject

independent cross validation, i.e., 18 subjects for training

and 9 subjects for testing. AU intensity has 6 ordinal scales

in both databases. The distributions of the two databases

are shown in Fig. 6. The percentage of key frames is about

2% in FERA 2015 and 1% in DISFA. Using only the an-

notations of key frames for learning would greatly save the

effort of intensity annotation. Note that FERA 2017 [45],

another expression database, is built for AU intensity esti-

mation under different poses. It is not used here since we
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(a) CFLF (ours) (b) CFLF-S (c) CFLF-NC (d) CFLF-NL (e) CFLF-DF

Figure 5. Comparison between our method (CFLF) and its variants. ‘G’ represents the whole image and ’Pn’ represents the n-th patch.

‘v’ represents the task index and ‘C’ represents the context. ‘FF’ is the feature fusion module and ‘LF’ is the label fusion module. ‘DF’

represents the feature fusion by directly concatenating feature vectors. Note that CFLF-NL is a supervised learning method which use one

frame as input for training. Others are weakly supervised learning methods which use a sequence of T frames as input for training.

Table 1. Ablation study. This table presents the comparison between the proposed method and its variants.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

ICC

CFLF-S .697 .637 .808 .421 .501 .614 .132 .152 .361 .199 .501 .314 .641 .105 .269 .189 .690 .390 .329

CFLF-NL .607 .492 .682 .282 .356 .484 .176 .161 .277 .173 .390 .186 .532 .069 .191 .162 .615 .406 .278

CFLF-NC .759 .719 .816 .364 .487 .629 .186 .176 .367 .342 .448 .326 .657 .194 .329 .229 .753 .446 .371

CFLF-DF .740 .701 .790 .439 .537 .641 .241 .217 .403 .211 .456 .315 .646 .223 .338 .241 .672 .480 .370

CFLF .766 .703 .827 .411 .600 .661 .263 .194 .459 .354 .516 .356 .707 .183 .340 .206 .811 .510 .408

MAE

CFLF-S .835 .906 .666 1.036 .702 .829 .462 .329 .702 .134 .388 .316 .471 .227 .347 .197 .734 .488 .400

CFLF-NL .872 1.049 .895 1.100 .789 .941 .527 .493 .825 .295 .519 .399 .690 .359 .456 .358 .879 .552 .529

CFLF-NC .701 .781 .621 1.032 .621 .751 .347 .286 .655 .130 .346 .258 .438 .198 .304 .188 .610 .444 .350

CFLF-DF .691 .791 .720 1.151 .608 .792 .442 .355 .811 .178 .416 .319 .499 .245 .356 .248 .699 .471 .420

CFLF .624 .830 .624 1.000 .626 .741 .326 .280 .605 .126 .350 .275 .425 .180 .290 .164 .530 .398 .329

Intensity distribution
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Figure 6. AU intensity distribution

focus on weakly supervised AU intensity estimation. Emo-

tionNet [6] is a large database that contains annotations of

AU occurrence and no intensity labels of sequences are pro-

vided. It is not applicable for AU intensity estimation.

Training. Sequences are split into segments according to

the key frames. Given a segment, we sample a set of sub

segments to construct training segments. Each training seg-

ment contains T frames including the peak frame and the

valley frame. By using the provided facial landmarks, we

crop M local regions around facial components rather than

small regions around landmarks [17] since each component

involves multiples AUs which are closely related. Detailed

locations of patches are presented in the supplementary ma-

terial. Each region is resized to the size of 32x32. The

whole face is cropped out and resized into the size of 32x32.

In feature fusion module, we use an individual ResNet18 [9]

to extract features for each region and the whole face. In

label fusion module, we use a one-layer LSTM net [10]

to predict label attention. Both fusion modules are jointly

trained from scratch. The number of patches is M = 8. The

length of training segment is T = 10. We set the hyperpa-

rameters as λ1 = 0.1 and λ2 = 0.01. The batchsize is 128
and the learning rate is 0.01 with the decay rate of 0.95.

Evaluation. Intra-class Correlation [39] (ICC(3,1)) and

Mean Absolute Error (MAE) are two commonly used eval-

uation metrics for AU intensity estimation [43, 48, 58]. We

use the two metrics to evaluate the performance of the pro-

posed method and competitive methods.

4.2. Ablation study

We first performe an ablation study to verify the ef-

fectiveness of the feature fusion module, the label fusion

module, and the task-related context. Fig. 5 shows the

composition of our method and its four variants. Our

method (CFLF) contains both fusion modules and the con-

text. CFLF-S has no feature fusion module and uses only

the whole face. CFLF-NC drops the task-related context.

It uses the standard attention mechanism for feature fusion,

which can be treated as the weighted summation of features

(see Fig. 2b). CFLF-NL drops the label fusion module. It

becomes a supervised learning method and can not use unla-

beled frames. CFLF-DF replaces the feature fusion module

with straightforward feature concatenation (see Fig. 2a).

The results are shown in Table 1. Our method achieves

the best average performance on both databases under two

metrics. We analyze the results as follows. Firstly, our

method outperforms CFLF-S which uses only the whole

face image. This shows that features extracted from lo-
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Table 2. Comparison with the state-of-the-art weakly-supervised and semi-supervised methods. The best results are shown in bold and in

brackets. The second best results are shown in bold only. (*) Indicates results taken from the reference.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

ICC

Ladder [30] .670 .619 .793 .073 .444 .520 -.012 .058 .040 .027 .463 .089 .596 -.015 .011 .000 .575 .369 .183

LBA [8] .706 .642 .812 .230 .502 .578 .080 .085 .363 .041 .379 .150 [.738] .075 .242 .084 [.830] .459 .294

OSVR [63]* .646 .577 .780 .269 .449 .544 .208 .038 .248 .151 .229 .152 .313 .115 .066 .094 .618 .093 .194

BORMIR [60]* .725 .675 [.861] .368 .469 .620 .198 [.248] .302 .173 .385 .181 .583 .157 .225 .088 .707 .148 .283

KBSS [58] .760 [.725] .840 [.445] .454 .645 .136 .116 [.480] .169 .433 .353 .710 .154 .248 .085 .778 [.536] .350

CFLF (ours) [.766] .703 .827 .411 [.600] [.661] [.263] .194 .459 [.354] [.516] [.356] .707 [.183] [.340] [.206] .811 .510 [.408]

MAE

Ladder [30] .685 .838 .599 1.195 .640 .791 .647 .343 1.259 .114 [.283] .327 .354 .187 .304 .148 .755 [.390] .426

LBA [8] .636 .802 [.560] 1.097 [.616] .742 .357 [.258] .786 [.078] .313 [.169] [.292] [.138] .311 [.106] [.384] .422 [.301]

OSVR [63]* 1.024 1.126 .953 1.354 .928 1.077 1.648 1.873 2.943 1.378 1.556 1.690 1.636 1.101 1.614 1.371 1.329 1.789 1.661

BORMIR [60]* .848 .895 .678 1.046 .791 .852 .875 .783 1.240 .589 .769 .777 .757 .564 .716 .628 .898 .875 .789

KBSS [58] .738 [.773] .694 [.990] .895 .818 .532 .489 .818 .237 .389 .375 .434 .321 .497 .355 .613 .440 .458

CFLF (ours) [.624] .830 .624 1.000 .626 [.741] [.326] .280 [.605] .126 .350 .275 .425 .180 [.290] .164 .530 .398 .329

cal patches contain useful information that is not covered

by the global features. Secondly, CFLF-NL achieves the

poorest performance. It does not contain label fusion and

can use only annotated key frames to perform supervised

learning. It overfits the limited number of training samples.

The label fusion is the key to enable weakly supervised

learning with partially labeled data. Thirdly, our method

achieves better performance than CFLF-NC which does not

use the task-related context. CFLF-NC uses the standard at-

tention mechanism for feature fusion and uses the LSTMs

without context for label attention prediction. Therefore,

it is unable to capture the spatial and temporal relations in

different tasks and each AU is treated equally. The com-

parison shows the importance of the task-related context.

Fourthly, our method outperforms CFLF-DF which replaces

the attention-based feature fusion with straightforward fea-

ture concatenation. CFLF-DF treats local patches equally

while our method treats patches differently according to the

given task. Our method is more consistent with the way

that we annotate AU intensity since we focus on AU-related

local regions and ignore unrelated regions. These results

demonstrate the effectiveness of the feature fusion module,

the label fusion module, and the task-related context.

4.3. Comparison with the state­of­the­art

Comparison with weakly and semi-supervised learning

methods. We compare the proposed method with sev-

eral state-of-the-art weakly-supervised learning methods

(OSVR [63], BORMIR [60] and KBSS [58]) and semi-

supervised learning methods (Ladder [30] and LBA [8]).

Ladder uses unlabeled samples by designing a denoising

loss. LBA propagates labels of labeled samples to unla-

beled samples based on the assumption that samples with

similar labels have similar latent features. OSVR com-

bines ordinal regression with SVM for expression intensity

estimation. BORMIR uses the idea of multi-instance re-

gression and uses domain knowledge to provide weak su-

pervision. KBSS uses knowledge-based losses based on a

four-element tuple to train a deep model. Note that OSVR,

BORMIR, and KBSS train one model for each AU. Unlike

them, we train one model to jointly predict the intensities of

multiple AUs. Our method and competitive methods require

only the intensity annotations of key frames for training.

The results are shown in Table 2. We analyze the results

as follows. Firstly, on FERA 2015, our method achieves su-

perior average performance over other methods under both

metrics. On DISFA, our method achieves the best average

performance under ICC and the second best under MAE.

Note that ICC and MAE should be jointly considered to

evaluate one method. Though Ladder and LBA can get

good MAEs, their ICCs are much worse than KBSS and

our method. Because they do not consider temporal rela-

tions among frames for regularization and overfit the la-

beled samples of the training set. As intensity distributions

of two databases are imbalanced and the majority intensity

is 0, they always predict the majority intensity for testing

frames. It results in that they have good MAEs, but low

ICCs. Secondly, our method outperforms KBSS on both

databases. During the training phase, our method uses a

segment consisting of T frames as the input while KBSS

uses a four-element tuple sampled from a training segment.

However, four frames are not enough to capture the tem-

poral dynamics in segments, especially when facial appear-

ance changes rapidly. Our method can capture the dynam-

ics better than KBSS since we consider more frames. Be-

sides, our method uses two types of context augmented at-

tention mechanisms to capture the spatial relations among

patches and temporal dynamics of AUs. Another advantage

of our method over KBSS is that we train one model for

the joint intensity estimation of multiple AUs while KBSS

trains one model for each AU. Thirdly, compared to OSVR

and BORMIR, our method performs much better, especially

on DISFA. They are two linear models using hand-craft fea-

tures while our model is a deep model that can model more

complex data distribution. These results show the supe-

rior performance of the proposed method over competitive

weakly and semi-supervised learning methods.

Comparison with patch-based methods. We compare our

method with two state-of-the-art patch-based methods of

facial behaviour analysis, i.e., EAC [17] and DRML [62].

EAC extracts cropped feature maps around facial landmarks

and fuses them through a MLP (see Fig. 2c). DRML di-
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Table 3. Comparison with the state-of-the-art patch-based methods under two scenarios.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

Using the intensity annotations of all frames for training

ICC
EAC [17] .705 .643 .844 .328 .452 .594 .088 .077 .302 .144 .462 .150 .705 .090 .273 .141 .820 .367 .301

DRML [62] .731 .676 .813 .366 .476 .612 .093 .057 .415 .157 .408 .266 .718 .175 .189 .113 .805 .547 .329

MAE
EAC [17] .762 .866 .612 1.067 .723 .806 .483 .464 .858 .099 .406 .416 .445 .246 .370 .238 .508 .517 .421

DRML [62] .731 .863 .675 1.279 .717 .853 .446 .380 .808 .079 .357 .299 .360 .165 .281 .142 .535 .382 .353

Using only the intensity annotations of key frames for training

ICC

EAC [17] .496 .597 .754 .030 .018 .379 .000 -.004 .000 -.002 .524 -.002 .438 .000 .000 .001 .497 -.001 .121

DRML [62] .606 .521 .620 .089 .243 .416 -.055 -.073 .335 .044 .427 .179 .531 .001 .124 .001 .757 .413 .224

CFLF (ours) .766 .703 .827 .411 .600 .661 .263 .194 .459 .354 .516 .356 .707 .183 .340 .206 .811 .510 .408

MAE

EAC [17] .898 .890 .735 1.156 .822 .900 .493 .380 .782 .200 .400 .337 .624 .249 .466 .248 .798 .622 .467

DRML [62] .874 1.040 .902 1.037 .864 .944 .546 .598 .858 .189 .356 .490 .454 .229 .278 .306 .552 .507 .447

CFLF (ours) .624 .830 .624 1.000 .626 .741 .326 .280 .605 .126 .350 .275 .425 .180 .290 .164 .530 .398 .329

vides feature maps into patches and applies the proposed

region layer on each patch. The resulting feature maps of

patches are then fused via a convolutional layer. Note that

both methods are proposed for AU recognition, rather than

AU intensity estimation. We adapt them for intensity esti-

mation by replacing the classification loss with a regression

loss. We evaluate EAC and DRML under two scenarios, i.e.,

using the intensity annotations of all frames for training and

using the intensity annotations of only key frames.

The results are shown in Table 3. When using only the

annotations of key frames, our method achieves much bet-

ter results than EAC and DRML on both databases. Even

when EAC and DRML use the annotations of all frames, our

method still outperforms them. The reason is that they over-

fit the training data even using all frames. They have higher

training accuracies than our method, but have lower testing

accuracies. The training sets of both databases have less

than 90,000 images while their models have millions of pa-

rameters to train. This leads to the overfitting. Once fewer

annotations are used, their performance drops sharply. Dif-

ferently, we perform weakly supervised learning and use

two regularization terms in the objective, which avoids the

overfitting to a certain extent.

Comparison with supervised learning methods. We

compare with several state-of-the-art supervised learning

methods of AU intensity estimation, including CNN [7],

ResNet18 [9], 2DC [43], CCNN-IT [48], HBN [49], and

Heatmap [37]. CNN [7] uses a four-layer CNN for in-

tensity estimation. HBN uses the hybrid Bayesian net-

works. ResNet18 is the starndand Resnet with 18 lay-

ers. 2DC combines Gaussian Process and variational auto-

encoder. CCNN-IT combines copula funcitons, CRF, and

CNN. Heatmap jointly predicts the locations of AUs and

their intensities. These supervised methods require anno-

tating AU intensity of each frame in sequences while ours

needs only the annotations of key frames. The key frames

occupy only about 2% in FERA 2015 and 1% in DISFA.

The results are shown in Table 4. Our method achieves

better performance under MAE on both databases. On

FERA 2015, our ICC is better than CNN and CCNN-IT, and

is comparable to HBN, Heatmap, and 2DC. On DISFA, our

Table 4. Comparison with the state-of-the-art supervised methods.

Note that competing methods use every annotated frame in the

training set while our method uses the intensity annotations of par-

tial frames which occupy a very small portion. (*) Indicates results

taken from the reference.

Database FERA 2015 DISFA

Method ICC MAE ICC MAE

HBN [49]* .700 - - -

Heatmap [37]* .680 - - -

2DC [43]* .660 - .494 -

CCNN-IT [48]* .630 1.260 .377 .663

CNN [7] .596 .817 .328 .423

ResNet18 [9] .580 .882 .270 .483

CFLF (ours) .661 .741 .408 .329

ICC is better than CNN, ResNet18, and CCNN-IT. Please

note that we only use the intensity annotations of key frames

in sequences while other methods use that of all frames.

CNN and ResNet18 have the same overfitting problem as

EAC and DRML. The results show that our method can

still achieve comparable or even better performance than

the competitive supervised learning methods though we use

much fewer annotations.

5. Conclusion

This paper proposes a novel weakly supervised patch-

based deep model on basis of two types of attention mecha-

nisms for the joint intensity estimation of multiple AUs. We

explore spatial relationships among local patches with a fea-

ture fusion module, while incorporating temporal dynamics

of AUs with a label fusion module to enable weakly su-

pervised learning. The attention mechanisms of both mod-

ules are further enhanced with a learnable task-related con-

text, which facilitates joint analysis of multiple AUs and

boosts performances. Evaluations on two public benchmark

databases demonstrate the effectiveness of the feature fu-

sion module and the label fusion module.
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