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Abstract

Siamese approaches address the visual tracking prob-

lem by extracting an appearance template from the current

frame, which is used to localize the target in the next frame.

In general, this template is linearly combined with the ac-

cumulated template from the previous frame, resulting in

an exponential decay of information over time. While such

an approach to updating has led to improved results, its

simplicity limits the potential gain likely to be obtained by

learning to update. Therefore, we propose to replace the

handcrafted update function with a method which learns

to update. We use a convolutional neural network, called

UpdateNet, which given the initial template, the accumu-

lated template and the template of the current frame aims

to estimate the optimal template for the next frame. The

UpdateNet is compact and can easily be integrated into

existing Siamese trackers. We demonstrate the generality

of the proposed approach by applying it to two Siamese

trackers, SiamFC and DaSiamRPN. Extensive experiments

on VOT2016, VOT2018, LaSOT, and TrackingNet datasets

demonstrate that our UpdateNet effectively predicts the new

target template, outperforming the standard linear update.

On the large-scale TrackingNet dataset, our UpdateNet im-

proves the results of DaSiamRPN with an absolute gain

of 3.9% in terms of success score. Code and models are

available at https://github.com/zhanglichao/

updatenet.

1. Introduction

Generic visual object tracking is the task of predicting

the location of a target object in every frame of a video,

given its initial location. Tracking is one of the fundamen-

tal problems in computer vision, spanning a wide range

of applications including video understanding [34], surveil-

lance [12], and robotics [29]. It is a highly challenging task
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Figure 1. Qualitative comparison between model updates. We

learn to update the model template using UpdateNet. When com-

bined with Siamese trackers such as SiamFC [1], our learned

updating strategy can be effectively adapted to current circum-

stances, unlike the simple linear update commonly used.

due to frequent appearance changes, various types of occlu-

sions, the presence of distractor objects, and environmental

aspects such as motion blur or illumination changes.

Currently, there are two prevalent tracking paradigms:

Siamese tracking methods [1, 27, 41, 50] and tracking-by-

detection methods [3, 7, 11, 19, 32, 47, 48]. In this work,

we consider Siamese trackers, since they provide competi-

tive accuracy while achieving impressive computational ef-

ficiency. The basic principle of these trackers is to match

an object appearance template with a corresponding feature

representation of the search region in the test frame. The

features for the object template and the search region are

acquired through a deep neural network trained offline on a

large dataset. Such a training strategy has shown to provide

excellent visual descriptors for the tracking task [1, 50].

In the original Siamese tracker [1], the object template

is initialized in the first frame and then kept fixed during

the remainder of the video. However, appearance changes

are often large and failing to update the template could

lead to early failure of the tracker. In such scenarios, it is
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important to adapt the model to the current target appear-

ance. To accommodate this problem, more recent Siamese

trackers [27, 41, 50] have implemented a simple linear up-

date strategy using a running average with a fixed learning

rate [36]. This strategy assume a constant rate of appear-

ance change across all frames in the video, as well as across

different videos. In practice, the update requirements for

the object template greatly vary for different tracking situa-

tions, which depend on a complex combination of external

factors such as motion, blur, or background clutter. There-

fore, a simple linear update is often inadequate to cope with

changing updating needs and to generalize to all potentially

encountered situations. Moreover, this update is also con-

stant in all spatial dimensions, which does not allow for lo-

calized partial updates. This is especially damaging in situ-

ations such as partial occlusions, where only a certain part

of the template needs to be updated. Finally, excessive re-

liance on the initial template may suffer from catastrophic

drift and the inability to recover from tracking failures.

In this paper, we propose to learn the target template up-

date itself. Our learned update strategy utilizes target and

image information, and is thus adaptive to the present cir-

cumstances of each particular situation. In our approach,

the updated template is computed as a function of (i) the

initial ground-truth template, (ii) the accumulated template

from all previous frames, and (iii) the feature template at the

predicted object location in the current frame. Hence, the

new accumulated template contains an effective historical

summary of the object’s current appearance, as it is contin-

ually updated using the most recent information while being

robust due the strong signal given by the initial object ap-

pearance. More specifically, the aforementioned template

update function is implemented as a convolutional neural

network, UpdateNet. This is a compact model that can

be combined with any Siamese tracker to enhance its on-

line updating capabilities while maintaining its efficiency

properties. Furthermore, it is sufficiently complex to learn

the nuances of effective template updating and be adaptive

enough to handle a large collection of tracking situations.

We evaluate UpdateNet by combining it with two

state-of-the-art Siamese trackers: SiamFC [1] and DaSi-

amRPN [50]. Through extensive experiments on common

tracking benchmarks, such as VOT2018 [22], we demon-

strate how our UpdateNet provides enhanced updating ca-

pabilities that in turn result in improved tracking perfor-

mance (see Figure 1). We also present results in the recent

LaSOT dataset [13], which is substantially more challeng-

ing as it contains abundant long-term sequences. Overall,

we propose an efficient model to learn how to effectively

update the object template during online tracking and that

can be applied to different existing Siamese trackers.

2. Related work

Tracking Frameworks. Most existing tracking meth-

ods are either based on tracking-by-detection or employ

template matching. Object trackers based on tracking-by-

detection pose the task of target localization as a classi-

fication problem where the decision boundary is obtained

by online learning a discriminative classifier using image

patches from the target object and the background. Among

the tracking-by-detection approaches, discriminative cor-

relation filter based trackers [19, 48, 11, 7] have recently

shown excellent performance on several tracking bench-

marks [42, 43, 24, 22]. These trackers learn a correlation

filter from example patches of the target appearance to dis-

criminate between the target and background appearance.

The other main tracking framework is based on tem-

plate matching, typically using Siamese networks [1, 40, 41,

18, 27, 50], that implement a similarity network by spatial

cross-correlation. Bertinetto et al. [1] proposed a Siamese

tracker which is based on a two-stream architecture. One

stream extracts the object template’s features based on an

exemplar image that contains the object to be tracked. The

other stream receives as input a large search region in the

target image. The two outputs are cross-correlated to gener-

ate a response map of the search region. Many trackers have

extended the SiamFC architecture [40, 16, 41, 27, 50, 49]

for tracking. The Siamese-based trackers have gained pop-

ularity since they provide a good trade-off between compu-

tational speed and tracking performance. However, most of

these approaches struggle to robustly classify the target es-

pecially in the presence of distractors due to no online learn-

ing. In this work, we analyze the limitations of Siamese

trackers regarding the update of the template model and pro-

pose a solution to address them.

Updating the object template Most trackers either use

simple linear interpolation to update the template in every

frame [3, 19, 9, 11, 20, 5] or do not update the initial tem-

plate at all [1, 41, 27, 50]. Such update mechanisms are

insufficient in most tracking situations, as the target ob-

ject may suffer appearance changes given by deformations,

fast motion, or occlusion. Moreover, fixed update sched-

ules also result in object templates that are more focused

on recent frames [10], while forgetting the historical ap-

pearances of the object. To address this issue, Danelljan

et al. [10, 11] propose to include a subset of historic frames

as training samples when calculating the current correlation

filter, which leads to better results than the traditional lin-

ear frame-by-frame update. Nonetheless, storing multiple

samples in memory results in increased computation and

memory usage, which in turn heavily decreases the tracking

speed. The ECO tracker [7] tries to alleviate this problem by

modelling the distribution of training samples as a mixture

of Gaussians, where each component represents a distinct

appearance. This significantly reduces required storage and,
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combined with a conservative update strategy (only every

five frames), leads to increased tracking efficiency. Even

with more previous samples, the correlation filter is still up-

dated by averaging the filters of their corresponding samples

(as still linear interpolation update).

Recently, Yang et al. [45] employed a Long Short-Term

Memory (LSTM) to estimate the current template by stor-

ing previous templates in memory during on-line tracking,

which is computationally expensive and a rather complex

system. Choi et al. [6] also uses a template memory but uses

reinforcement learning to select one of the stored templates.

This method fails to accumulate information from multiple

frames. The meta-tracker of [33] extends the initialization

of the target model in the first frame by a pre-trained ap-

proach, but still need a linear update in on-line tracking.

Yao et al. [46] propose to learn the updating coefficients

for CF trackers using SGD offline. While the solution for

correlation filter is still the hand-crafted manner, and these

coefficients are fixed without updating during tracking.

To adapt to the object variations, Guo et al. [15] pro-

pose to compute a transformation matrix with respect to the

initial template through regularized linear regression in the

Fourier domain. Since only the initial template is consid-

ered when estimating the transformation, this approach ig-

nores the historical object variations observed during track-

ing, which may result important for a smoother adapta-

tion of the exemplar template. Moreover, they compute

the transformation matrix as a closed-form solution on the

Fourier domain, which suffers from issues related to the

boundary effect [21]. Our work instead uses a powerful yet

easily trainable model to update the object template based

not only the first frame, but also on the accumulated tem-

plate using all previous frames, leveraging the observed

training data. Furthermore, our UpdateNet is trained to

learn how to perform an effectively update the object tem-

plate, based on the observed training tracking data.

3. Updating the object template

In this section, we present our approach to learn how to

update the object template during online tracking. We start

by revisiting the standard update mechanism in tracking and

identifying its drawbacks. Then, we introduce our formula-

tion to overcome them and describe our model and training

procedure in detail. The focus of this paper is on Siamese

trackers. Note, however, that our approach is not limited to

Siamese trackers and the same formulation could be applied

to other types of trackers, e.g. DCF [19, 11, 7].

3.1. Standard update

Several recent tracking approaches [4, 3, 19, 40, 41, 27,

50] use a simple averaging strategy to update the object ap-

pearance model given a new data sample. This strategy

dates from early tracking methods [36] and has long been

the standard for online updating given its acceptable results

and in spite of its limitations. The template is updated as a

running average with exponentially decaying weights over

time. The choice of exponential weights yields the follow-

ing recursive formula for updating the template,

T̃i = (1− γ)T̃i−1 + γTi. (1)

Here, i is the frame index, Ti is the new template sample

computed using only the current frame, and T̃i is the accu-

mulated template. The update rate γ is normally set to a

fixed small value (e.g. γ = 0.01) following the assumption

that the object’s appearance changes smoothly and consis-

tently in consecutive frames. In DCF trackers (e.g. [3, 19]),

T corresponds to the correlation filter. In Siamese trackers,

instead, T is the object appearance template extracted from

a particular frame by a fully convolutional feature extractor.

While the original SiamFC tracker [1] does not perform any

model update, more recent Siamese trackers [1, 41, 27, 50]

have adopted (1) to update their templates.

While template averaging provides a simple means of in-

tegrating new information, it has several severe drawbacks:

• It applies a constant update rate for every video, de-

spite the possibly different updating necessities caused

by multiple factors such as camera motion. Even

within the same video, the required update on the ob-

ject template may dynamically vary at different times.

• The update is also constant along all spatial dimen-

sions of the template, including the channel dimension.

This prevents updating only part of the template, which

is desirable under partial occlusions, for example.

• The tracker cannot recover from drift. Partially, this

is caused by the fact that it loses access to the appear-

ance template T0, which is the only template which is

without doubt on the object.

• The update function is constrained to a very simple

linear combination of previous appearance templates.

This severely limits the flexibility of the update mech-

anism, important when the target undergoes complex

appearance changed. Considering more complex com-

bination functions is expected to improve results.

3.2. Learning to update

We address the drawbacks listed above by proposing a

model that learns an adaptive update strategy. Since the fo-

cus of this paper is on Siamese trackers, T represents here

the object appearance template. To address the limitations

of simple template averaging, we propose to learn a generic

function φ that updates the template according to,

T̃i = φ(TGT

0 , T̃i−1, Ti). (2)

The learned function φ computes the updated template

based on initial ground-truth template TGT
0 , the last ac-

cumulated template T̃i−1 and the template Ti extracted

4012



...

Figure 2. Overview of our tracking framework with UpdateNet. (Left) The online update of the object template is performed by

UpdateNet, which receives as input the initial ground-truth template, last accumulated template and current predicted template, and outputs

updated accumulated template. (Right) Training of UpdateNet using the distance to the ground-truth object template on next frame.

from the predicted target location in the current frame.

In essence, the function updates the previous accumulated

template T̃i−1 by integrating the new information given by

the current frame Ti. Therefore, φ can be adapted to the

specific updating requirements of the current frame, based

on the difference between the current and accumulated tem-

plates. Moreover, it also considers the initial template TGT
0

in every frame, which provides highly reliable information

and increases robustness against model drift. The function

φ is implemented as a convolutional neural network, which

grants great expressive power and the ability to learn from

large amounts of data. We call this neural network Up-

dateNet and describe it in detail in the following section.

3.3. Tracking framework with UpdateNet

We present here the structure of UpdateNet and describe

how it is applied for online tracking. Figure 2 (left) presents

an overview of our adaptive object update strategy using

UpdateNet with a Siamese tracker. We extract deep features

from image regions with a fixed fully convolutional network

ϕ, employing the same feature extractor as in the SiamFC

tracker [1]. We extract TGT
0 from the ground-truth object

location in the initial frame (number 0 in Figure 2). In order

to obtain Ti for the current frame, we use the accumulated

template from all previous frames T̃i−1 to predict the object

location in frame i (dashed purple line) and extract the fea-

tures from this region (solid blue line). Note that T̃i−1 cor-

responds to the output of UpdateNet for the previous time

step, not shown here for conciseness. We concatenate the

extracted features TGT
0 and Ti with the accumulated fea-

tures T̃i−1 to form the input of UpdateNet. This input is then

processed through a series of convolutional layers (sec. 4.3)

and outputs the predicted new accumulated template T̃i. For

the first frame, we set Ti and T̃i−1 to TGT
0 as there have not

been any previous frames.

The only ground-truth information used by UpdateNet is

the given object location in the initial frame, all other inputs

are based on predicted locations. Hence, TGT
0 is the most

reliable signal on which UpdateNet can depend to guide

the update. For this reason, we employ a residual learning

strategy [17], where UpdateNet learns how to modify the

ground-truth template TGT
0 for the current frame. This is

implemented by adding a skip connection from TGT
0 to the

output of UpdateNet. This approach still takes into account

the set of historical appearances of the object for updating,

but pivots such update on the most accurate sample. We

have also experimented with adding skip connections from

other inputs as well as no residual learning at all (see sec. 4).

3.4. Training UpdateNet

We train our UpdateNet to predict the target template

in the coming frame, i.e. the predicted template T̃i should

match the template TGT
i+1 extracted from the ground-truth

location in the next frame (Figure 2, right). The intuition

behind this choice is that TGT
i+1 is the optimal template to

use when searching for the target in the next frame. In or-

der to achieve this, we train UpdateNet by minimizing the

Euclidean distance between the updated template and the

ground-truth template of the next frame, defined as

L2 =
∥∥∥φ(TGT

0 , T̃i−1, Ti)− TGT

i+1

∥∥∥
2

. (3)

In the remainder of this section we describe the proce-

dure employed to generate the training data and introduce

a multi-stage training approach for UpdateNet.

Training samples. In order to train UpdateNet to mini-

mize (3), we need pairs of input triplets (TGT
0 , T̃i−1, Ti) and

outputs TGT
i+1 that reflect the updating needs of the tracker

during online application. The object templates of the ini-

tial frame TGT
0 and target frame TGT

i+1 can be easily obtained

by extracting features from ground-truth locations in corre-

sponding frames. In case of the current frame’s template
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Ti, however, using the ground-truth location represents a

seldom encountered situation in practice, for which the pre-

dicted location in the current frame is very accurate. This

unrealistic assumption biases the update towards expecting

very little change with respect to Ti, and thus UpdateNet

cannot learn a useful updating function. Therefore, we need

to extract Ti samples for training by using an imperfect lo-

calization in the i-th frame. We can simulate such situation

by using the accumulated template T̃i−1, ideally presenting

localization errors that occur during online tracking.

Multi-stage training. In theory, we could use the accu-

mulated template T̃i−1 output by UpdateNet. However, this

would force the training to be recurrent, making the proce-

dure cumbersome and inefficient. To avoid this, we split our

training procedure into sequential stages that iteratively re-

fine UpdateNet. In the first stage, we run the original tracker

on the training dataset using the standard linear update

T̃ 0
i = (1− γ) T̃ 0

i−1 + γT 0
i , (4)

which generates accumulated templates and realistically

predicted locations for each frame. We set the update rate

γ to the recommended value for the tracker. This corre-

sponds to a first approximation to likely inputs for Up-

dateNet during tracking inference, albeit with the less so-

phisticated linear update strategy. In every posterior train-

ing stage k ∈ {1, ...,K}, we use the UpdateNet model

trained in the previous stage to get accumulated templates

and object location predictions as follows

T̃ k

i = φk

i

(
TGT

0 , T̃ k−1

i−1
, T k−1

i

)
. (5)

Such training data samples closely resemble the expected

data distribution at inference time, as they have been output

by UpdateNet. We investigate a suitable value for the total

number of stages K in the experimental section (sec. 4).

4. Experiments

4.1. Training dataset

We use the recent Large-scale Single Object Tracking

(LaSOT) [13] to train our UpdateNet. LaSOT has 1,400 se-

quences in 70 categories, which amounts to a total of 3.52M

frames. Each category contains exactly twenty sequences,

making the dataset balanced across classes. It also pro-

vides longer sequences that contain more than 1,000 frames

(2,512 frames on average) in order to satisfy the current

long-term trend in tracking. We used the official training

and test splits, which preserve the balanced class distribu-

tion. In fact, we only employ a subset containing 20 training

sequences from 20 randomly selected categories, with a to-

tal of 45,578 frames. We have found experimentally that

this suffices to learn an effective updating strategy, and that

additional data brings only a small performance boost while

increasing training time.

4.2. Evaluation datasets and protocols

We evaluate results on standard tracking benchmarks:

VOT2018/16 [23], LaSOT [13] and TrackingNet [31].

VOT2018/16 [23]. VOT2018 dataset has 60 public test-

ing sequences, with a total of 21,356 frames. It is used

as the most recent edition of the VOT challenge. The

VOT protocol establishes that when the evaluated tracker

fails, i.e. when the overlap with the ground-truth is below a

given threshold, it is re-initialized in the correct location five

frames after the failure. The main evaluation measure used

to rank the trackers is Expected Average Overlap (EAO),

which is a combination of accuracy (A) and robustness (R).

We also use VOT2016 [24] for comparison purposes, which

has 10 different sequences with VOT2018 [22]. We com-

pute all results using the provided toolkit [22].

LaSOT [13]. LaSOT is a much larger and more chal-

lenging dataset including long-term sequences, Following

recent works that use this dataset [26, 14], we report re-

sults on protocol II, i.e. LaSOT testing set. The testing sub-

set has 280 sequences with 690K frames in total. LaSOT

dataset [13] follows the OPE criterion of OTB [42]. It con-

sists of precision plot which is measured by the center loca-

tion error, and success plot which is measured through the

intersection over union (IoU) between the predicted bound-

ing box and the ground-truth. Besides precision plot and

success plot, LaSOT also uses normalized precision plot to

counter the situation that target size and image resolution

have large discrepancies for different frames and videos,

which heavily influences the precision metric. We use suc-

cess plot and normalized precision plot to evaluate the track-

ers in the article. We use their code [13] to create all plots.

TrackingNet [31]. This is a large-scale tracking dataset

consisting of videos in the wild. It has a total of 30,643

videos split into 30,132 training videos and 511 testing

videos, with an average of 470,9 frames. It uses precision,

normalized precision and success as evaluation metrics.

4.3. Implementation details

We use SiamFC [1] and DaSiamRPN [50] as our base

trackers, and the backbone Siamese network adopts the

modified AlexNet. We do not perform any changes except

for in the updating component. The original implementa-

tion of SiamFC did not perform any object update. We bor-

row a linear update rate from CFNet [40] as γ = 0.0102
for templates generating in the training stage 1. We use

the original version of DaSiamRPN, which does not em-

ploy any update strategy. We analyze the effect of the

linear update rate in the tracking performance in sec. 4.7.

To train UpdateNet, we set a group of templates, includ-

ing TGT
0 , T̃i−1, Ti and TGT

i+1 as the input. They are all

sampled sequentially from a same video. It is noteworthy

that T̃i−1 and Ti are generated by the real tracking pro-
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Update for SiamFC Skip EAO (↑) A (↑) R (↓)

Linear - 0.188 0.50 0.59

UpdateNet (K = 1) - 0.205 0.48 0.58

UpdateNet (K = 1) Ti 0.207 0.47 0.57

UpdateNet (K = 1) T̃i−1 0.214 0.49 0.58

UpdateNet (K = 1) TGT
0 0.250 0.50 0.53

UpdateNet (K = 2) TGT
0 0.257 0.51 0.50

UpdateNet (K = 3) TGT
0 0.262 0.52 0.49

Table 1. Ablation study on VOT2018 [22]. We present several

update strategies for SiamFC [1]. The results are reported in terms

of EAO, normalized weighted mean of accuracy (A), and normal-

ized weighted mean of robustness score (R). ‘Skip’ column in-

dicates the origin of the skip connection, if any. Here, K is the

number of stages UpdateNet is trained for.

cedure, while TGT
0 and TGT

i+1 are ground-truth templates.

We store all training object templates on disk, extracted

using either linear/no update (stage k = 1) or a previous

version of UpdateNet (k > 1). Let the template size be

H ×W × C. UpdateNet is a two-layer convolutional neu-

ral network: one 1 × 1 × 3 · C × 96 convolutional layer,

followed by a ReLU and a second convolutional layer of di-

mensions 1 × 1 × 96 × C. For SiamFC, H = W = 6 and

C = 256, whereas DaSiamRPN C = 512. In the first stage,

the weights are initialized from scratch and the learning rate

is decreased logarithmically at each epoch from 10−6 to

10−7. In next stage, the weights are initialized by the best

model from the last stage, and the learning rate is decreased

logarithmically at each epoch from 10−7 to 10−8. We train

the model for 50 epochs with mini-batches of size 64. We

use Stochastic Gradient Descent (SGD) with momentum of

0.9 and weight decay of 0.0005.

4.4. Ablation study

We start our evaluation by ablating our approach on dif-

ferent components in order to analyze their contribution

to the final performance. Table 1 shows the results using

VOT2018 [22] dataset under the EAO measure. In the mid-

dle of the table, it shows that updating the object template

with the first stage of UpdateNet results beneficial when it

is residually trained with respect to TGT
0 , as the learned up-

date strategy is grounded on a reliable object sample. More-

over, our multi-stage training further increases the perfor-

mance achieved by UpdateNet, reaching a total improve-

ment of 7.4% with respect to the original SiamFC with no

update. For the remainder of the paper, we use UpdateNet

trained on 3 stages and with skip connection from TGT
0 .

4.5. Analysis on representation update

This section attempts to provide insights regarding

the performance improvements achieved by UpdateNet.

Siamese networks are trained to project the images into a

#155

#45

#38

#372

#354

#227

Frame GT No-update Linear UpdateNet

Figure 3. Visualization of accumulated templates for SiamFC.

‘Frame’ column shows the search region and ground-truth box

used to extract the templates, whose top four channels we show

in ‘GT’. ‘No-update’ presents the response map resulting from ap-

plying the inital template to the search region. For ‘Linear’ and

‘UpdateNet’ stategies we also show their accumulated templates.

feature space in which spatial correlation is maximal. Up-

date strategies operate on the learned features, possibly in-

terfering with their correlation abilities and potentially dam-

aging the tracking performance. In order to study the inter-

ference of the update strategies on the features we visualize

the accumulated templates of SiamFC for both linear update

and UpdateNet in Figure 3. We also include the ground-

truth template extracted from the annotated bounding-box.

For each template we show the feature maps of the four

most dynamic channels in the ground-truth template, ar-

ranged in a 2×2 grid. For comparison reasons, the accumu-

lated templates are generated using the ground-truth object

locations instead of the predicted locations during tracking.

Moreover, next to each accumulated template we also show

the response map generated when correlating the template

with the search region. We observe several interesting prop-

erties that support the performance gains seen in practice.

First, the accumulated templates using UpdateNet resemble

the ground-truth more closely than those in linear update

(see e.g. highlight on bottom-right channel for frame 38,

first example). Second, response maps tend to be sharper

on the object location for UpdateNet, which shows how our

strategy does not negatively interfere with the desired cor-

relation properties of the learned features. Finally, the ac-

cumulated templates of the linear update change at a very

slow rate and are clearly deficient in keeping up with the

appearance variation exhibited in videos.

In order to further study this observation, we propose

quantifying the change rate between templates of contigu-

ous frames. For each i ∈ {1, ..., N} we compute the aver-
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Figure 4. Change rate between contiguous frames. We present

individual results for two example videos (top, middle) and aver-

age results for all videos in VOT2018.

age difference in the template as δi =
1

|E|

∑
E
|Ti − Ti−1|,

where N is the number of frames in a video and the sum

runs over each element of the feature maps (e.g. E =
6 × 6 × 256). We present the results in Figure 4. The bot-

tom row contains the average change rate δ of all 60 videos

in VOT2018 [22]. It is clear that the linear update strategy

cannot deliver the updating rate required by the change in

the features of the ground-truth template. UpdateNet, on the

other hand, provides a much more adaptive strategy that is

substantially closer in magnitude to the change rate of the

ground-truth template. The top and middle rows also show

the change rate of the two individual sequences in Figure 3,

’book’ and ’soccer1’. We can see UpdateNet mimics the

real template in high change periods, as indicated by the

high correlation on their extremes. This leads to predicting

better response map as shown in Figure 3.

4.6. Generality and tracking speed

In this section, we evaluate the generality of our Up-

dateNet by applying it to other Siamese trackers as shown

in Figure 5. It presents results on VOT2018 in terms of

EAO with respect to the tracking speed. We measure track-

ing speed in frames per second (FPS) and use a logarithmic

scale on its axis. We observe that we improve on Siamese

trackers, e.g. SiamFC [1] and DaSiamRPN [50] by adding a

very small temporal overhead. Finally the top-performance

trackers are shown in Figure 6. We compare with track-

ers including DRT [37], DeepSTRCF [28], LSART [38],

R MCPF [48], SRCT [25], CSRDCF [30], LADCF [44],

MFT [22], UPDT [2] and ATOM [8] among others as in

[22]. Among the top trackers, our approach achieves supe-

rior performance while maintaining a very high efficiency.

Further, our tracker obtains a performance relative gain of

2.8% over the base tracker DaSiamRPN [50].

UpdateNet-DaSiamRPN

DaSiamRPN

SiamFC

UpdateNet-SiamFC

DSiam

CSRDCF

ECO

DeepSTRCF

LSART

SRCT

R_MCPF

CFCF

DRT

UPDT

MFT
LADCF

MEEM

Figure 5. EAO vs. speed on VOT2018. We compare our Up-

dateNet combined with two different Siamese trackers against the

state-of-the-art methods. UpdateNet can substantially improve the

tracking performance without significantly affecting the speed.

Figure 6. EAO performance on VOT2018. We compare our

method with the state-of-the-art methods on VOT2018. Our pro-

posed approach achieves superior performance.

4.7. Fine­tuning the linear update rate

The linear update in the previous section uses the update

rate for SiamFC recommended by the authors [40] (γ =
0.0102) and for DaSiamRPN from the original tracker [50]

(γ = 0). We now investigate whether the linear update strat-

egy can bring higher performance gains when fine-tuning

the update rate on the test set. We test several update rates

uniform sampled from the [0, 0.2] interval. Figure 7 shows

the performance of the linear update for DaSiamRPN (light

green) and SiamFC (dark green). The red dashed line at

the top and pink dashed line in the middle are the per-

formance of our UpdateNet applied on DaSiamRPN and

SiamFC respectively. We can see for SiamFC the peak per-

formance is indeed achieved between 0.01 and 0.05. For

DaSiamRPN, the original tracker with no-update performs

best, which proves that for more complex Siamese track-

ers trained off-line, on-line linear update may even damage

the performance. This shows that even a fine-tuned linear

update cannot improve its results any further. Moreover,

our UpdateNet outperforms all update rate values without

requiring any manual fine-tuning. Despite the need of a

higher update rate for some videos, we can see how the per-
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Figure 7. The linear update rate evaluation for DaSiamRPN

and SiamFC on VOT2018 [22]. The x-axis is the update rate

values. The y-axis is the EAO scores on VOT protocol [22]. The

red and pink dashed lines are our UpdateNet performances with

DaSiamRPN and SiamFC, respectively.

DSiam MemTrack SiamFC DaSiamRPN

[15] [45] Linear UpdateNet Linear UpdateNet

EAO 0.181 0.273 0.235 0.289 0.439 0.481

A 0.492 0.533 0.529 0.543 0.619 0.610

R 2.934 1.441 1.908 1.320 0.262 0.206

Table 2. Results for other updating strategies on VOT2016.

DSiam [15] and MemTrack [45] use SiamFC as base tracker. The

best two results are highlighted in red and blue fonts, respectively.

formance continuously and rapidly decreases as the update

rate increases, evidencing the unsuitability of a fixed and

general update rate for all videos.

4.8. Comparison with other updating strategies

Some recent approaches [15, 45] proposed alternative

updating strategies for Siamese trackers. Table 2 presents

a comparison with DSiam [15] and MemTrack [45] on

VOT2016, as [45] only reports results on this VOT edition

(see Figure 5 for DSiam results on VOT2018). Our Up-

dateNet leads to a more effective update and higher track-

ing performance, while also being applicable to different

Siamese architectures. Despite the already excellent perfor-

mance of DaSiamRPN, UpdateNet brings an improvement

of 4.2%, reaching state-of-the-art. Moreover, our approach

yields a substantial absolute gain of 5.6% in terms of robust-

ness, which is a common weak point of Siamese trackers.

4.9. LaSOT dataset

We test our model on the recent LaSOT dataset [13].

Since long-term sequences are common in LaSOT, the up-

dating component of the tracker is crucial, as more sudden

variations may appear and object appearance may depart

further from the input object template. We show the top-

10 trackers, including MDNet [32], VITAL [35], Struct-

Siam [49], DSiam [15], SINT [39], STRCF [28], ECO [7],

SiamFC [1] and DaSiamRPN [50] in Figure 8. The results

are presented following the official protocol. We can see

Figure 8. Evaluation on LaSOT testing set. Normalized preci-

sion and success plots following the OPE protocol II.

ATOM ECO CFNet MDNet SiamFC DaSiamRPN

[8] [7] [40] [32] Linear UpdateNet Linear UpdateNet

Precision (%) 64.8 49.2 53.3 56.5 53.3 53.1 59.1 62.5

Norm. Prec. (%) 77.1 61.8 65.4 70.5 66.3 67.4 73.3 75.2

Success (%) 70.3 55.4 57.8 60.6 57.1 58.4 63.8 67.7

Table 3. State-of-the-art comparison on TrackingNet. Our Up-

dateNet significantly improves DaSiamRPN [50] with an absolute

gain of 3.4% and 3.9%, in terms of precision and success. The

best two results are highlighted in red and blue fonts, respectively.

how UpdateNet enhances the updating capabilities of DaSi-

amRPN and leads to a significant performance boost on all

measures. As a result, our tracker with learned update strat-

egy surpasses all state-of-the-art trackers on this dataset.

This brings further evidence to the advantages of adaptive

update strategy in terms of accurate object localization.

4.10. TrackingNet dataset

We evaluate our UpdateNet-DaSiamRPN on the test-

ing set of TrackingNet [31] using their three evaluation

metrics (Table 3). Compared with DaSiamRPN, our Up-

dateNet+DaSiamRPN obtains absolute gains of 3.4%, 1.9%

and 3.9% in terms of precision, normalized precision and

success. UpdateNet leads to a significant performance im-

provement on all three metrics. This shows how a learning

the model update can greatly benefit Siamese trackers on

several datasets and under different measures.

5. Conclusions

Siamese trackers usually update their appearance tem-

plate using a simple linear update rule. We identify several

shortcomings of this linear update and propose to learn the

updating step as an optimization problem. We employ a

neural network, coined UpdateNet, that learns how to up-

date the current accumulated template given the appearance

template of the first frame, the current frame, and the accu-

mulated template of the previous step. The proposed Up-

dateNet is general and can be integrated into all Siamese

trackers. Comparable results on four benchmark datasets

(VOT2016, VOT2018, LaSOT, and TrackingNet) show that

the proposed approach to updating does significantly im-

prove the performance of the trackers with respect to the

standard linear update (or with respect to no-update at all).
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Roman Pflugfelder, Gustavo Fernandez, Georg Nebehay,
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