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Figure 1: Gram matrix based style transfer methods (AdaIN [11], WCT [24], and LST [23]) may fail to distinguish style

patterns (1st and 2nd rows). Patch-swap based methods (CNNMRF [19], DFR [10], and AvatarNet [36]) may copy some less

desired style patterns (labeled with red arrows) to the results (3rd and 4th rows). Our MST alleviates all these limitations.

Abstract
An assumption widely used in recent neural style trans-

fer methods is that image styles can be described by global

statics of deep features like Gram or covariance matrices.

Alternative approaches have represented styles by decom-

posing them into local pixel or neural patches. Despite the

recent progress, most existing methods treat the semantic

patterns of style image uniformly, resulting unpleasing re-

sults on complex styles. In this paper, we introduce a more

flexible and general universal style transfer technique: mul-

timodal style transfer (MST). MST explicitly considers the

matching of semantic patterns in content and style images.

Specifically, the style image features are clustered into sub-

style components, which are matched with local content fea-

tures under a graph cut formulation. A reconstruction net-

work is trained to transfer each sub-style and render the fi-

nal stylized result. We also generalize MST to improve some

existing methods. Extensive experiments demonstrate the

superior effectiveness, robustness, and flexibility of MST.

1. Introduction

Image style transfer is the process of rendering a con-

tent image with characteristics of a style image. Usually, it

would take a long time for a diligent artist to create a styl-

ized image with particular style. Recently, it draws a lot of

interests [8, 14, 4, 39, 11, 24, 10, 36, 35, 3, 40, 23] since

Gatys et al. [8] discovered that the correlations between

convolutional features of deep networks can represent im-

age styles, which would have been hard for traditional

patch-based methods to deal with. These neural style trans-

fer methods either use an iterative optimization scheme [8]

or feed-forward networks [14, 4, 39, 11, 24, 36, 23] to syn-

thesize the stylizations. Most of them are applicable for

arbitrary style transfer with a pre-determined model. These

universal style transfer methods [11, 24, 36, 23] inherently

assume that the style can be represented by the global statis-

tics of deep features such as gram matrix [8] and its approx-

imates [11, 24]. Although these neural style transfer meth-

ods can preserve the content well and match the overall style
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of the reference style images, they will also distort the local

style patterns, resulting unpleasing visual artifacts.

Let’s start with some examples in Fig. 1. In the first

row, where the style image consists of complex textures and

strokes, these methods cannot tell them apart and neglect to

match style patterns to content structures adaptively. This

would introduce some less desired strokes in smooth con-

tent areas, e.g., the sky. In the second row, the style image

has clear spatial patterns (e.g., large uniform background

and blue/red hand). AdaIN, WCT, and LST failed to main-

tain the content structures and suffered from wash-out arti-

facts. This is mainly because the unified style background

occupies a large proportion in the style image, resulting its

domination in the global statistics of style features. These

observations indicate that it may not be sufficient to repre-

sent style features as at may not be sufficient to represent

style features as a unimodal distribution such as a Gram or

covariance matrix. An ideal style representation should re-

spect to the spatially-distributed style patterns.

Inherited from traditional patch-based methods, these

neural patch-based algorithms could generate visually

pleasing results when content and style images have similar

structures. However, the greedy example matching usually

employed by these methods will introduce less desired style

patterns to the outputs. This is illustrated by the bottom two

examples in Fig. 1, where some salient patterns in the style

images, e.g., the eyes and lips, are improperly copied to the

buildings and landscape. Moreover, the last row of Fig. 1

also illustrates shape distortion problem of these methods;

e.g., the appearance for the girl has changed. This phe-

nomenon apparently limits the choice of style images for

these methods.

To address these issues, we propose the multimodal style

transfer (MST), a more flexible and general style trans-

fer method that seeks for a sweet spot between parametric

(gram matrix based) and non-parametric (patch based) ap-

proaches. Specifically, instead of representing the style with

a unimodal distribution, we propose a multimodal style rep-

resentation with graph based style matching mechanism to

adaptively match the style patterns to a content image.

Our main contributions are summarized as follows:

• We analyze the feature distributions of different style

images (see Fig. 2) and propose a multimodal style

representation that better models the style feature dis-

tribution. This multimodal representation consists of a

mixture of clusters, each of which represents a particu-

lar style pattern. It also allows users to mix-and-match

different styles to render diverse stylized results.

• We formulate style-content matching as an energy

minimization problem with a graph and solve it via

graph cuts. Style clusters are adapted to content fea-

tures with respect to the content spatial configuration.

Figure 2: t-SNE [28] visualization for style features. The

original high-dimension style features are extracted at layer

Conv 4 1 in VGG-19 [37] and are reduced to 3 dimensions

via t-SNE. We can see the feature distributions tend to fit as

multimodal distributions rather than single-modal ones.

• We demonstrate the strength of MST by extensive

comparison with several state-of-the-art style trans-

fer methods. The robustness and flexibility of MST

is shown with different sub-style numbers and multi-

style mixtures. The general idea of MST can be ex-

tended to improve other existing stylization methods.

2. Related Works
Style Transfer. Originating from non-realistic render-

ing [18], image style transfer is closely related to texture

synthesis [5, 7, 6]. Gatys et al. [8] were the first to for-

mulate style transfer as the matching of multi-level deep

features extracted from a pre-trained deep neural network,

which has been widely used in various tasks [20, 21, 22].

Lots of improvements have been proposed based on the

works of Gatys et al. [8]. Johnson et al. [14] trained feed-

forward style-specific network and produced one stylization

with one model. Sanakoyeu et al. [34] further proposed a

style-aware content loss for high-resolution style transfer.

Jing et al. [12] proposed a StrokePyramid module to enable

controllable stroke with adaptive receptive fields. However,

these methods are either time consuming or have to re-train

new models for new styles.

The first arbitrary style transfer was proposed by Chen

and Schmidt [4], who matched each content patch to the

most similar style patch and swapped them. Luan et al. [27]

proposed deep photo style transfer by adding a regulariza-

tion term to the optimization function. Based on markov

random field (MRF), Li and Wand [19] proposed CNNMRF

to enforce local patterns in deep feature space. Ruder et

al. [33] improved video stylization with temporal coher-

ence. Although their visual stylizations for arbitrary style

are appealing, the results are not stable [33].

Recently, Huang et al. [11] proposed real-time style

transfer by matching the mean-variance statistics between

content and style features. Li et al. [24] further introduced

whitening and coloring (WCT) by matching the covariance

matrices. Li et al. boosted style transfer with linear style

transfer (LST) [23]. Gu et al. [10] proposed deep fea-

ture reshuffle (DFR), which connects both local and global

style losses used in parametric and non-parametric methods.

Sheng et al. [36] proposed AvatarNet to enable multi-scale

transfer for arbitrary style. Shen et al. [35] built meta net-
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Figure 3: An overview of our MST algorithm.

works by taking style images as inputs and generating corre-

sponding image transformation networks directly. Mechrez

et al. [29] proposed contextual loss for image transforma-

tion. However, these methods fail to treat the style patterns

distinctively and neglect to adaptively match style patterns

with content semantic information. For more neural style

transfer works, readers can refer to the survey [13].

Graph Cuts based Matching. Many problems that

arose in early vision can be naturally expressed in terms

of energy minimization. For example, a large number of

computer vision problems attempt to assign labels to pix-

els based on noisy measurements. Graph cuts is a power-

ful method to solve such discrete optimization problems.

Greig et al. [9] were firstly successful solving graph cuts

by using powerful min-cut/max-flow algorithms from com-

binatorial optimization. Roy and Cox [32] were the first

to use these techniques for multi-camera stereo computa-

tion. Later, a growing number of researches in computer vi-

sion use graph-based energy minimization for a wide range

of applications, which includes stereo [16], texture synthe-

sis [17], image segmentation [38], object recognition [1],

and others. In this paper, we formulate the matching be-

tween content and style features as an energy minimization

problem. We approximate its global minimum via efficient

graph cuts algorithms. To the best of our knowledge, we are

the first to formulate style matching as energy minimization

problem and solve it via graph cuts.

3. Proposed Method
We show the pipeline of our proposed MST in Fig. 3.

3.1. Multimodal Style Representation

In previous CNN-based image style transfer works, there

are two main ways to represent style. One is to use the fea-

tures from the whole image and assume that they are in the

same distribution (e.g., AdaIN [11] and WCT [24]). The

other one treats the style patterns as individual style patches

(e.g., Deep Feature Reshuffle [10]). Equal treatments to dif-

ferent style patterns lack flexibility in the real cases, where

there has several distributions among style features. Let’s

see the t-SNE [28] visualization for style features in Fig. 2,

where the style features are clustered to multiple groups.

Therefore, if a cluster dominates the feature space, e.g.,

second example of Fig. 1, the Gram matrix based methods

[24, 23, 11] will fail to capture the the overall style pat-

Figure 4: t-SNE [28] visualization for style features with

cluster labels. For each style-visualization pair, we set K =
3 and label style features with corresponding cluster labels.

terns. On the other hand, patch-based methods which treat

each sub-patch distinctly would suffer from copying multi-

ple same style patterns to the results directly. For example,

in Fig. 1, the eyes in the style images are copied multiple

times, causing unpleasing stylization results.

Based on the observations and analyses above, we argue

that neither a global statics of deep features nor local neural

patches could be a suitable way to represent the complex

real-world cases. As a result, we propose multimodal style

representation, a more efficient and flexible way to repre-

sent different style patterns.

For a given style image Is, we can extract its deep fea-

tures Fs ∈ ℜC×HsWs via a pre-trained encoder Eθenc
(·),

like VGG-19 [37]. Hs and Ws are the height and width

of the style feature. To achieve multimodal representation

in high-dimension feature space, we target to segment the

style patterns into multiple subsets. Technically, we simply

apply K-means to cluster all the style feature points into K

clusters without considering spatial style information

Fs = F l1
s ∪ F l2

s ∪ · · · ∪ F lk
s ∪ · · · ∪ F lK

s , (1)

where F lk
s ∈ ℜC×Nk is the k-th cluster with Nk features

and we assign this cluster a label lk. In the clustered space,

features in the same cluster have similar visual properties

and are likely drawn from the same distribution (resembling

Gaussian Mixture Model [31]). This process helps us obtain

a multimodal representation of style.

We visualize multimodal style representation in Fig. 4.

For each style image, we extract its VGG feature (at layer

Conv 4 1 in VGG-19) and cluster it into K = 3 clusters.

Then, we conduct t-SNE [28] visualization with the cluster

labels. As shown in Fig. 4, clustering results match our as-

sumption of multimodal style representation well. Nearby

feature points tend to be in the same cluster. These obser-

vation not only shows the multimodal style distribution, but

also demonstrates that clustering is a proper way to model

such a multimodal distribution.

3.2. Graph Based Style Matching

Like style feature extraction, we extract deep content fea-

tures Fc ∈ ℜC×HcWc from a content image Ic. Hc and Wc

are the height and width of the content feature. Distance

measurement is the first step before matching. To reach a

good distance metric, we should consider the scale differ-
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Style cluster centers

Figure 5: Graph based style matching. Example of the

graph containing content features and style cluster centers.

We match content features with style cluster in pixel level.

ence between the content and style features. Computation

complexity should also be taken into consideration, since all

the content features will be used to match. Based on above

analysis, we calculate the cosine distance between content

feature Fc,p ∈ ℜC×1 and style cluster center Fs,lk ∈ ℜC×1

as follows

D (Fc,p, Fs,lk) = 1−
Fc,p

TFs,lk

‖Fc,p‖ ‖Fs,lk‖
, (2)

where (·)
T

is transpose operation and ‖·‖ is magnitude of

the feature vector.

Then we target to find a labeling f that assigns each

content feature Fc,p with a style cluster center label fp ∈
{l1, l2, · · · , lK}. We formulate the disagreement between

f and content features as follows

Edata (f) =
HcWc
∑

p=1

D
(

Fc,p, Fs,fp

)

, (3)

where we name Edata as data energy. Minimizing Edata

encourages f to be consistent with content features.

However, the spatial content information here is not

considered, failing to preserve discontinuity and producing

some unpleasing structures in the stylized results. Instead,

we hope pixels in the same content local region have same

labels. Namely, we want f to be piecewise smooth and

discontinuity preserving. So, we further introduce another

smooth term Esmooth (f) as follows

Esmooth (f) =
∑

{p,q}∈Ω

Vp,q (fp, fq) , (4)

where Ω is the position set of direct interacting pairs of con-

tent features. Vp,q denotes the distinct penalty for each po-

sition pair of features {p, q}. This has been investigated to

be important in various computer vision applications [2].

Also, various forms of energy functions have been inves-

tigated before. Here, we take the discontinuity preserving

function given by the Potts model

Vp,q (fp, fq) = λ · T (fp �= fq) , (5)

where T (·) is 1 if its argument is true, and otherwise 0. λ is

a smooth constant. This model encourages the labeling f to

ContentStyle ResultStyle cluster map Style matching map

Figure 6: Visualization of style matching. Here, we cluster

style features into K = 2 subsets for better understanding.

pursue several regions, where content features in the same

region have same style cluster labels.

By taking Eqs. (3) and (4) into consideration, we natu-

rally formulate the style matching problem as a minimiza-

tion of the following energy function:

E (f) = Edata (f) + Esmooth (f) . (6)

The whole energy E (f) measures not only the disagree-

ment between f and content features, but also the extent to

which f is not piecewise smooth. However, the global min-

imization of such an energy function is NP-hard even in the

simplest discontinuity-preserving case [2].

To solve the energy minimization problem in Eq. (6),

we propose to build a graph by regarding content features

as p-vertices and style cluster centers as l-vertices (shown

in Fig. 5). Then the energy minimization is equal to min-

cut/max-flow problem, which can be efficiently solved via

graph cuts [2]. After finding a local minimum, the whole

content features can be re-organized as follows

Fc = F l1
c ∪ F l2

c ∪ · · · ∪ F lk
c ∪ · · · ∪ F lK

c , (7)

where F lk
c demotes the sub-set whose content features are

matched with the same style label lk.

We show visualization details about graph based style

matching in Fig. 6. We extract style and content features

from Conv 4 1 layer in VGG-19. Due to several downsam-

pling modules in VGG-19, the spatial resolution of the fea-

tures is much smaller than that of the inputs. We label the

spacial style feature pixels with their corresponding cluster

labels and obtain the style cluster maps. According to the

style cluster maps in Fig. 6, we find that style feature clus-

tering grasps semantic information from style images.

After style matching in pixel level, we get the content-

style matching map, which also reflects the semantic infor-

mation, matching the content structures adaptively. Such an

adaptive matching alleviates the wash-out artifacts, when

the style is very simple or has large area of unified back-

ground. Then, we are able to conduct feature transform in

each content-style pair group.

3.3. Multimodal Style Transfer

For each content-style pair group
{

F lk
c , F lk

s

}

, we first

center them by subtracting their mean vectors μ
(

F lk
c

)

and

μ
(

F lk
s

)

respectively. We conduct feature whitening and

coloring as used in WCT [24].

F lk
cs = CsWcF

lk
c + μ

(

F lk
s

)

, (8)
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where Wc = Elk
c

(

Dlk
c

)− 1

2

(

Elk
c

)T
is a whitening matrix

and Cs = Elk
s

(

Dlk
s

)
1

2

(

Elk
s

)T
is a coloring matrix. Elk

c

and Dlk
c are diagonal matrix of eigenvalues and the or-

thogonal matrix of eigenvectors of the covariance matrix

F lk
c

(

F lk
c

)T
. For style covariance matrix F lk

s

(

F lk
s

)T
, the

corresponding matrices are Elk
s and Dlk

s . The reasons why

we choose WCT to transfer features is its robustness and

efficiency [24, 23]. More details about whitening and col-

oring are introduced in [24].

After feature transformation, we may also want to blend

transferred features with content features as did in previous

works (e.g., AdaIN [11] and WCT [24]). Most previous

works have to blend the whole transferred features with a

unified content-style trade-off, which treats different con-

tent parts equally and is not flexible to the real-world cases.

Instead, our multimodal style representation and matching

make it possible to adaptively blend features. Namely, for

each content-style pair group, we blend them via

F lk
cs = αkF

lk
cs + (1− αk)F

lk
c , (9)

where αk ∈ [0, 1] is a content-style trade-off for specific

labeled content features. After blending all the features, we

obtain the whole transferred features

Fcs = F l1
cs ∪ F l2

cs ∪ · · · ∪ F lk
cs ∪ · · · ∪ F lK

cs . (10)

Fcs is then fed into the decoder Dθdec (·) to reconstruct the

final output Ics.

3.4. Implementation Details

Now, we specify the implementation details about our

proposed MST. Similar to some previous works (e.g.,

AdaIN, WCT, DFR), we incorporate the pre-trained VGG-

19 (up to Conv 4 1) [37] as the encoder Eθenc
(·). We

obtain decoder Dθdec (·) by mirroring the encoder, whose

pooling layers are replaced by nearest up-scaling layers.

To train the decoder, we use the pre-trained VGG-19 [37]

to compute perceptual loss ltotal = lc + γls, which com-

bines content loss lc and style loss ls. We simply set the

weighting constant as γ = 10−2. Inspired by the loss des-

ignations in [14, 25, 11], we formulate content loss lc as

lc = ‖φ4 1 (Is)− φ4 1 (Ics)‖2 , (11)

where φ4 1 (·) extracts features at layer Conv 4 1 in VGG-

19. We then formulate the style loss ls as

ls =

4
∑

i=1

(‖μ (φi 1 (Ic))− μ (φi 1 (Ics))‖2)

+

4
∑

i=1

(‖σ (φi 1 (Ic))− σ (φi 1 (Ics))‖2) ,

(12)

where φi 1 (·) extracts features at layer Conv i 1 in VGG-

19. We use μ (·) and σ (·) to compute the mean and standard

deviation of the content and style features.

We train our network by using images from MS-

COCO [26] and WikiArt [30] as content and style data re-

Inputs MST-3 (Euclidean) MST-3 (Cosine)

Figure 7: Distance measurement investigation.

Inputs

Figure 8: Discontinuity preservation investigation.

spectively. Each dataset contains about 80,000 images. In

each training batch, we randomly crop one pair of content

and style images with the size of 256 × 256 as input. We

implement our model with TensorFlow and apply Adam op-

timizer [15] with learning rate of 10−4.

4. Discussions
To better position MST among the whole body of style

transfer works, we further discuss and clarify the relation-

ship between MST and some representative works.

Differences to CNNMRF. CNNMRF [19] extracts a

pool of neural patches from style images, with which patch

matching is used to match content. MST clusters style fea-

tures into multiple sub-sets and matches style cluster centers

with content feature points via graph cuts. CNNMRF uses

smoothness prior for reconstruction, while MST uses it for

style matching only. CNNMRF minimizes energy function

to synthesize the results. MST generates stylization results

with a decoder.

Differences to MT-Net. Both color and luminance are

treated as a mixture of modalities in MT-Net [39]. MST

obtains multimodal representation from style features via

clustering. It should also be noted that MT-Net has to train

new models for new style images. While, MST is designed

for arbitrary style transfer with a single model.

Differences to WCT. In WCT [24], the decoder is

trained by using only content data and loss. MST intro-

duces additional style images for training. WCT uses multi-

ple layers of VGG features and conducts multi-level coarse-

to-fine stylization, which costs much more time and some-

times distorts structures. While, MST only transfers single-

level content and style features. Consequently, even we set

K = 1 in MST, we achieve more efficient stylizations.

5. Experiments
We conduct extensive experiments to validate the contri-

butions of each component in our method, the effectiveness

of our method, and the flexibility for user control.

5.1. Ablation Study

Distance Measurement. We first investigate the choice

of the distance measurement, as it is critical for graph build-
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Inputs AdaIN MST-1

Figure 9: Feature transformation investigation.

ing. Here, we mainly investigate Euclidean distance and co-

sine distance (shown in Eq. (2)). As shown in Fig. 7, MST

with Euclidean distance is affected by the huge background

and may fail to transfer desired style patterns, leading to

wash-out artifacts. This is mainly because there is no nor-

malization for the deep features. As a result, the weight of

style cluster center is proportional to its spatial proportion,

weakening its semantic meaning. Instead, MST with cosine

distance performs much better.

Discontinuity Preservation. In Fig. 8, we show the

effectiveness of the smooth term Esmooth(f) in Eq. (6).

Specifically, we set λ as 0, 0.1, and 1 respectively. In real-

world style transfer, people would like to smooth the fa-

cial area, as they do in the real photos. Here, we select

one portrait to investigate how λ affects smoothness. When

we set λ = 0, the energy function in Eq. (6) is minimized

by only considering the data term. This would introduce

some unpleasing artifacts in the facial area near edges and

demonstrate the necessity of smooth term. However, large

smooth term (e.g., λ = 1) would over-smooth the styliza-

tion results, decreasing the style diversity. A proper value

of λ would not only keep better smoothness, but also pre-

serve style diversity. We empirically set λ = 0.1 through

the whole experiments.

Feature Transform. Here we set K = 1 in MST

and compare with AdaIN [11] to show the effectiveness

of WCT for feature transfer. As shown in Fig. 9, AdaIN

produces some stroke artifacts in the smooth area. These

artifacts may make the cloud unnatural. This is mainly be-

cause AdaIN uses the mean and variance of the whole con-

tent/style features. Instead, by using whitening and coloring

in a more optimized way, our MST-1 achieves more natural

stylization and cleaner smoothed area. As a result, we in-

troduce whitening and coloring for feature transform.

5.2. Comparisons with Prior Arts

After investigating the effects of each component in our

method, we turn to validate the effectiveness of our pro-

posed MST. We compare with 7 state-of-the-art methods:

method by Gatys et al. [8], CNNMRF [19], AdaIN [11],

WCT [24], Deep feature reshuffle (DFR) [10], Avatar-

Net [36], and LST [23]. We obtain results using their of-

ficial codes and default parameters, except for Gatys et al.1.

Qualitative Comparisons. We show extensive compar-

1We use code from https://github.com/jcjohnson/neural-style

isons 2 in Fig. 10. Gatys et al. [8] transfer style with iterative

optimization, being likely to falling in local minimum (e.g.,

1st and 3rd columns). AdaIN [11] often produces less de-

sired artifacts in the smooth area and some halation around

the edges (e.g., 1st, 5th, and 6th columns). CNNMRF [19]

may suffer from distortion effects and not preserve content

structure well. Due to the usage of higher-level deep fea-

ture (e.g., Conv 5 1), WCT [24] would generate distorted

results, failing to preserve the main content structures (e.g.,

1st and 2nd columns). DRF [10] reconstructs the results by

using the style patches, which could also distort the content

structure (e.g., 1st and 3rd columns). In some cases (e.g.,

5th, 6th, and 7th columns), some tiny style patterns (e.g.,

the eyes in the flowers and tree) would be copied to the re-

sults, leading unpleasing stylizations. AvatarNet [36] would

introduce some less desired style patterns in the smooth area

(e.g., 1st column) and also copy some style patterns in the

results (e.g., 6th and 7th columns). LST [23] could gener-

ate very good result in some cases (e.g., 6th column). How-

ever, it may suffer from wash-out artifacts (e.g., 3rd and 4th

columns) and halation around the edges (e.g., 5th column).

These compared methods mainly treat the style patterns as

a whole, lacking distinctive ability to style patterns.

Instead, we treat style features as multimodal presenta-

tions in high-dimension space. We match each content fea-

ture to its most related style cluster and adaptively trans-

fer features according to the content semantic information.

These advantages help explain why MST generates clearer

results (e.g., 1st, 3rd, 5th, and 7th columns), performs more

semantic matching with style patterns (e.g., 2nd column),

and alleviates wash-out artifacts (e.g., 4th column). Such

superior results demonstrate the effectiveness of our MST.

Table 1: Percentage of the votes that each method received.

Method Gatys AdaIN WCT DFR AvatarNet MST

Perc./% 21.41 11.31 12.67 11.55 9.61 33.45

User Study. To further evaluate the 6 methods shown

in Fig 10, we conduct a user study like [24]. We use 15

content images and 30 style images. For each method, we

use the released codes and default parameters to generate

450 results. 20 content-style pairs are randomly selected

for each user. For each style-content pair, we display the

stylized results of 6 methods on a web-page in random or-

der. Each user is asked to vote the one that he/she like

the most. Finally, we collect 2,000 votes from 100 users

and calculate the percentage of votes that each method re-

ceived. The results are shown in Tab. 1, where our MST

(K=3) obtains 33.45% of the total votes. It’s much higher

than that of Gatys et al. [8], whose stylization results are

usually thought to be high-quality. This user study result

is consistent with the visual comparisons (in Fig. 10) and

further demonstrate the superior performance of our MST.

2The fifth content is from https://www.mordeo.org
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Figure 10: Visual comparison. MST (K = 3) and all compared methods use default parameters.

Table 2: Running time (s) comparisons.

Method Gatys AdaIN WCT DFR AvatarNet

Time (s) 116.46 0.09 0.92 54.32 0.33

Method MST-1 MST-2 MST-3 MST-4 MST-5

Time (s) 0.20 1.10 1.40 1.97 2.27

Efficiency. We further compare the running time of our

methods with previous ones [8, 11, 24, 10, 36]. Tab. 2 gives

the average time of each method on 100 image pairs with

size of 512× 512. All the methods are tested on a PC with

an Intel i7-6850K 3.6 GHz CPU and a Titan Xp GPU. Our

MST with different K performs relatively faster than meth-

ods by Gatys et al. [8] and DFR [10]. Even using SVD in

CPU, MST-1 is faster than AvatarNet [36] and WCT [24]. It

should be noted that WCT conducts multi-level stylization,

which costs much more time than that of MST-1. MST-

K (K > 1) becomes much slower with larger K. This

is mainly because our cluster operation is executed in CPU

and consumes much more time. On the other hand, although

MST with larger K would consume more time, its stylized

results would be very robust. So, in general, we don’t have

to choose very large K, of which we give more details about

the effects later.
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Figure 11: Style cluster number investigation. Same content image with complex and simple style images.

StyleContent AdaIN WCT MST

Figure 12: Multi-style transfer. MST treats patterns from different style images distinctively and transfers them adaptively.

5.3. Style Cluster Number

We investigate how style cluster number K affects the

stylization in Fig. 11. When K = 1, our MST performs

style transfer by taking the whole style features equally,

resulting in either very complex (1st row) or simple (2nd

row) stylizations. These results are not consistent with the

content structures and lack flexibility, leading to unpleas-

ing feelings to users. Instead, we can produce multiple

results with different K. When we enlarge K with mul-

timodal style representation, stylization results would ei-

ther throw unnecessary style patterns (1st row) or introduce

more matched style patterns (2nd row). The stylizations

become more matched with the content structures. This is

mainly because multimodal style representation allows dis-

tinctive and adaptive treatment for the style patterns. More

important, MST reconstructs several stylization results with

different K, providing multiple selections for the users.

5.4. Adaptive Multi-Style Transfer

Most previous style transfer methods enable style in-

terpolation, which blends the content image with a set of

weighted stylizations. However, we don’t fix the weights

for each style image, but adaptively interpolate the style

patterns to the content. As shown in Fig. 12, the content

image 3 is stylized by two style images simultaneously. We

use AdaIN [11] and WCT [24] for reference (because it’s

not strictly fair comparisons) by setting equal weight for

each style image. In Fig. 12, AdaIN and WCT suffer from

wash-out artifacts. While, our MST preserves the content

structures well. MST transfers more portrait hair style to

the cat body and more cloud style to the cat eyes and green

leaves. Our adaptive multi-style transfer is also similar to

spatial control in previous methods [11, 24]. But, they

need additional manually designed mask as input, consum-

ing more user efforts. Instead, MST automatically allows

good matching between content and style features.

3It’s from https://wallpaperstream.com
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Figure 13: Generalization of MST to AdaIN [11].

5.5. Generalization of MST

We further investigate the generalization of our pro-

posed MST to improve some existing style transfer meth-

ods. Here, we take the popular AdaIN [11] as an example.

We apply style clustering and graph based style matching

to AdaIN, which is then denoted as “AdaIN + MST-K”. As

shown in Fig. 13, AdaIn may distort some content structures

(e.g., mouth) by switching the global mean and standard de-

viation between style and content features. When we clus-

ter the style feature into K sub-sets and match them with

content features via graph cuts, such a phenomenon can be

obviously alleviated (see 3rd and 4th columns in Fig. 13).

According to these observations and analyses, we can learn

that our MST can be generalized and will benefit to some

other existing style transfer methods.

6. Conclusion

We propose multimodal style representation to model

the complex style distribution. We then formulate the style

matching problem as an energy minimization one and solve

it using our proposed graph based style matching. As a re-

sult, we propose multimodal style transfer to transform fea-

tures in a multimodal way. We treat the style patterns dis-

tinctively, and also consider the semantic content structure

and its matching with style patterns. We also investigate

that MST can be generalized to some existing style transfer

methods. We conduct extensive experiments to validate the

effectiveness, robustness, and flexibility of MST.
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