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Abstract

Current state-of-the-art approaches for lip reading are

based on sequence-to-sequence architectures that are de-

signed for natural machine translation and audio speech

recognition. Hence, these methods do not fully exploit the

characteristics of the lip dynamics, causing two main draw-

backs. First, the short-range temporal dependencies, which

are critical to the mapping from lip images to visemes, re-

ceives no extra attention. Second, local spatial information

is discarded in the existing sequence models due to the use

of global average pooling (GAP). To well solve these draw-

backs, we propose a Temporal Focal block to sufficiently

describe short-range dependencies and a Spatio-Temporal

Fusion Module (STFM) to maintain the local spatial infor-

mation and to reduce the feature dimensions as well. From

the experiment results, it is demonstrated that our method

achieves comparable performance with the state-of-the-art

approach using much less training data and much lighter

Convolutional Feature Extractor. The training time is re-

duced by 12 days due to the convolutional structure and the

local self-attention mechanism.

1. Introduction

lip reading, the ability to recognize the speaker’s utter-

ance based on the lip movements, is of great importance for

various applications in computer vision, natural language

processing and their intersection areas. For example, lip

reading can perform as a liveness detector against replay

attacks in identity authentication system [9]. Speech recog-

nition performance can be boosted by integrating the visual

(lip reading) and audio information, especially in the noisy

environment [11]. Moreover, lip reading can also be applied

in audio-video synchronization [13], improving hearing aid

and silent dictation in public areas or a noisy environment.

*Corresponing author

Lip reading is also a difficult task for human and ma-

chines. Lip movements for different letters are visually sim-

ilar to each other (e.g. b and p, d and t, etc). Hearing-

impaired people can only get an accuracy less than 30%
even for a very limited subset of 30 words [34]. Machine lip

reading requires extracting spatio-temporal features from

the video and mapping such high dimensional features to

language, which is also a difficult learning task. Moreover,

the complex texture around the lip area, such as teeth, mus-

tache and great variations in the color of the face and lip,

brings even more difficulties to lip reading.

Current state-of-the-art lip reading methods can

be divided into three categories, RNN-based ap-

proaches [11, 12, 36], Transformer self-attention ar-

chitecture with sequence-to-sequence loss (Transformer-

seq2seq) and Transformer with Connectionist Temporal

Classification loss (Transformer-CTC) [1]. The first two

methods are originally developed for machine translation

and the last one is first designed for audio speech recogni-

tion [5, 21, 8, 38]. Despite the successes of the methods in

the fields they are designed for, directly apply these models

in lip reading will not achieve the best performance. In this

paper, we present a convolutional sequence-to-sequence

model based on a novel temporal connected block and

a Spatio-Temporal Fusion Module (STFM), which is

specifically designed for lip reading and can well exploit

the characteristics of the lip movements.

The first key factor of lip reading is to extract discrimina-

tive features to describe the lip movements from the input

video. In most current methods, the low dimensional fea-

tures input into the sequence model are extracted directly

with the Convolutional Neural Networks (CNNs) followed

by global average pooling [30]. To obtain global activation,

global average pooling consumes local spatial information,

which is critical to capture the subtle changes in the appear-

ance and state of the lip. Considering the above issue, the

global average pooling is replaced by the newly proposed

STFM in our approach, which is able to reduce the feature

dimension without losing the spatial information.
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The second key factor is to map the extracted features

describing the lip dynamics to the sequences of charac-

ters. Note that the mapping from images to sentences is

not a one-to-one correspondence, i.e., a single viseme [27]

or character may correspond to several input images, and

a single word or sentence corresponds to several charac-

ters. We propose a novel convolutional block called Tem-

poral Focal block (TF-block in short) to draw more atten-

tion to short-range temporal dependencies within the neigh-

boring frames. Then a sequence to sequence model based

on TF-blocks is used to map extracted features to sen-

tences. This stacked convolutional structure naturally con-

forms to learn the multilevel mappings, i.e. the feature-

viseme, viseme-word, word-sentence mappings. Moreover,

local self-attention is adopted to capture long-range tempo-

ral dependencies, which is also important to viseme-word

and word-sentence mappings. We find local self-attention

is more efficient than global self-attention [10] while main-

taining the recognition accuracy.

In addition, due to the network architecture, the op-

timization procedures in [11] and [1] are very time-

consuming (10 days in [11] and 22 days in [1], respectively)

and the optimal models are difficult to train. In [1], the

Transformer model [40] was directly applied to lip read-

ing. And optimizing the Transformer model requires con-

siderable time and memory costs. Hence, Afouras et al. [1]

trained the visual feature extraction CNN network and the

Transformer network separately. Moreover, they also de-

signed complex training strategies to train these two net-

works [11]. The training process costs approximately 22

days for the Transformer model (14 days for training the

CNN feature extraction network and 8 days for training the

Transformer network) on a single GPU. The slow training

speed greatly limits the models transfer learning ability to

a new or larger dataset. In contrast, our model is trained

end to end and takes only 7 days to train on both LRS2 and

LRS3 datasets contributing to the convolution based struc-

ture and local self-attention.

Without bells and whistles, our method achieves better

results than the previous state-of-the-art approaches [11,

36], on GRID and LRW datasets. Using only part of the

training samples, our method achieves comparable results

on LRS2 and LRS3 datasets with [1].

2. Related work

In this section, we briefly review the previous works and

related techniques in the literature as follows.

2.1. Automatic lip reading

Automatic lip reading mainly focus on two tasks: 1) the

design of comprehensive and discriminative visual features

and 2) the model design to map the visual features to the

natural language. For the first task, the feature extraction

can be varied in model-based features and image-based fea-

tures. The model-based features, including active contour

model [25], active shape model (ASM) [15] and active ap-

pearance model (AAM) [23], are robust to the variations of

the environment illumination, speakers pose and distance

towards the camera. The image-based features, including

2D discrete cosine transform feature(DCT) [17], articula-

tory features (AFs) [37], etc., contain more abundant in-

formation depicting the lip and its neighbouring regions,

but are more vulnerable to the environment noises. For

the second task, methods such as the hidden markov model

(HMM) [6], support vector machine (SVM) [16], dynamic

Bayesian network (DBN) [24], Temporal gradient-descent

boosting (TGD-Boosting) [33], were adopted. Considering

the success of deep learning, these two tasks can be inte-

grated into one task based on convolutional neural networks

(CNNs). The feature extraction and language prediction

networks are trained jointly and influenced mutually. The

powerful expressive ability of CNN and joint training bring

a giant leap to the automatic lip reading. These deep learn-

ing methods include RNN-CTC [20], rnn-seq2seq [38] and,

Transformer [40] which have been discussed in section 1.

2.2. Sequence­to­sequence model

The sequence-to-sequence (seq2seq in short) model

is first proposed in [38] for natural machine translation

(NMT). Seq2seq model follows an encoder-decoder struc-

ture. The encoder and decoder are usually formed with

stacked recurrent neural networks. The encoder maps the

input signal into latent hidden vectors and then propagate

to the decoder. The decoder predicts the character at time

t based on the encoder’s output and character predicted at

time t− 1. Attention mechanism is brought by [5] to calcu-

late attention weights of the encoder output, i.e. the de-

coders hidden state. The attention mechanism helps the

decoder to draw attention to different time-step of the en-

coder output at different decoder time-step and thus pro-

duces a better result. Chung et al. [11] proposed a stan-

dard attention-based seq2seq model for sentence-level lip

reading. Transformer proposed by [40] for NMT is also a

seq2seq model. However, they only use residual dense lay-

ers whose temporal relations are learned by self-attention

and vallina-attention. Triantafyllos et al. [1] evaluated

Transformer for sentence-level lip reading. In contrast to

the previous seq2seq models, we use a convolutional model

to learn the spatial and temporal features from the video si-

multaneously and in the experiments, it is shown that the

proposed model outperforms the state-of-the-art methods in

lip reading.

2.3. Convolutional sequence­to­sequence model

The convolutional sequence-to-sequence model is firstly

proposed by [19]. The conv-seq2seq model also follows an
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Figure 1: Architecture of our model. The model takes lip

image sequences as input and outputs sequences of charac-

ters. The position encodings are added to features at the bot-

tom of the encoder. During training, the label ct at time step

t is fed into the decoder to predict the output c′t+1. The de-

coder utilizes the predicted characters S′

1:t = [c′1, c
′

2, ..., c
′

t]
to predict the next character c′t+1 in the inference phase.

encoder-decoder structure with only convolutional layers in

both the encoder and decoder. Conv-seq2seq has many ad-

vantages than RNN-seq2seq, including better parallelism,

more stable gradient, more flexible reception field and lower

memory requirement for training [19]. Recently, conv-

seq2seq model has been widely investigated in many areas

and achieved state-of-the-art performance, such as abstrac-

tive text generation [29], human dynamics prediction [28]

and, text recognition [18]. Inspired by these works, a new

conv-seq2seq model is proposed in this paper and will be

discussed in the next section.

3. Approach

We first formalize the lip reading task. Given a lip-

centered video X1:T = [x1, x2, ..., xT ], where xi ∈
RH×W×3 is the image frame, the goal of lip reading is

to generate the sentence that the speaker said S1:L =
[c1, c2, ..., cL], where cj ∈ Dv is the j-th character in the

dictionary D of size v. Instead of directly mapping X1:T

to S1:L, we encode the spatio-temporal input X1:T into

a hidden temporal feature Z1:T ∈ RT×C with the Con-

volutional Feature Extractor and Spatio-Temporal Fusion

Module, and then map Z1:T to S1:L with the conv-seq2seq

model as shown in Figure 1. In the following sections, we

will elaborate the details of our Convolutional Feature Ex-

tractor, STFM and conv-seq2seq model.

3.1. Convolutional Feature Extractor

To extract the visual features Y1:T from the input image

sequence X1:T , a Convolutional Feature Extractor (CFE) is

used as the front end. To capture the spatio-temporal char-

acteristics of the lip dynamics, we adopt two layers of 3D

convolutions with kernel size of 5 on the input sequence.

As for the following 2D convolution, ResNet-18 instead

of ResNet-50 structure is adopted in consideration of the

memory and computational costs. To further accelerate the

training, we decrease the spatial dimension by using a max-

pooling layer after each 3D convolution layer and removing

some of the 2-stride operations in ResNet-18.

3.2. Spatio­temporal fusion module

Since the output of CNNs is of high dimensionality and

cannot be directly used by the sequence model, most current

lip reading methods adopt global average pooling to reduce

the feature dimension. Global pooling, which can be re-

garded as a structure regularizer that explicitly enforces fea-

ture maps to be confidence maps of categories [30], is origi-

nally proposed in various classification tasks. It is common

to use global pooling to average the class scores across the

spatial dimensions. Global average pooling is shown to be

effective in object localization [41, 31]. However, we find

this localizing ability, only indicating the class activation

and attention map of CNNs, is not capable of capturing con-

tinuous, subtle changes in the appearance of the lip. This is

because activation in different spatial locations, which cor-

respond to different visemes, may contribute the same to the

final features generated by global pooling.

To fuse high-dimensional spatio-temporal features into

low-dimensional temporal features while keeping the im-

portant local spatial information, we propose a Spatio-

Temporal Fusion Module (STFM), as shown in Figure 2. To

remove the fixed-size constraint of the features, STFM ap-

plies a SpatialPooling operation, similar to RoIPooling [22]

but operating across the entire spatial dimension. Spatial

Pooling extracts a small feature map li ∈ RC×n×n with

a fixed size from each spatial feature yi ∈ RC×W×H ,

and then reshape the features L1:T = [l1, l2, ..., lT ] ∈
RT×C×n×n to Z1:T ∈ RT×C

′

, where C is the number of

input channels and C ′ is the number of output channels.

Then Z1:T is fed into a stack of temporal convolutions to

enhance communication between time steps and control the

number of output channels. Note that if the spatial size of

the input is fixed, the SpatialPooling can be generalized as

max pooling.
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Figure 2: Spatio-Temporal Fusion Module(STFM). The input feature Y1:T ∈ RT×C×W×H is of high dimension and the

output feature Z1:T ∈ RT×C′

is of low dimension. C and C ′ donate the number of the channels of the input feature and

output feature, respectively. The spatial pooling outputs feature L1:T = [l1, l2, ..., lT ] ∈ RT×C×n×n and n is the spatial

dimension. The local spatial information of feature Y1:T is remained in feature Z1:T .

3.3. Conv­seq2seq model

The conv-seq2seq model aims to map the extracted fea-

ture vector Z1:T to the natural language S1:L. It should be

noted that several continual frames of feature Zt are cor-

responding to one viseme, while several continual visemes

are corresponding to one word, and the sequential words

compose the sentence S1:L. The ‘continual’ characteris-

tic can be perfectly learned via convolutional layers. The

convolution operation uses a small kernel sliding across

the whole sequence and can naturally learn the feature-

viseme, viseme-word mappings. Therefore, we proposed a

temporal-connection block called Temporal Focal block to

look around each feature frame and focus on local depen-

dencies to learn the ‘continual’ characteristic. Moreover,

to look further and map words to sentences we use a local

self-attention mechanism to capture long dependencies in

temporal sequences.

Temporal focal block. The Temporal Focal block (TF-

block) is proposed to help the features to look around

their neighbours and capture short-range temporal depen-

dencies. We introduce the TF-block starting from the one-

dimensional convolution:

outputcot =

Ci∑

ci=1

k∑

i=1

kernelcicoi ∗ inputcit−k/2−1
(1)

where kernel ∈ Rk×Ci×Co is the convolution kernel,

Ci is the number of input channels and Co is the number of

output channels, outputcot is the convolutional result at time

t, channel co. The outputcot are learned from input1:Co

t and

its neighbouring k features. By employing convolution op-

eration, outputcot focuses not only on the input feature at

time-step t but also the neighbours and fuses these features

together. As shown in Figure 3a, TF-block-a is a simple

implementation consists of a branch with two convolution

layers. Each convolution layer is followed by layer normal-

ization [4] and Relu activation.

Moreover, TF-block should also be capable to learn

more robust representations with speech rate invariance,

which is the ability to extract correct semantic information

regardless of the speech rate. So filters of different sizes are

used to fuse the features at multiple scales. Here we sim-

ply add a convolution with kernel size of 1 and a shortcut

connection as new branches to TF-block-a.

In a seq2seq model, the decoder should be future-blind,

so normal convolution is not applicable to the decoder. We

adopt causal convolution [39] to split the local fusion of fea-

tures into two directions: forward and backward. The en-

coder can perform both forward and backward fusion just

like BiLSTM [42] while the decoder only performs for-

ward fusion. The formula of causal convolution is given

in Equation 2. All the future information will be blocked by

causal convolution. The TF-blocks based on unidirectional

and bidirectional causal convolution are shown in Figure 3c,

Figure 3d, respectively.

outputcot =

Ci∑

ci=1

k∑

i=1

kernelcicoi ∗ inputcit−k+1
(2)

Local self-attention. As discussed in subsection 3.2, much

semantic information is implicitly contained in the whole

sequence. Considering the whole sequence at each position

can help learn the semantics contained in long-range tem-

poral dependencies.

The self-attention mechanism is adopted to learn the se-

mantics contained in long-range dependencies. Unlike the

widely used vanilla-attention [5] whose attention weights

are derived from the decoder hidden states and all the en-

coder output states, self-attention derives attention weights

by comparing the features with its neighbours.
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Figure 3: Temporal Focal blocks (TF-blocks). Each convolution layer is followed by a layer normalization (donated by LN)

and a Relu activation. k donates the kernel size of the convolution. Reverse is the same as the reverse operation described

in [35], which is to flip the sequence along the time axis as the input to the new branch.

Define source states Hs = [h1, h2, ..., hTs
] ∈ RTs×Cs

and target states Ht = [h1, h2, ..., hTt
] ∈ RTt×Ct , where

Ts and Tt, Cs and Ct are the source and target states tempo-

ral length and feature length at each time step respectively.

In self-attention, Hs and Ht are the same, i.e. the learned

features from look-around TC-blocks. We adopt Luong’s

multiplicative attention [32] as shown in Equation 3 to cal-

culate the attention output.

Λ = softmax (
HtWt(HsWs)

T

√
Cs

)

AttentionOutput = ΛHs

(3)

where Λ ∈ RTt×Ts is the attention weights,

AttentionOutput ∈ RTt×Ct is the output of the at-

tention, Ws and Wt are learnable parameters.

Since the original self-attention, referred to as global

self-attention, calculates attention weights with the entire

input sequence, the model complexity increases with the

growth of the sequence length. However, we find it is not

necessary to set the scope of dependencies the same as the

sequence length in our experiments. A local self-attention

mechanism is then proposed to capture the fixed range de-

pendencies both in our encoder and decoder as Equation 4

shows.

λ = softmax (
HtWt(HsWs)

T ∗Wm√
Cs

) (4)

where Wm ∈ RTt×Ts is a mask matrix. As our experiments

will show, the local self-attention can accelerate the training

procedure while maintaining the recognition accuracy.

Furthermore, to allow the model to jointly attend to in-

formation from different representation subspaces at differ-

ent positions and reduce the computational complexity, we

adopt multi-head attention to the attention layer [40].

Encoder-decoder. The structures of the encoder and de-

coder are shown in Figure 1. The encoder takes the fea-

ture Z extracted by CFE as input. The decoder takes the

encoder outputs and previously predicted labels S1:t =
[c1, c2, ..., ct] to predict the next lable ct+1. The encoder

consists of N encoder-module which is formed by one TC-

block and one self-attention layer. The decoder is composed

of N decoder-module which is formed by one TC-block,

one local self-attention layer and one vanilla-attention layer.

The vanilla attention is of the same formula of self-attention

but takes the outputs of the encoder as source states and de-

coder hidden states as target states.

3.4. Implementation details

For the Convolutional Feature Extractor, we set the

dropout rate to 0.5. In STFM, the spatial size after Spa-

tialPooling is set as n = 5 and the number of output chan-

nels is set to 512. In the conv-seq2seq model, the hidden

size and the dropout rate are set to 512 and 0.1, respectively.

The encoder-module and decoder-module stacked six times.

The number of multi-head attention split is set to 8. The de-

coder output dictionary D, including the 26 letters a− z,

10 digits 0− 9, one punctuation mark “ ’ ” and three tokens

for [PAD ], [EOS ] and [SPACE ], is of size 40.

3.5. Training

In the training phase, the Adam [26] is employed as the

optimizer with the default parameters. The model is trained

end-to-end with the learning rate schedule strategy in [40],

shown as Equation 5.

lr = d−0.5
model

∗min((factor ∗ step)−0.5,

(factor ∗ step) ∗ warmupSteps−1.5)
(5)

where dmodel is the hidden size in conv-seq2seq model.

step is the training iteration numbers. The lr will lin-
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Method

Dataset
LRW LRS2-BBC LRS3-TED

PW-FFN 22.0 59.2 70.5

TF-block-a 19.3 58.5 70.5

TF-block-b 18.7 55.6 65.5

TF-block-c 20.1 57.3 69.3

TF-block-d 18.8 55.9 66.0

TM-CTC 35.2 72.3 83.1

TM-seq2seq 22.1 60.5 70.8

Table 1: Word Error Rate (WER%) of different TF-blocks

and Transformer based models. PW-FFL donates models

with stacked position-wise feed-forward layers instead of

TF-blocks. TF-block-a, b, c, d are the TF-blocks described

in subsection 3.3. TM-CTC and TM-seq2seq are short for

Transformer with sequence-to-sequence loss and Connec-

tionist Temporal Classification loss, respectively [1]. Note

that the results of TM-CTC and TM-seq2seq are reproduced

with the datasets which are available to us. The training

strategy, settings and datasets of all the methods are exactly

the same.

Models *DR LRW LRS2-

BBC

LRS3-

TED

TM-

CTC

∗GAP 35.2 72.3 83.1
∗STFM-s 34.7 70.4 81.6

STFM 33.7 68.2 79.4

TM-

seq2seq

∗GAP 22.1 59.5 69.8
∗STFM-s 21.3 57.6 67.6

STFM 20.5 55.0 65.0

Conv-

seq2seq

∗GAP 18.7 55.6 65.5
∗STFM-s 16.8 52.4 62.5

STFM 16.3 51.7 60.1
∗RD: The way to reduce the dimension of features.
∗GAP: Global average pooling.
∗STFM-s: STFM-simple.

Table 2: WER of the models with different modules to re-

duce the dimension of features before the sequence model.

STFM-simple is a simplified STFM whose temporal convo-

lution layers are replaced by convolution layers with kernel

size of 1.

early increase for the first warmupSteps/factor iterations

and decrease thereafter with the inverse square root decay.

factor is a normalizing parameter and is set to 1 on GRID,

0.1 on LRW, LRS2-BBC, LRS3-TED. When training on

LRS2-BBC and LRS3-TED, the curriculum learning strat-

egy used in [11] is adopted. We start training on single word

examples and then let the sequence length grow as the net-

Method
Results

GRID LRW LRS2-

BBC

LRS3-

TED

WAS 3.0 23.8 70.4 -

Bi-LSTM - 17.0 - -

TM-CTC - - 54.7 66.3

TM-seq2seq - - 48.3 58.9

Ours 1.3 16.3 51.7 60.1

Table 3: Comparison with state-of-the-art approaches. WAS

is short for “Watch, Attend and Spell” [11]. All the results

(WER) except ours here are the results reported in [11, 36,

1].

work trains. The model is first trained on LRW dataset and

the pre-train sets of LRS2-BBC and LRS3-TED. Then it

is fine-tuned on the train-val set of LRS2-BBC and LRS3-

TED separately. The training batch size is 50 on GRID and

LRW, 12 on LRS2-BBC and LRS3-TED. The model is pre-

trained on ImageNet and trained on a single GeForce Titan

X GPU with 12GB memory.

In the test phase, the beam search decoder is applied to

the decoder and the beam width is set to 5.

4. Experiments

In this section, we evaluate our method in comparison

to the state-of-the-art. Ablation study is performed to show

the effectiveness of each module of our method. We train

the model as subsection 3.4 described and evaluate on the

test set of GRID [14], LRW [12], LRS2-BBC [1], LRS3-

TED [2] datasets with the corresponding trained model.

We adopt the Word Error Rate (WER) as our evaluation

protocol, which compares the reference to the hypothesis

and the calculation formula is: WER = (S+D+I)/NUM ,

where S, D and I are the numbers of substitutions, dele-

tions and insertions respectively and NUM is the number

of words in the reference.

4.1. Datasets and preprocessing

GRID dataset. The GRID dataset contains 34000 sen-

tences uttered by 34 speakers. We followed the dataset divi-

sion in [3], i.e., the data is randomly divided into the train,

validation and test sets, where the latter contains 255 utter-

ances for each speaker.

LRW dataset. The Lip Reading in the Wild (LRW)

dataset [12] consists of 450,000 utterances each containing

a single word out of a vocabulary of 500. The length of

each video lasts 1.16 seconds (29 frames), and one word is

uttered in the middle of the video.
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Method
Training details on LRS2 and LRS3

CFE Training Data Video

Duration

Training

Time

End-to-

end

WAS VGG-M LRW+ LRS2+ LRS3+ MV-LRS 1637.4 10d X

TM-CTC 3DCNNs+ ResNet50 LRW+ LRS2+ LRS3+ MV-LRS 1637.4 19d

TM-seq2seq 3DCNNs+ ResNet50 LRW+ LRS2+ LRS3+ MV-LRS 1637.4 22d

Ours 3DCNNs+ ResNet18 LRW+ LRS2+ LRS3 863 7d X

Table 4: Training details on LRS2-BBC and LRS3-TED. CFE is short for Convolutional Feature Extractor. The MV-LRS

dataset is not public available. d is short for days. Video Duration is the total video duration of the datasets used to train the

model. End-to-end donates whether the model is trained end-to-end.

LRS2-BBC dataset. The Lip Reading Sentences BBC

dataset (LRS2) is a large-scale lip reading dataset composed

of 143,000 utterances from BBC television. Each utterance

contains a sentence with variable length. It contains over

2.3 million words with a vocabulary size of 41,000.

LRS3-TED dataset. The LRS3-TED dataset consists of

about 150,000 utterances from TED and TEDx videos. It

contains over 4.2 million words and the vocabulary size is

51,000.

Preprocessing. For all the datasets, we use dlib face and

landmark detector [7] to detect the 68 facial key-points in all

the video frames. Then affine transformation is performed

based on three points, specifically two points at the out-

side eyes and the middle lowest point of the nose, to align

the faces. Finally, a lip-centered image of size 112x112 is

cropped from the aligned face. The width of the lip is nor-

malized to occupy 1/3 of the image width.

4.2. Ablation experiments

To investigate the behavior of the proposed Temporal Fo-

cal blocks and STFM, we conducted several ablation ex-

periments. Unless otherwise noted, all models use Convo-

lutional Feature Extractor described in subsection 3.1 and

both the encoder and decoder are composed of a stack of

6 layers. The hidden size is 512 and other settings remain

the same in all comparative experiments unless otherwise

specified.

Temporal Focal Block. To evaluate the importance of

short-range temporal dependencies and local fusion, we

first compare TF-block-a with stacked position-wise feed-

forward layers(PW-FFL) [40], which can be regarded as

two 1D temporal convolutions whose filter size is 1. The

only difference between the two models is whether the fea-

tures from adjacent time steps are fused to generate new fea-

tures. Note that the PW-FFL based model is not the same

as Transformer due to the position of PW-FFL. Two extra

PW-FFls are added to the top of the encoder to make sure

the PW-FFL based model to gain valid results. In the de-

coder, the future information cannot be exploited and thus

each block in of our paper is used in the Table 1 encoder

and the causal version of the corresponding block is used

in the decoder. The TF-block-a based model achieves 2.7%
lower WER than the position-wise feed-forward layer based

model on LRW, which suggests that short-range dependen-

cies are critical to recognition.

Results using different TF-blocks are shown in Table 1.

TF-block-b has a 0.6% higher accuracy than TF-block-a

on LRW dataset, indicating that feature fusion at multiple

scales is important to lip reading. Compared to TF-block-

b, TF-block-c which uses causal convolution in the encoder

brings a 1.4% drop in accuracy. But with a bi-directional

mechanism, the causal convolution based encoder is able to

achieve similar accuracy.

Then we compare the convolutional seq2seq models

based on different TF blocks with Transformer-CTC and

Transformer-seq2seq on LRW and LRS2 datasets. Note

that the training dataset MV-LRS used in [1] is not avail-

able to us and our Convolutional Feature Extractor is lighter,

so the baselines reported here are inconsistent with the

results in [1]. Compared to the best Transformer based

model, i.e. Transformer-seq2seq, TF-block-b improves per-

formance by 2.4% on LRW, 4.9% on LRS2-BBC and 5.3%
on LRS3-TED.

Spatial-Temporal Fusion Module. We simplify the

STFM by replacing the temporal convolution with a 1D

convolution with kernel size of 1 to analyze the effect of

local spatial information which may be consumed by global

pooling. For models without STFM, two convolution

layers with kernel size of 1 are added before global average

pooling to maintain an approximate amount of parameters

with STFM. We compare simplified STFM (STFM-simple)

with global average pooling on the proposed Conv-seq2seq

model, Transformer-CTC and Transformer-seq2seq. The

results are given in Table 2. The Conv-seq2seq model is

based on TF-block-b and achieves 1.9% higher accuracy on
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Figure 4: WER and training time of Conv-seq2seq mod-

els with different attention widths. only test indicates the

WER of models trained with global self attention but tested

with local self attention, while train and test indicates the

WER of models trained and tested with local self attention.

training time indicates the training time of sequence mod-

els with different attention width.

LRW using STFM-simple than global average pooling. For

Transformer-CTC and Transformer-seq2seq, STFM-simple

also leads to an increase in accuracy compared to global

average pooling.

Additionally, we add a stack of two temporal convo-

lution layers with kernel size of 3 before the convolu-

tion with kernel size of 1. This enhances communication

between adjacent time steps and brings further improve-

ment to accuracy, particularly on Transformer-CTC and

Transformer-seq2seq because the feed-forward layers used

in these model can not fuse adjacent features.

Global Self-attention vs. Local Self-attention. To better

understand the effect of the width of attention on sequence

model better, we analyze the distribution of the attention

weights. For this, we train a Conv-seq2seq model based on

TF-block-b with global self-attention, whose width is the

same as the length of the input sequence. For each time

step, we pick a fixed length area with the current position as

the center point from the original weights as the selected

range. During testing, we restrict the effective width of

attention weights by replacing the weights outside the se-

lected range with zero. Compared to global self-attention,

local self-attention with a width larger than 100 achieves the

same accuracy. When the attention width is 50, the accuracy

only drops 0.8% as shown in Figure 4.

To further analysis the effect of the attention width in

training, we train and test models with the same atten-

tion width. In Figure 4, the training of models with local

self-attention is 20% faster than the one with global self-

attention and causes little drop in accuracy.

4.3. Comparison to state­of­the­art methods

We evaluate our method on GRID, LRW, LRS2-BBC

and LRS3-TED datasets and compare results to recent state-

of-the-art methods. Results are presented in Table 3. On

word-level datasets GRID and LRW, our method achieves

1.7% and 0.7% lower WER than the previous state-of-the-

art methods [11, 36] respectively.

For a fair comparison against previous work [1, 11], we

train our model on a single GPU. Restricted by the mem-

ory, the model can not be trained end-to-end with ResNet-

50 as the feature extractor. We adopt the training strategy

used in [1], which is training CFE first, and then training

the sequence model with extracted features. MV-LRS(w),

the dataset used to train CFE in [1] is not available to us,

so we use LRS3-TED as an alternative. The performance is

not comparable with the results reported in [1] because MV-

LRS(w) is essential for training CFE and of the comparable

size with the summation of LRS2-BBC and LRS3-TED, as

shown in Table 4.

Then we adjust the training strategies by replacing

ResNet-50 with ResNet-18 to train our model end-to-end

and obtain our best results, as shown in Table 3. Note that

our method achieves comparable results with state-of-the-

art works but using much less training data and much lighter

CFE. The training of WAS model takes approximately 10

days given the structure is simple. Among the three mod-

els with comparable results (TM-CTC, TM-seq2seq, ours),

our method needs much less time to complete the training.

More details about CFE and training data are shown in Ta-

ble 4.

5. Conclusion

In this paper, we proposed the Spatio-Temporal fusion

module (STFM) and a convolutional sequence-to-sequence

model based on the temporal focal block (TF-block) for lip

reading. Our STFM can be combined with most lip read-

ing models to improve the utilization of local spatial infor-

mation and the proposed TF-block can extract short-range

temporal dependencies which are critical to lip reading. Our

method achieves the state-of-the-art results on GRID and

LRW datasets and comparable results with state-of-the-art

approaches on LRS2-BBC and LRS3-TED datasets using

much less training data and training time.
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