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Abstract

We study the video super-resolution (SR) problem for fa-

cilitating video analytics tasks, e.g. action recognition, in-

stead of for visual quality. The popular action recognition

methods based on convolutional networks, exemplified by

two-stream networks, are not directly applicable on video

of low spatial resolution. This can be remedied by perform-

ing video SR prior to recognition, which motivates us to im-

prove the SR procedure for recognition accuracy. Tailored

for two-stream action recognition networks, we propose two

video SR methods for the spatial and temporal streams re-

spectively. On the one hand, we observe that regions with

action are more important to recognition, and we propose

an optical-flow guided weighted mean-squared-error loss

for our spatial-oriented SR (SoSR) network to emphasize

the reconstruction of moving objects. On the other hand, we

observe that existing video SR methods incur temporal dis-

continuity between frames, which also worsens the recog-

nition accuracy, and we propose a siamese network for our

temporal-oriented SR (ToSR) training that emphasizes the

temporal continuity between consecutive frames. We per-

form experiments using two state-of-the-art action recogni-

tion networks and two well-known datasets–UCF101 and

HMDB51. Results demonstrate the effectiveness of our pro-

posed SoSR and ToSR in improving recognition accuracy.

1. Introduction

In recent years, convolutional neural networks (CNNs)

have been applied to action recognition task and obtained

state-of-the-art performance over the traditional arts. For

the convenience of classification, most of them adopt fully-

connected layers in their architecture and thus these well-

trained CNNs cannot be directly applied on low-resolution
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(LR) video. As a result, their widely application could be

hindered by video’s resolution. Most of the datasets used

for studying action recognition have a fixed resolution, e.g.

UCF101 (about 320×240), HMDB51 (about 340×256),

Sports-1M (about 640×360) [10]. But the resolution in real

world usually varies among different sources of video cap-

turing, inevitably being low, e.g. in surveillance scenario.

There are also many situations where the video has high

resolution but the region containing action is quite small.

To address the resolution problem, most of existing

works choose interpolation to simply re-scale the input

while some recent works in other areas propose super-

resolution (SR) as an alternative solution. For example,

[26] investigated the effects of SR on object detection and

[37] proposed a dataset for assessing the impact of image

restoration and enhancement on image classification. Most

of them stop at a preliminary experimental study on exist-

ing SR methods without proposing approaches targeting on

their tasks, e.g. action recognition.

Super-resolution, aiming to enhance the resolution of

images or video, has long attracted the attention of re-

searchers. In early years, the target of enhancement is

mainly signal fidelity, e.g. PSNR, partly because of an intu-

itive assumption that PSNR is consistent with visual quality,

and mean-squared-error (MSE) is extensively used during

optimization. However, some recent works challenge this

assumption by showing distortion and perception can be

tradeoff [1], and introduce some perceptual loss [15, 20] in

addition to MSE, targeting for better visual quality of super-

resolved image. Nonetheless, it is still not clear whether

visual quality determines the quality of visual analytics re-

sults, e.g. action recognition accuracy. Since the analytics

tasks are performed by computer instead of human, we ar-

gue that the SR methods optimized for visual quality may

not be optimal for action recognition task.

We investigate the video SR problem aiming to facilitate

recognition quality, exemplified by action recognition, in-

stead of visual quality. In particular, we use SR as a prepro-

cessing step before feeding LR video into an action recog-

nition network that is well-trained on HR video. We inves-
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tigate recognition quality of different super-resolved video

evaluated by a computer algorithm rather than by human.

The problem we want to address is that given a data-driven

classifier, exemplified by an action recognition CNN, with

parameters trained on HR video, what the accuracy will be

when the same classifier deals with LR video assisted with

SR preprocessing. In addition, we want to find how to de-

sign a better SR network targeting on recognition to im-

prove the accuracy.

Oriented to the popular two-stream action recognition

framework [28] which learns two separate networks, one

for spatial color information and the other for temporal mo-

tion information, we propose two video SR methods for

these two streams respectively. For the spatial stream which

can be regarded as image classification, we observe that the

moving object is more related to the recognition and should

be paid more attention during SR enhancement. Thus, our

Spatial-oriented SR (SoSR) takes weighted mean-squared-

error guided by optical flow as loss to emphasize moving

objects. For the temporal stream, we observe that video SR

can result in the temporal discontinuity between consecu-

tive video frames which may harm the quality of optical

flow and incur drop in recognition accuracy. Thus, in our

Temporal-oriented SR (ToSR), we enhance the consecutive

frames together to ensure the temporal consistency.

Our contributions can be summarized as follows. We in-

vestigate state-of-the-art image and video SR methods from

the view of facilitating action recognition, assuming well-

trained two-stream networks as “evaluators.” For the spatial

stream, we propose an optical flow guided weighted MSE

loss to guide our SoSR to pay more attention to regions with

motion. For the temporal stream, we propose ToSR which

enhances the consecutive frames together to achieve tempo-

ral consistency.

We perform experiments with two state-of-the-art recog-

nition networks on two widely used datasets–UCF101 [29]

and HMDB51 [19]. Comprehensive experimental results

show that our SoSR and ToSR indeed improve the recog-

nition accuracy significantly. Especially on the HMDB51

dataset, our proposed method can improve the recognition

performance of LR video from 42.81% to 53.59% on spa-

tial stream and from 56.54% to 61.5% on temporal stream.

Our code is released1.

2. Related Work

We review related works at two aspects: action recogni-

tion and image/video SR. In both fields, CNN has been the

mainstream and outperforms the traditional methods sig-

nificantly. Thus we only mention several CNN-based ap-

proaches that are highly related to our work.

CNN for action recognition. In CNN-based action

1https://github.com/AlanZhang1995/TwoStreamSR

recognition, a key problem is how to properly incorporate

spatial and temporal information in CNN architectures. So-

lutions can be divided into three categories: 3D convolu-

tion, RNN/LSTM, and two-stream. 3D CNN which learns

spatio-temporal features was first presented in [13]. Later

on, C3D features and 3D CNN architectures [4, 35, 36, 39]

appeared. There were also several works [25, 31, 45] fo-

cusing on improvements of 3D CNNs. RNN/LSTM is be-

lieved to cope with sequential information better, and thus

[5, 41, 42] attempted to incorporate LSTMs to deal with ac-

tion recognition. Two-stream CNN architecture was firstly

proposed in [28]. This architecture consists of two sepa-

rate networks, one for exploiting spatial information from

individual frames, and the other for using temporal infor-

mation from optical flow; the outputs of two networks are

then combined by late fusion. Several improvements were

presented for two-stream [7, 8, 38]. We design SR meth-

ods specifically for two-stream networks due to two rea-

sons. First, two-stream approach seems leading to the best

performance for action recognition on several benchmarks.

Second, both 3D convolution and RNN/LSTM networks

are not easily decomposed, but two-stream networks have

a clear decomposition, which facilitates the investigation of

SR. We use two state-of-the-art methods, Temporal Seg-

ment Network (TSN) [38] and Spatio-Temporal Residual

Network (ST-Resnet) [7], in our experiments.

CNN for image SR. Almost all of the existing image

SR methods are designed to enhance the visual quality by

adding more image details. In earlier years, PSNR is evalu-

ated as a surrogate of visual quality and thus mean-squared-

error is extensively used as loss function [6, 17, 18, 21, 22,

27, 32, 33, 44]. More recently, visual quality is considered

directly and several different kinds of loss functions are pro-

posed, such as feature loss [15] and loss defined by genera-

tive adversarial network (GAN) [9]. For example, Ledig et

al. [20] proposed SRGAN which combined GAN loss and

feature loss. It is also worth noting that PSNR and visual

quality can be even contradictory [1].

CNN for video SR. Compared to single image SR, the

temporal dimension provides much more information in

video SR, and various methods have been proposed to ex-

ploit the temporal information [23, 24]. A majority of these

methods have an explicit motion compensation module to

align different frames. For example, Kappeler et al. [16]

slightly modified SRCNN [6] and extracted features from

frames that were aligned by optical flow. Caballero et al.

[2] proposed an end-to-end SR network to learn motions

between input LR frames and generate SR frames in real

time. Tao et al. [34] introduced a new sub-pixel motion

compensation (SPMC) layer to perform motion compensa-

tion and up-sampling jointly. Also several methods try to

avoid the explicit motion compensation. For example, Jo et

al. [14] proposed a network that used dynamic up-sampling
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Figure 1. The pipeline of performing video SR prior to action recognition for LR video. Note that our work focuses on the SR network, we

directly adopt the well-trained two-stream action recognition network without any tuning.

filters. All the aforementioned works are pursuing higher

PSNR for video SR. But we consider video SR to improve

action recognition accuracy. We focus on the loss functions

instead of the network structures.

3. Action Recognition-Oriented SR

Pipeline. Figure 1 depicts the pipeline of using SR for

action recognition by two-stream networks. Given an LR

video sequence, we split it into frames on which we perform

SR enhancement. We propose Spatial-oriented SR (SoSR)

and Temporal-oriented SR (ToSR) for the two streams, i.e.

we enhance the LR video twice. We then calculate optical

flow from the ToSR resulting video, and feed the optical

flow together with frames from the SoSR resulting video

into the following recognition network.

Action Recognition Network. Our SR methods are

specifically designed for two-stream action recognition net-

works. Specifically, we use TSN [38] and ST-Resnet [7] in

our experiments. There are minor differences between the

two networks: TSN uses a weighted average of the classi-

fication scores predicted from the two streams, while ST-

Resnet trains a fusion sub-network together with the two

streams in an end-to-end fashion. We focus on the SR part

and directly use the well-trained models provided by the au-

thors without any tuning.

End-to-End Optimization? According to Figure 1, it

appears an appealing choice to perform an end-to-end opti-

mization, i.e. training the SR network with the recognition

accuracy as the objective. However, this involves a spe-

cific action recognition model. Our empirical results indi-

cate that, training the SR with a specific action recognition

model (e.g. TSN), and testing with another model (e.g. ST-

Resnet), leads to much worse results. It motivates us to de-

sign specific loss functions for the SR training.

3.1. Spatialoriented SR

3.1.1 Analysis

According to the two-stream architecture, the spatial stream

performs recognition from individual frames by recogniz-

ing objects. That says, the spatial stream is equivalent to

image classification. Inspired by previous work [3], we

expect that SR can enhance the LR frames and add more

image details with which SR helps in recognition. How-

ever, when we experiment with a representative image SR

method, namely VDSR [17], we observe some counterex-

amples. We calculate recognition accuracy for individual

classes, and find that VDSR sometimes performs worse

than the simple bicubic interpolation, more interestingly,

the original HR frames can be worse than super-resolved or

even interpolated frames. Such examples are summarized

in Table 1 and Figure 2. Considering that LR frames lose

details compared to HR frames, bicubic interpolation sim-

ply up-scales frames without adding details, and SR meth-

ods usually enhance interpolated frames with image details,

we conjecture that, especially in specific classes, image de-

tails can be either helpful or harmful for action recognition

depending on the regions where details are added.

In Figure 2, we visually analyze some frames to

confirm our conjecture. In (a), which corresponds to

HR>VDSR>Bicubic, we indeed observe that many details

about the bow and arrow lie in the HR frame, but are miss-

ing in bicubic frame; the SR frame adds some details on the

bow (shown in the blue box), which is helpful for recogni-

tion since the bow is directly related to the class Archery.

In (b), which corresponds to Bicubic>HR>VDSR, we ob-

serve that SR frame contains more details than bicubic

frame, mostly on the background (shown in the blue box)

rather than on the key object (shown in the red box); the

added details seem to be harmful for action recognition. In

(c), which corresponds to VDSR>HR>Bicubic, as the SR

frame has more details on the human (object directly related

to Walking) but fewer details on the background (due to

LR input), the recognition accuracy is even higher than HR.

It is worth noting that, despite of these counterexamples,

HR video is still the best in terms of recognition accuracy

on the overall sense (as shown in Tables 4), partly because

the action recognition networks are trained on HR frames.

What if the networks are trained with LR video? We will

study in Section 4.3.
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Case Class
Recognition Accuracy (%)

HR Bicubic VDSR

a
Archery 82.93 36.59 70.73

PlayingFlute 97.92 72.92 79.17

b
JumpRope 39.47 42.11 7.89

SalsaSpin 79.07 83.72 53.49

c
FrontCrawl 64.86 32.43 78.38

HandstandWalking 35.29 29.41 41.18

Table 1. We observe different cases in recognition accuracy for

the classes in UCF101 using the TSN network. In case (a),

HR>VDSR>Bicubic. In case (b), Bicubic>HR>VDSR. In case

(c), VDSR>HR>Bicubic. Some representative classes are pre-

sented in this table. See Figure 2 for visual inspection. (The scal-

ing factor is 4 throughout the entire paper unless otherwise indi-

cated.)

HR frame SR frame Bicubic frame 
Residual between SR 

and Bicubic frames  

(a) 10-th frame of Archery g01 c07

HR frame SR frame Bicubic frame 
Residual between SR 

and Bicubic frames  

(b) 152-nd frame of JumpRope g02 c02

HR frame SR frame Bicubic frame 
Residual between SR 

and Bicubic frames  

(c) 39-th frame of HandstandWalking g06 c01

Figure 2. Examples show how image details added by VDSR [17]

influence the recognition accuracy. In (a), VDSR adds details on

the bow, and since bow directly relates to Archery, VDSR im-

proves recognition than bicubic. In (b), VDSR adds details on the

background but not on the object, resulting in even lower accuracy

than bicubic. In (c), VDSR adds details on the walking woman but

not on the background, resulting in even higher accuracy than HR.

See Table 1 for the accuracy values.

3.1.2 Method

Based on the observation, we propose an SR method to se-

lectively enhance the image regions that are highly related

to action recognition. These regions usually have high mo-

tion, such as the bow in Figure 2 (a), the rotating rope in

Figure 2 (b), and the walking woman in Figure 2 (c). We

Structure MSE/WMSE Feature Adversarial Accuracy

VDSR MSE - - 46.6%

VDSR WMSE - - 47.91%

VDSR WMSE X - 50.39%

ESRGAN WMSE X - 52.55%

ESRGAN MSE X X 52.48%

ESRGAN WMSE X X 53.59%

Table 2. Ablation study for SoSR using different network struc-

tures and different loss functions, with TSN [38] on HMDB51

dataset.

select these regions according to the optical flow since op-

tical flow is a commonly chosen representation for motion

information. Note that high motion does not necessarily re-

late to action. It is a much simplified implementation, but

seems working well in our experiments.

Most of SR networks use mean-squared-error (MSE) as

loss function, which is to assume equal importance of ev-

ery pixel. In contrast, we propose to use a weighted MSE

(WMSE) based on optical flow to emphasize some pixels

that are more important than others. In short, the loss func-

tion we used here is

WMSE =
1

N

N
∑

p=1

∥

∥

∥
I(p)− Î(p)

∥

∥

∥

2

·
√

u2(p) + v2(p), (1)

where I and Î are HR and SR frames respectively, p is the

pixel index, and N is the total number of pixels. u and

v represent the magnitude of optical flow in the horizontal

and vertical directions respectively. Here, the optical flow

is calculated offline from the HR video using Flownet 2.0

[12], which we observe is slightly better than using TVL1

[43]. In this way, the loss can guide the network in a pixel-

wise manner: pixels with larger motion correspond to larger

loss weights and thus are paid more attention during SR

enhancement.

In addition to WMSE, we further investigate two kinds

of perceptual loss: feature loss and adversarial loss, which

have been widely used in recent SR methods for improving

visual quality [15, 20]. Using feature loss is to minimize the

difference of high-level image features between SR image

and HR image and using adversarial loss is to generate SR

image which is closer to HR image in terms of distribution.

As mentioned before, the spatial stream is equivalent to

image classification. We anticipate that single frame SR can

perform well for the spatial stream and also has lower com-

plexity than multi-frame SR. So here, we investigate two

image SR network structures: One is VDSR [17] structure

and the other is based on ESRGAN [40].

We conduct an ablation study about the proposed loss

function and different network structures. As shown in

Table 2, feature loss, adversarial loss as well as advanced

network structure are all beneficial to the final recognition

accuracy, and our proposed WMSE further improves the
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HR VDSR Bicubic 

Figure 3. Optical flow maps calculated from HR, VDSR [17], and

bicubic video, respectively. Artifacts can be found in the circled

regions. Zooming-in inspection can observe that SR video has

more artifacts than bicubic one. In this example, VDSR incurs

lower recognition accuracy than bicubic on the temporal stream.

recognition performance. For more analyses please refer

to Section 4.2.

As a result, we train our SoSR network based on ESR-

GAN with our training data (details in Section 4.1) and the

following loss function:

LSoSR = αLWMSE + βLFeature + γLAdversarial, (2)

where α, β and γ are weights.

3.2. Temporaloriented SR

3.2.1 Analysis

We now switch to the temporal stream. As described in

the two-stream architecture, the temporal stream takes op-

tical flow as input to utilize temporal information. Thus,

the question should be how SR affects the quality of optical

flow. We again experiment with the representative image

SR method–VDSR [17]. Figure 3 shows the optical flow

maps calculated from HR video, SR video, and bicubic in-

terpolated video, respectively. Here the optical flow is cal-

culated by the TVL1 method [43] as most action recognition

works do. From Figure 3, we can find that the optical flow

from bicubic video has a lot of artifacts, and VDSR even

worsens the optical flow. Thus, VDSR incurs less appeal-

ing results of recognition accuracy.

The reason for above results should be attributed to

VDSR being an image SR network that enhances video

frames individually and causes temporal inconsistency. For

high-quality optical flow, we need to ensure the temporal

consistency between frames, which has also been studied in

previous video SR works. For example, [2, 14] discussed

the temporal consistency and its relation to visible flicker-

ing artifacts when displaying SR video. In Figure 4, we

adopt the visualization method known as temporal profiles

with which [2, 14] display the flickering artifacts. As seen,

VDSR indeed incurs more temporal discontinuity.

3.2.2 Method

Through the above observation, we find a relation between

optical flow-based recognition accuracy and the temporal

x 

y 
t 

x 

(a) A video sequence (TaiChi g01 c04)

x 

t 

HR 

VDSR 

Bicubic 
HR VDSR Bicubic 

(b) Temporal profiles of different results

Figure 4. (a) An example video sequence. We sample one row at

the same location (indicated by the red dot line) from each frame

and concatenate the rows to produce (b) the temporal profiles. Ob-

viously, bicubic video has the least image details, VDSR video has

some details but displays temporal discontinuity that will cause

flickering artifacts. In this example, VDSR incurs lower recogni-

tion accuracy than bicubic on the temporal stream.

consistency in the SR video. Since the existing video SR

schemes usually perform SR frame by frame, they have dif-

ficulty in guaranteeing the consistency between SR frames.

We consider a siamese network reconstructing the consecu-

tive frames together for training video SR.

As our objective is to achieve high quality optical flow, it

is straightforward to calculate the optical flow between SR

frames and compare it with that between HR frames. How-

ever, this would require an optical flow estimation network

to support end-to-end training. But recent optical flow net-

works [11, 12, 30] are too deep to be efficiently trained with

the standard error back-propagation technology. We take a

warping approach to estimate the temporal continuity.

The siamese network for training ToSR is shown in

Figure 5. We use two copies of an SR network to en-

hance two consecutive frames respectively. First of all,

we want to achieve SR frames with high quality, and use

two MSE losses for the two frames respectively, i.e. LSR =
‖It − Ît‖

2
F + ‖It+1 − Ît+1‖

2
F . Moreover, we want to en-

sure the temporal continuity between SR frames. So we

adopt the optical flow from HR video, which can be cal-

culated beforehand, to perform warping between two SR

frames. Let the optical flow be Ft→t+1, we use the rela-

tion Ĩt(p) = Ît+1(p + Ft→t+1(p)) to warp the SR frame

Ît+1. Warping is implemented by bilinear interpolation that

is free of parameters. The warped result Ĩt is compared

against both SR and HR frames of the previous timestamp.

Accordingly, we define two losses: Lwarp-SR = ‖Ît − Ĩt‖
2
F
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Figure 5. Our proposed ToSR uses a siamese network for train-

ing. We jointly consider two consecutive frames and design four

loss terms to ensure the quality of individual frames as well as the

temporal consistency between them.

and Lwarp-HR = ‖It − Ĩt‖
2
F .

In summary, the loss function for ToSR is

LToSR = αLSR + βLwarp-SR + γLwarp-HR, (3)

where α, β, γ are weights.

Any existing image or video SR network can implement

ToSR. We investigate two choices. The first is based on the

VDSR network [17], which performs SR for frames indi-

vidually. The second is based on the VSR-DUF with 16

layers [14], which utilizes multiple LR frames for SR.

The ablation study about the two network structures as

well as the proposed loss function is reported in Table 3.

The performance of VDSR network is limited by lack of

information about adjacent frames while multi-frame SR

network performs better on temporal stream. On different

networks, our proposed warp loss could benefit to a large

extent.

4. Experiments

4.1. Experimental settings

Datasets. We perform experiments using three datasets:

one natural video dataset CDVL-134 for training SR net-

work, and two datasets, UCF101 and HMDB51, for test-

ing SR with action recognition networks. For the video

SR task, there is no commonly used dataset. CDVL-134

is a dataset collected by ourselves from CDVL2, and con-

tains 134 natural video sequences with various content, in-

cluding landscapes, animals, activities and so on. Because

the resolution of these sequences varies from 480×360 to

2https://www.cdvl.org/

Structure Warp loss Accuracy

VDSR - 55.1%

VDSR X 58.76%

VSR-DUF-16 - 59.48%

VSR-DUF-16 X 61.5%

Table 3. Ablation study for ToSR using different network struc-

tures and different loss functions, with TSN [38] on HMDB51

dataset.

1920×1080, we resize them to around 320×240 (similar

to UCF101 and HMDB51) with bicubic interpolation while

maintaining their aspect ratios. We further down-sample

these resized sequences by a factor of 4 to generate LR

video for training. As for UCF101 and HMDB51, they

are popular action recognition datasets. The former dataset

contains 13,320 video clips belonging to 101 action cate-

gories, and the latter is composed of 51 action categories

and 6,766 video clips. Both datasets provide three train-

ing/testing splits and we here only use the first split as a

representative. For more details, please refer to [29] and

[19] respectively. In our experiment, we use a 4× down-

sampled version of these two datasets as the input LR video

for testing, and we use the original resolution of the two

datasets (denoted by HR) as a reference.

Spatial-oriented SR. We randomly select HR frames

from training video, and use FlowNet2.0 [12] on them to

calculate optical flow which is then converted into weight

maps. We crop HR frames and weight maps into 128×128

aligned patches and generate LR patches by bicubic interpo-

lation. In particular, we select 120 frames from each video

of CDVL-134 dataset and choose the top 10 crops with the

largest area of motion. Manually excluding some obviously

low-quality patches, there are totally 144,306 patches for

training. We use the deep learning framework PyTorch to

perform experiments and the optimization settings, such as

learning rate and batch size, are recommended by [40]. The

loss weight used in our SoSR training is α = 1, β = 1, γ =
0.005.

Temporal-oriented SR. All the training samples are

prepared similarly as for SoSR, except that TVL1 [43] is

applied on HR frames to calculate optical flow for warping

(for a fair comparison, because the recognition networks

use TVL1), and we have 143,250 patch pairs for training,

and 10,386 pairs for validation. Our ToSR is implemented

on TensorFlow. The initial learning rate is 0.01 and mul-

tiplied by 0.1 every 10 epochs as recommended in [14].

We use batch size 16 and fine-tune from the model pro-

vided by the authors of [14]. As for loss weights, we have

α = 1, β = 0.8, γ = 0.1.

4.2. Recognition Results

All experimental results are obtained by different SR

methods with the same scaling factor 4. Baseline methods
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HMDB51 UCF101

Method TSN ST-Resnet TSN ST-Resnet

Spatial Temporal Fusion Spatial Temporal Fusion Spatial Temporal Fusion Spatial Temporal Fusion

Bicubic 42.81 56.54 63.53 43.59 53.76 59.48 71.25 81.08 87.87 72.01 78.28 84.62

VDSR [17] 46.6 55.1 63.59 49.18 54.44 60.2 67.09 79.81 86.84 72.27 79.43 84.48

RCAN [44] 48.76 56.8 66.21 51.76 55.72 62.61 67.18 82.12 88 72.23 80.52 85.01

SRGAN [20] 48.82 49.87 63.01 51.41 47.22 60.85 81.33 75.45 87.55 83.31 70.16 86.97

ESRGAN [40] 52.48 51.5 63.4 53.79 49.72 61.83 82.97 75.32 87.75 83.81 70.64 86.62

SoSR 53.59 50.26 64.51 54.77 48.27 63.01 83.11 74.1 86.63 83.92 69.68 85.77

SPMC [34] 48.95 56.41 64.31 53.14 53.53 63.66 70.42 80.19 87.15 74.45 77.44 84.09

VSR-DUF-16 [14] 48.37 59.48 66.08 50.62 55.07 61.11 68.56 84.89 89.36 72.11 80.06 83.9

VSR-DUF-52 [14] 48.5 60.52 66.86 52.84 57.61 65.23 70.54 85.09 89.85 74.49 80.16 84.88

ToSR 47.45 61.5 66.08 51.54 58.92 64.77 64.79 85.29 88.46 70.88 81.07 83.82

SoSR+ToSR / / 68.3 / / 67.32 / / 92.13 / / 90.19

HR 54.58 62.16 69.28 56.01 59.41 68.1 86.02 87.63 93.49 88.01 85.71 92.94

Table 4. Recognition accuracy (%) of 4× super-resolved video from UCF101 and HMDB51 dataset using two action recognition network,

TSN and ST-Resnet. Number of VSR-DUF [14] indicates number of layers. Accuracy of HR video is provided for reference. (Please refer

to the supplementary material for PSNR and SSIM results of different methods.)

are four single image SR methods: VDSR [17], RCAN [44],

SRGAN [20], ESRGAN [40], and two video SR methods:

SPMC [34] and VSR-DUF [14]. TSN [38] and ST-Resnet

[7] are used to obtain the recognition accuracy, shown in

Table 4.

On spatial stream, firstly, comparing VDSR and RCAN,

SRGAN and ESRGAN respectively shows that advanced

design of network structure could benefit recognition qual-

ity of super-resolved video. This result is intuitive be-

cause more advanced SR method would generate SR frames

with more details and be more helpful to recognition on

average. Secondly, by comparing VDSR/RCAN and SR-

GAN/ESRGAN, the former methods optimize MSE only

while the latter methods take use of perceptual loss, we can

see the perceptual loss could also improve the recognition

performance to some extent. Thirdly, our SoSR achieves

the highest recognition accuracy even outperforming ESR-

GAN that is believed to achieve the best perceptual index

[40]; this demonstrates that the SR methods optimized for

visual quality are not optimal for action recognition task.

For visual analyses please refer to Section 4.3.

Switching to temporal stream, where it is obvious

that SRGAN/ESRGAN perform worse than VDSR/RCAN

among single image SR methods. This difference should

result from the perceptual loss, as Ledig et al. explained in

[20]: MSE-based result is the pixel-wise average of possible

results in pixel space, while GAN drives the reconstruction

towards the natural image manifold. Accordingly, MSE-

based result has better temporal consistency between adja-

cent SR frames. Among multi-frame SR methods, VSR-

DUF outperforms SPMC significantly, even VSR-DUF-16

beats SPMC with a large gap. This difference may be at-

tributed to the design of network structure. SPMC per-

forms explicit warping with optical flow estimated from LR

frames, which may introduce errors and undermine tempo-

HR:64% 

RCAN:16% 

ESRGAN:52% SoSR: 60% 

Bicubic:0% SRGAN:40% 

Figure 6. Visual quality comparison, and the numbers indicate

video-level recognition accuracy using TSN. We observe from the

SoSR result that the woman’s hand looks over-smooth but the

background texture appears sharp. This is due to the interaction

between WMSE and perceptual losses.

ral consistency, while VSR-DUF uses 3D convolution di-

rectly operating on consecutive LR frames to predict dy-

namic filters that are then used to up-sample the central LR

frame. The structure without explicit motion compensation

may be the key for VSR-DUF to achieve good performance.

Last, owing to the proposed siamese network, the perfor-

mance of our ToSR is even better.

Combining the two streams, SoSR plus ToSR gives out

the highest accuracy. Results of other combinations are pro-

vided in the supplementary material.

4.3. Analyses

Figure 6 shows an example for comparing the visual

quality as well as recognition accuracy of different SR

methods. By comparing RCAN, SRGAN, ESRGAN results

with the HR frame, we can find the recognition accuracy in-
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Figure 7. Temporal profiles of different SR results. Bicubic failed

to produce vivid image details while SPMC and VSR-DUF incur

obvious temporal discontinuity.

creases as the visual quality improves. When adding SoSR

result into consideration, we observe that its visual quality

is not consistent at different regions. As shown by the in-

set, the woman’s hand is over-smooth, but the background

texture appears quite sharp. This is due to the interaction

between WMSE and perceptual loss: WMSE emphasizes

the MSE loss on the regions with large motion, and the

MSE loss leads to over-smooth result as claimed in [20]; on

the regions with little motion (e.g. the background), percep-

tual loss dominates the optimization target, which produces

vivid but not true texture. In addition, we also observed

cases where visual quality and recognition accuracy are not

consistent, please refer to the supplementary material.

Figure 7 shows temporal profiles of video obtained by

different SR methods, from which we can find bicubic in-

terpolated frames do not have enough image details, while

SPMC and VSR-DUF results look sharp. However, both of

them incur severe temporal discontinuity. Our ToSR pro-

duces the best temporal profile. For more visual results

about temporal profiles as well as artifacts in optical flow,

please refer to the supplementary material.

In all of the previous experiments, we adopt action

recognition network pretrained with HR video and evalu-

ate different SR methods. One may question about this set-

ting and consider whether it would be different if the action

recognition network is trained with video of different resolu-

tions. We investigate the joint influence of data augmenta-

tion when training recognition network and SR preprocess-

𝛼 𝛼 

Figure 8. Recognition accuracy of models trained with different

data augmentation configurations (denoted by α) and tested on

HR, SR, LR video respectively.

ing when using the trained recognition network.

In our experiment, we train several TSN models using

mixed HR and LR video from the HMDB51 dataset. Here

the LR video is generated by 4× down-sampling. The LR

and HR video sequences are mixed with a ratio α : (4−α),
e.g. α = 0 means HR only and α = 4 means LR only. Then

we test the recognition performance of each model on HR

video, LR video and super-resolved video (using SoSR and

ToSR) respectively and report the results in Figure 8.

Firstly, using data augmentation can make the network

pay more attention to the features shared by HR and LR,

and improve the performance on LR video. However, the

large difference between HR and LR may cause the network

to neglect useful features unique to HR, and incur a decline

in HR performance. Secondly, the network trained on LR

video only (α = 4) performs the best on LR video input,

where the accuracy on LR is even higher than that on HR

and SR. But this network performs the worst on HR video

input, and should not be a good choice in practice. Thirdly,

excluding the LR only case, there are still cases where SR

outperforms HR (on the temporal stream). Thus, we antic-

ipate that a joint consideration of SR network and action

recognition network may lead to even better performance,

which will be our future work.

Training different models is a straightforward solution

for different resolutions, but has several limitations. First,

it needs to train and maintain multiple models that can be

costly. Second, how to select the appropriate model to

match the resolution for a given input video is a problem.

5. Conclusion

We consider the video SR problem not for visual quality,

but for facilitating action recognition accuracy. Tailored for

two-stream action recognition networks, we propose SoSR

with optical flow guided weighted MSE loss, and ToSR with

a siamese network to emphasize temporal consistency. Ex-

perimental results demonstrate the advantages of our pro-

posed SoSR and ToSR methods. In the future, we plan to

combine SoSR and ToSR into a single step, and study the

tradeoff between visual quality and recognition accuracy.
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