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Abstract

We propose a variational Bayesian framework for en-

hancing few-shot learning performance. This idea is mo-

tivated by the fact that single point based metric learning

approaches are inherently noise-vulnerable and easy-to-be-

biased. In a nutshell, stochastic variational inference is in-

voked to approximate bias-eliminated class specific sam-

ple distributions. In the meantime, a classifier-free pre-

diction is attained by leveraging the distribution statistics

on novel samples. Extensive experimental results on sev-

eral benchmarks well demonstrate the effectiveness of our

distribution-driven few-shot learning framework over pre-

vious point estimates based methods, in terms of superior

classification accuracy and robustness.

1. Introduction

Relying on substantial labelled data, deep learning [27,

41, 20] based approaches have led a series of breakthroughs

in computer vision community. However, collecting and

annotating such a scale of data are both labor-intensive, se-

riously restricting their practicability in actual applications.

Inspired by human visual system, which has the instinct to

recognize novel objects by learning with only a few exam-

ples, few-shot learning [9] is proposed to mimic this ability.

More explicitly, we consider a common few-shot learn-

ing scenario where a learning agent, acquiring decision-

making strategy with substantial data during training, is ex-

erted on previously unseen classes with limited auxiliary su-

pervision during test. Many prior works [25, 45, 7, 6] stress

on learning a well-organized matching mechanism. This

mechanism attempts to seek a best match between support

set (scarce labelled data) and target set (unlabelled data),

via parametric [35, 18] or non-parametric [45, 42] meth-

ods as measurement. While non-parametric methods utilize

designated metric, its counterpart parametric methods lever-

age neural network to measure the similarity. The essence
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Figure 1. Variational few-shot learning: (a) Prior works choose

a specific point to represent each class. (b) Our method estimates

the distributions of each class. Best viewed in color.

of both methods is to search for the nearest support class of

target data within an embedding space.

As mentioned above, points of the same class scatter in

a certain range of embedding space. A common manner is

that choosing a specific point (e.g. central point) to represent

the same class points, which can be represented as point

estimates. Despite their favorable performance in public

datasets, there exists two issues: 1) Estimating such a spe-

cific point is difficult when limited support points distribute

unevenly in embedding space. For instance, prototype-

based methods [42, 15, 1] compute the mean of embed-

ded support examples for each class, which is vulnerable

to noise since data is severely limited. 2) They are lack of

interpretability since a single embedding is insufficient for

indicating a class. We consider that each point of the same

class is not isolated in embedding space, but is sampled

from a high-dimensional distribution. As shown in Figure

1, it is obvious that the distributions of each class have su-

perior descriptive power than several points.

To explicitly address the issues caused by point esti-

mate methods, we propose a distribution estimate frame-

work via variational inference. While exact inference is

computationally intractable, variational inference is a the-

oretically attractive method and suitable for computation.
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Previous work [8] applying variational inference requires

a full dataset through the model, inefficiently aggregating

the embeddings of all elements first to generate the distri-

bution. We instead share the distribution generation mecha-

nism across elements of both support and target set and then

merge them into large class-specific distributions. By esti-

mating distributions of each class, we can straightforwardly

calculate the confidence of each class the target point be-

longs to and perform classification by the confidence. This

facilitates use of the entire distribution rather than sample

from it, which makes our method immune from the sample

bias. In a nutshell, the key of our method is to precisely

infer these distributions and concisely predict outputs with

distributions. We show that a combination between few-

shot learning and variational inference can be extended to

greatly eliminate the bias of original point estimates and im-

prove performance in prediction. Furthermore, our method

allows for full Bayesian analysis of the model, and it’s sig-

nificantly more interpretable over prior arts.

Notably, our variational learning method estimates

distributions via tightening intra-class relationships. A

classifier-free prediction is then obtained via calculating the

sample probabilities of target samples from those estimated

distributions. This metric is proven to be an extension of

weighted Euclidean distance where class-specific features

are strengthened and irrelevant features are suppressed.

Our method is evaluated on public benchmarks and re-

sults in state-of-the-art performance w.r.t. few-shot classi-

fication accuracy. Not only that, we achieve lowest vari-

ance compared with contemporary methods, which is mean-

ingful for many real world applications where robustness

of prediction is extremely desired, e.g., autonomous driv-

ing or medical diagnosis [49]. Additionally, we extend

our variational-based learning strategy on a recently re-

leased one-shot segmentation benchmark [31], achieving

incremental progress over the initial architecture. It further

demonstrates the transportability of the proposed method.

2. Related work

Metric-learning based approaches. Metric learning

approaches attempt to map the few-shot labelled and un-

labelled points into a non-linear embedding space and per-

form classification by assessing which labelled points are

closest to the unlabelled points. The key assumption of

those approaches is that they can learn feature embeddings

which preserve the intrinsic class relationships. Koch et

al. [25] pioneer Siamese network to generate embeddings of

same/different pairs and compute a weighted L1 metric for

measuring the similarity. Vinyals et al. [45] propose Match-

ing Network to accumulate information on a given task with

memory mechanism and utilize cosine distance in an atten-

tion kernel as measurement. In Prototypical Network [42],

a metric space is learned in which nearest neighbor classi-

fication can be performed with prototype representations of

each class. Sung et al. [43] introduce a learnable similar-

ity metric by calculating the relation score between query

images and the prototype of each class. On this basis, label-

propagation-related approaches [29, 22] are developed to

explore intra-class or inter-class relationships in the classifi-

cation task. In addition, contrastive loss [17, 25] and triplet

loss [40, 44] are used for strengthen learned metrics by fully

exploring pair/triplet relationships within the dataset.

We emphasize that metric-learning methods are re-

stricted in the quality of feature embeddings. This point

estimate approach is sensitive to sample noise from random

selection of support dataset and inductive bias from scarce

data. In contrast, we estimate class-specific distributions in-

stead, which possesses general stability and interpretability.

Meta-learning based approaches. The natural incon-

sistency between training and testing data is a bottleneck

of contemporary few-shot learning. A generic term, “meta-

learning”, is first formulated to tackle this problem. The

core of primary methods [10, 33, 11] is to initialize weight

configuration that can be swiftly fine-tuned in test phase

within a fewsteps. In MAML [10],parameters are optimized

within a task pool so that they can be quickly adapted to a

particular task. In “Optimization as a model” [37], a LSTM-

based meta-learner is trained to coverage a learner classi-

fier. Considering time-consuming drawback of fine-tuning

in test phase, recent works [39, 4, 26] inference in a feed-

forward pass. [15, 36, 48, 16, 3] further implicitly adopt

meta-learning as an auxiliary phase to predict the parame-

ters from the activations in the last stage.

Data augmentation based approaches. Data insuffi-

ciency and overfitting remain huge challenges. To alleviate

it, GAN-based techs [46, 19, 47] exploit diverse training

data patterns and apply it into test phase to expand the sup-

port set capacity. Ren et al. [38] and Garcia et al. [13] also

benefit from leveraging unlabelled data, where the former is

to refine class centroids and the latter is to construct graph-

ical models. Nevertheless, these data-augmented methods

fail to thoroughly solve the issue as they might introduce

noise when improper patterns are deployed.

3. Methodology

3.1. Problem Formulation

Suppose we sample a small support set S =
{(xi, yi)}

K×C
i=1 ⊂ X × Y of pairs of inputs xi ∈ X and

corresponding outputs yi ∈ Y (e.g., labels or masks in clas-

sification and segmentation tasks), where K labelled sam-

ples for each of C unique classes are obtained, a target set

T = {(x̃i, ỹi)}
N×C
i=1 ⊂ X × Y is similarly formed with an-

other N samples for each of C classes. Notably, ỹi is only

available in training phase, remaining the target set unla-

belled during testing. The large collection X×Y in training
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phase do not overlap with those in test phase, which means

none of test classes will be seen during training.

A C-way K-shot learning problem is formulated to pre-

dict outputs of the target set T with the prior knowledge

mined from support set S , which is defined as:

ŷ = argmax
ỹ∈C

p(ỹ|x̃,S), (1)

where p(ỹ|x̃,S) is the probability of classifying a certain

target sample x̃ with the class ỹ conditioned on S . In the

standard setting of few-shot learning [31], S and T are de-

noted as sample/query set in training phase and support/test

set in test phase, respectively. Here we unify the notations

into support/target set on both phases for clarity.

3.2. Point Estimate Revisit

Prior point estimate methods explicitly learn an embed-

ding function h(x), that maps support examples into a space

where examples from the same class are close and those

from different classes are distant. A designated measure-

ment s(x̃, r) is then applied to a test sample x̃ and former

generated embeddings r to compute similarity scores. Gen-

erally, the whole process can be defined as:

ŷ = argmax
{y|(x,y)∈S}

s
(
x̃, h(x)

)
(2)

However, there are two important issues: 1) Scarce sup-

port data makes it hard to correctly estimate specific embed-

dings. 2) Data distribution inconsistency between training

and test phase easily incurs overfitting of a point estimate

system. To alleviate those problems, we are motivated to

concentrate on estimating distributions of each class, which

are robust to limited data than point estimate.

3.3. From Point to Distribution: A Variational
Learning Strategy

3.3.1 Variational Inference for Few-shot Learning

Instead of finding such a biased point estimate in embedding

space, distributions of each class can be predicted. From

this perspective, we regard our goal as to infer the output of

x̃ by computing the confidence p(ỹ|x̃, z), where z denotes

the distribution of entire dataset T . However, to learn the

distribution of z in Bayes rule p(z|T ) = p(z)p(T |z)/p(T )
involves a computation intractable integral. One of approx-

imating approaches is variational inference, which is a the-

oretically attractive method and easy to compute. In vari-

ational inference, we approximate the true posterior dis-

tribution with a parameterized distribution qφ(z|S) condi-

tional on S by minimizing the Kullback-Leibler divergence

DKL(qφ(z|S)||p(z|T )). Concretely, minimizing the KL

divergence is equivalent to maximize the evidence lower

bound (ELBO) [24] in Eq. 3.

log p(T ) = log

∫
p(T , z)

qφ(z|S)
qφ(z|S)dz

≥ Eqφ(z|S) log
p(T |z)p(z)

qφ(z|S)
.

(3)

To emphasize our maximization goal ELBO(φ), we ex-

tract the last term in Eq. 3, which has the same form as:

ELBO(φ) = Eqφ(z|S)

[
log p(T |z)

]
−DKL

(
qφ(z|S)||p(z)

)
.

(4)

This objective function includes two terms. The first

term tries to maximize the likelihood to improve the con-

fidence of prediction, and the second term finds the ap-

proximate posterior distribution by minimizing the KL di-

vergence. p(z) represents the prior distribution in Bayes

Learning, which is assigned to a certain distribution in most

cases [24]. However, we emphasize that a manually fixed

prior impedes our method’s generalization capability due to

the huge discrepancy between training and test phase. Thus,

we make full use of target and support dataset to obtain

prior distribution by pθ(z|T ,S). In this paper, qφ(z|S) and

pθ(z|T ,S) are both modelled as parameterized networks,

and optimized in an end-to-end manner. As we leverage the

neural network to obtain the prior, we rewrite the ELBO

maximization goal as follows:

ELBO(φ, θ) = Eqφ(z|S)

[
log p(T |z)

]

−DKL

(
qφ(z|S)||pθ(z|T ,S)

)
.

(5)

Once the few-shot learning problem is casted as a vari-

ational inference problem, our task then lies in two-fold:

how we precisely estimate the distribution of z and how we

leverage the distribution to estimate the output ỹ of target

set, which are in detail discussed in Section 3.3.2 and 3.3.3.

3.3.2 Precise Estimation of Distribution

As shown in Eq. 5, a KL-divergence between the posterior

and prior distributions need to be calculated. In few-shot

learning problem, we estimate class-specific distributions

by referring to the given output y. Specially in a C-way

few-shot learning scheme, the support set is further split

into C subset S1, . . . ,SC , each containing a certain class.

Similar partition is also applied on target set. In this case,

C posterior distribution conditional on the support set is to

approach the same quantity of priors. As a consequence, we

elaborate the second term in Eq. 5 with a class-specific KL

divergence Lintra as:

Lintra =

C∑

i=1

DKL

(
qφ(z|Si)||pθ(z|Ti,Si)

)
. (6)

Then the problem lies in how to define posterior distri-

bution qφ(z|Si) and prior distribution pθ(z|Ti,Si), namely,
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Figure 2. Diagram of the proposed method in a 1-shot, 3-way exemplar. Our variational method shares the identical mechanism to generate

the distribution of each support and target data, and then aggregate them into class-specific distributions. By back-propagating errors of

two loss terms (i.e., LR for penalizing classification mistake. Lintra for correcting the relationship within the same class), the framework

acquire transferable distribution estimation knowledge that is amenable to unseen tasks in test phase. Best viewed in color.

how to obtain class-specific distributions. Details are dis-

cussed as follows:

Generate statistics for single data. While there is much

freedom in the form qφ and pθ, we assume that latent vari-

able z within the same class satisfies multivariate Gaussian

with a mean and diagonal covariance structure. For the pur-

pose of learning latent distribution(i.e., learning the class

mean and variance) quickly from a single instance, a statis-

tics generating pipeline is tailored with two cascaded struc-

tures and an additional transform function: 1) A feature ex-

tractor F (x;ϕF ) extracts a representation r from single data

x. 2) A raw generator G(r;ϕG) takes the representation

as input and directly split the output into two equivalent

parts µraw and σ
2
raw with equal dimensions. 3) A trans-

form function is applied to σ
2
raw to yield the final variance

vector σ
2 while µraw remains identical to yield the final

mean µ. The entire process is formulated as follows:

[
µraw,σ

2
raw

]
= G

(
F (x;ϕF );ϕG

)
,

µ = µraw,

σ
2 = |w| ∗ S(σ2

raw) + |b|.

(7)

In practical application, F and G are modeled as convolu-

tional networks and fully-connected layers with learnable

parameters ϕF and ϕG, respectively. The transform func-

tion is a Sigmoid mapping S(·) with learnable scale w and

offset b, rescaling the raw variance vector σ
2
raw to a new

range (|b|, |w| + |b|). We clarify that predicting a well-

constrained variance vector is of great significance for sub-

sequent estimation in Section 4.2. The predicted mean µ

and variance σ
2 for single data jointly comprise N (µ,σ2)

to denote corresponding class distribution. Nevertheless,

it is not reliable of the distribution generated from single

data without extra supervision. Although each data con-

tains sufficient class information, we still require estimating

posterior distribution and approaching prior on a large set

to eliminate class-irrelevant representation of a single data.

Estimate posterior distribution. It is of low confidence

to generate posterior distribution with single data. We then

impose support subsets of the same class on making a more

precise distribution estimation. Unlike the strategy (i.e.,

generate distributions with an averaged feature of a mini-

batch) frequently adopted in [21, 14, 8], which implies ev-

ery sample weighs the same, our method unifies distribution

of every single data into the final one. Concretely, given n
data with generated mean {µi|i = 1, . . . , n} and variance{
σ

2
i |i = 1, . . . , n

}
, we estimate the overall distribution pa-

rameters µ and σ
2 on the following criterion:

µ =

(
n∑

i=1

σ
−2
i

)−1( n∑

i=1

σ
−2
i µi

)
,

σ
2 =

(∑n

i=1 σ
−2
i

n

)−1

.

(8)

On one hand, the overall mean in Eq. 8 is a variance-

weighted linear combination of individual components.

And components with small variance are allocated big

weights. On the other hand, the overall variance tends to

approach the least variance component. To minimize dis-

turbance, the network tends to predict small variance for

those data which lies in the class center (more representa-

tive), but predict relatively large variance for those at the

boundary (less representative). Otherwise either uniform

variance or the converse situation results in misleading ag-

gregation because of undersampling in support set. Thus,

our aggregation choice aims to ease the burden of automat-

ically selecting the most representative components.
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Approach prior distribution. Similarly as the aggre-

gating posterior distribution conditional on the support set,

the prior distribution is accessed with a larger combination

of support and target set. With smoothed class-irrelevant in-

formation along with the larger set, the prior focuses more

on class-specific information and is thus well-fitted for a

discriminative process. We then approach our estimated

posterior with the prior, force the network capable of lo-

cating representative information from small support set.

3.3.3 Predict Output with Distribution

With class-specific distribution estimated from support set,

we solve the classification task in a straightforward way to

calculate the probability of target data. The final prediction

is consistent with the maximum probability among classes.

Explicitly, we encode the target sample x into class dis-

tribution and utilize the mean vector µ(x) to represent it, as

the mean vector centralizes the class information extracted

from this sample. The posterior distribution qφ(z|Sc) con-

ditional on category c satisfies N (µc,σ
2
c ), where the vari-

ance vector indicates the significance of different dimen-

sions. We thus denote Pr
(
µ(x)|qφ(z|Sc)

)
as the probabil-

ity of µ(x) if sampled from the distribution qφ(z|Sc), which

is calculated as follows:

Pr
(
µ(x)|qφ(z|Sc)

)
= N

(
µ(x);µc,σ

2
c

)
. (9)

Those probabilities, are transformed into logarithmic

form and then normalized with a softmax function to repre-

sent the confidence of which category the sample x belongs

to. On this basis, we reformulate the first term in Eq. 5 to

derive the recognition loss LR for the whole target set T as:

LR =
T∑

(xi,yi)

log

(
1 +

C∑

c 6=yi

Pr
(
µ(xi)|qφ(z|Sc)

)

Pr
(
µ(xi)|qφ(z|Syi

)
)
)
. (10)

Overall loss function. By tightening the intra-class re-

lationship and fulfilling the recognition gap, the overall loss

function is established as:

L = LR + Lintra. (11)

3.3.4 Implementation Details

Figure 2 illustrates our overall framework. Similarly as

many recent methods [43, 32], we follow their four-block

convolutional architecture to form our feature extractor F .

Each block contains a 3 × 3 convolution with 64 filters, a

batch normalization, a ReLU non-linear layer and a 2 × 2
max-pooling layer. A little difference is that we clip the

max-pooling layer of the last two blocks. Thus, the output

size of the feature extractor is 64×5×5 = 1600. Taking the

representation as input, we then construct the raw generator

G by a fully-connected layer of 128 dimensions. After ap-

plying the transformation function H and aggregation rules

mentioned in Section 3.3.2, 64-dimensional distributions of

support and target sets are achieved. We emphasize that our

final distributions are consistent with embeddings of those

comparable works w.r.t. the number of dimensions.

The training procedure is split into 2 stages. In first stage,

we only train the feature extractor with the entire super-

vised training set. This is done in exactly the same way as

any other standard recognition model. In second stage, we

awaken the whole architecture and allocate distinct learning

strategy for two learnable components. We use an initial

learning rate of 10−4 and 10−3 for the feature extractor F
and the raw generator G, respectively. Those two learning

rates are cut by half every 5000 episodes. All of our train-

able parameters are trained via Adam optimizer [23].

3.4. Discussion

Relation with previous variational arts. Recent works

[8, 21] have already imposed variational inference on few-

shot scenario. However, they are both generative models fo-

cusing more on reconstruction and utilizing fixed standard

Gaussian prior to guide the latent space exploration. We

argue that our framework is the first discriminative model

to tackle with few-shot problem via variational inference,

to the best of our knowledge. Also, our method improves

generalization by exploiting the dataset to weaken irrele-

vant features and obtain class-specific prior. Our recogni-

tion performance degenerates to those two methods only if

data distribution is identical between training and testing,

which is not the case in few-shot learning.

Relation with euclidean distance metric. Even though

widely used for evaluating the similarity between support

and target features [42, 12], in the presence of noise Eu-

clidean distance loses in performance, due to equal contri-

bution over all features. In our framework, we predict the

log-probability from Gaussian distribution as the metric, to

overcome this drawback by weighting features on each di-

mension. Under the assumption of multivariate Gaussian

densities, we can rewrite our metric D as:

D = logPr
(
µ(x)|qφ(z|Sc)

)
,

= −
1

2

d∑

i=1

(µi(x)− µc,i)
2

σ2
c,i

−
d∑

i=1

log σc,i −
d

2
log 2π,

(12)

where d denotes the feature dimension and i denotes the i-
th component of the vector. Thus, our proposed metric is

equivalent to a combination of a weighted Euclidean dis-

tance, a variance regularization term and a constant. By

giving low weight (i.e., big variance) to noisy features and

high weight (i.e., small variance) to class-specific features,

a reliable similarity measurement is achieved.
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4. Experiments

We evaluate our approach on two few-shot related tasks:

classification on Omniglot [28] and miniImagenet [45]

dataset and segmentation on a recent published benchmark

called cluttered Omniglot [31].

4.1. Few­shot Classification

4.1.1 Omniglot

Omniglot [28] is a handwritten characters dataset of 1623

classes from 50 alphabets, where each class consists of 20

samples drawn by different people. Following the same

setup first introduced in [45], we split the dataset into a

training set of 1200 classes and a test set of the rest. We then

resize the characters to 28 × 28, and augment the dataset

through three rotated versions (90◦, 180◦, 270◦).

Under the C-way K-shot setting, we form an episode

by randomly picking K images from the support set and

15 from the target set for each of C sampled classes. We

compute few-shot classification accuracy by averaging the

results over 1000 generated episodes in test phase, as shown

in Table 1. Our variational method achieves better recog-

nition performance than state-of-the-arts in majority cases.

Although we do not hit the best performance for 5-shot 20-

way classification, our results are still in low variance com-

pared with more complicated structures (like SNAIL [32]).

Crucially, we reach those results with no extra classifiers,

which saves memory overhead.

4.1.2 miniImagenet

miniImagenet [45] is a more challenging dataset, consist-

ing of 84×84 RGB images from 100 classes with 600 sam-

ples per class. Similarly as [37], the entire dataset is split

into 64, 16 and 20 classes for training, validation and test-

ing, respectively. For fair comparison, 16 validation classes

are only used for model selection.

We mirrors the configuration of Omniglot experiment

except for two minor changes: 1) As the input size is ex-

panded to 84×84, we reserve the last two max-pooling lay-

ers in feature extractor F to maintain a 1600-dimensional

representation r; 2) Considering miniImagenet is more

complex for generalizing well to unseen classes, we in-

crease the initial learning rate of feature extractor to 2∗10−4

in stage 2 for correcting the pre-trained features in stage 1.

We compute few-shot classification accuracy by av-

eraging the results over 600 generated episodes in test

phase, as summarized in Table 2. Recent works leverage

ResNet [20]-like network to consolidate extracted features,

which is of great assistance to strengthen the recognition

capability. Thus, for fair comparison, we implement an-

other backbone by substituting the relatively weak feature

extractor (i.e., four-blocks architecture) for the ResNet-12

Setup
5-way Acc. 20-way Acc.

1-shot 5-shot 1-shot 5-shot

VHE [21] - - 95.2 98.8

NS [8] 98.1 99.5 93.2 98.1

MN [45] 98.1 98.9 93.8 98.5

PN [42] 98.8 99.7 96.0 98.9

MM-Net [5] 99.3 99.8 97.2 98.9

L2C [43] 99.6(0.2) 99.8(0.1) 97.6(0.2) 99.1(0.1)

SNAIL [32] 99.07(0.16) 99.78(0.09) 97.64(0.30) 99.36(0.18)

Ours 99.67(0.13) 99.83(0.06) 97.95(0.17) 99.24(0.10)

Table 1. Few-shot classification accuracy (%) on Omniglot. All

results are averaged over 1000 episodes and reported with 95%

confidence intervals (represented within the bracket). The best

performance is indicated in bold.

as widely adopted in [32, 34, 2]. We argue that few-shot

learning is more of a strategy-learning procedure than a

representation-learning process, which is to some extent

demonstrated by our superior performance for both simple

ConvNet and ResNet implementations.

Another observation is that the advantages of 5-shot clas-

sification results are less noticeable than of 1-shot scenario.

Considering the 5-way setting with ConvNet, our method

surpasses published state-of-the-art 0.95% for 1-shot but

falls behind for 5-shot. We attribute this phenomenon to the

stability in lower training shots, since our method can ex-

tract class information better from scarce support data via

variational inference. When more support data is available,

the bonus of variational inference will be decreased.

It is worth noticing that our method achieves the lowest

variance, which means our prediction results are not fluctu-

ant w.r.t. random selection of support and target set.

4.1.3 Experimetnal Analysis

Stability analysis. Figure 3 shows the similarity ma-

trix learned by Prototypical Net and our method, with the

same ConvNet backbone under 5-way 5-shot settings. The

metrics are negative Euclidean distance and negative log-

probability, respectively. We clarify that the matrix is asym-

metric, as it is pair-wise constructed between randomly se-

lected support subset (5 images per class, 5 classes) and

corresponding target subset. Note that the 5 support images

in the same class do not cluster into a class representation

but perform independently as in 1-shot scenario, to exam-

ine the system stability if sampling different test batches.

Thus, each cell consisting of 5×5 grids illustrates the diver-

gence between two classes, as well as the intra-class simi-

larities. The higher intra-class similarities demonstrates that

our probability metric is more vulnerable to sampling noise

under a well-designed Bayesian scheme, compared to stan-

dard Euclidean distance.

Training configuration analysis. Although it is a con-

sensus to remain consistency between training and test
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Pipeline Setup Fine Tune 5-way 1-shot 5-way 5-shot

Backbone ConvNet ResNet ConvNet ResNet

MAML [10] Y 48.70 ± 1.84 - 63.11 ± 0.92 -

Prototypical Net [42] N 49.42 ± 0.78 - 68.20 ± 0.66 -

Learning to Compare [43] N 50.44 ± 0.82 - 65.32 ± 0.70 -

SNAIL [32] N - 55.71 ± 0.99 - 68.88 ± 0.92

TADAM [34] N - 58.50 ± 0.30 - 76.70 ± 0.30

Qiao et al. [36] N 54.43 ± 0.40 59.60 ± 0.41 67.87 ± 0.20 73.74 ± 0.19

Without Forgetting [15] N 56.20 ± 0.86 55.45 ± 0.89 72.81 ± 0.62 70.13 ± 0.68

Our Variational Method N 57.15 ± 0.31 61.23 ± 0.26 71.54 ± 0.23 77.69 ± 0.17

Table 2. Few-shot classification accuracy (%) on miniImagenet. All results are averaged over 600 episodes and reported with 95% confi-

dence intervals. The best performance is indicated in bold and the lowest variance is colored in red. Best viewed in color.

(a) Prototypcial Net [42] (b) Ours

Figure 3. Similarity matrix of Prototypcial Net and our method on

miniImagenet. Horizontal axis: 5 target images per class. Vertical

axis: 5 support images per class. Cell: 5*5 comparison between

two classes. Warmer colors denotes higher similarities.

phase in standard few-shot learning, we argue not all frame-

works benefit the most from this identical settings. We de-

sign two experiments to study the influence of various train-

ing configurations: 1) different support size; 2) different

target size, which are denoted as “k-shot” and “k-target”

in Figure 4. It is well observed that increasing target size

during training will lead to the performance gain, while re-

maining the same support size during training is a better

choice considering the stability.

4.2. Ablation Study

To assess the effects of different components, we con-

duct an ablation study on miniImagenet, with detailed re-

sults in Table 3.

Aggregate embeddings / aggregate distributions. First

we examine the performance of our system without the pro-

posed aggregation rules on distributions. To maintain the

structural integrity, we aggregate embeddings of the same

class with an average-pooling layer and generate corre-

sponding distribution on this basis instead. This alternative

operation is abbreviated to “aggregate embeddings” while

ours is denoted by “aggregate distributions” for clarity. We

observe that the latter drastically exceeds the former w.r.t.

5-shot classification accuracy, which means our designated

aggregation rules better expolit significance of each sample.

Without / with transform function. We validate the hy-

(a) Different support size (b) Different target size

Figure 4. Model performance on 5-way miniImagenet with various

training configurations. x-axis: different size of support or target

set during training. y-axis: 1-shot or 5-shot test accuracy. Error

bars indicate 95% confidence intervals over 600 test episodes.

pothesis that a well-constrained variance is of significance

to the system performance. In our approach, a transform

function H with two learnable scalars is applied to restrict

the final variance to a certain range. If no constraint is ex-

erted on the estimated variance (i.e., the transform function

is replaced with a simple ReLU nonlinearity), a sharp de-

crease in classification accuracy is observed in both 1-shot

and 5-shot cases. Moreover, it incurs instability without

transform function. We infer that it remains a complicated

problem to simultaneously optimize the mean and the vari-

ance, where the network can be easily stuck in local optima

under the KL constraint (e.g., two distributions approach

each other with small mean and big variance). With learn-

able scalars, the transform function is verified to generate

non-trival variance while maintaining the model flexibility.

Multi-stage / end-to-end training. We further examine

whether an end-to-end training strategy degrades the perfor-

mance, in which case both feature extractor and distribution

generator are mutually tuned from scratch. Our network is

better fitted in a 2-stage training scheme as the pre-trained

features assists in generalizing class distribution.

t-SNE visualization. We utilize t-SNE [30] to visualize

the learned representation of target set in a 5-way classi-

fication task. In detail, we repeat sampling from our esti-

mated distributions of each class to construct the final 64-

dimensional features. As shown in Figure 5, representa-
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miniImagenet

AD TF MS 5-way 1-shot 5-way 5-shot

X X 54.89 ± 1.37 65.62 ± 0.94

X X 53.18 ± 0.98 68.56 ± 0.71

X X 55.17 ± 0.64 69.13 ± 0.50

X X X 57.15 ± 0.31 71.54 ± 0.23

Table 3. Ablation study on our variational approach. All results

(%) are averaged over 600 episodes and reported with 95% confi-

dence intervals on 5-way miniImagenet. The best performance is

highlighted. AD: aggregate distributions. TF: transform function.

MS: multi-stage training. Blank cell indicates operating in another

way or operating without it, as discussed in analysis.

(a) Our full model (b) End-to-end training (c) Aggregate embed-

dings

Figure 5. The t-SNE visualization of target set in a 5-way problem

under three different configurations.

tions of the same class are clustered closer in our full model

than other two configurations. While the model trained in

an end-to-end manner fails to split different categories, an-

other model adopting the ”aggregate embeddings” strategy

even slightly confuses the boundary of classes.

4.3. Few­shot Segmentation

We further evaluate our approach on a novel few-shot

segmentation benchmark [31]. This benchmark, called clut-

tered Omniglot, is developed from the original Omniglot

to form more complex cluttered scenes with multiple char-

acters. Concretely, a cluttered scene of 96 × 96 pixels is

composed of a target character and massive distractors (3-

255 distinct characters), with each character of 32×32 pix-

els placed at a random location. Given distortion manually

added to each character and occlusion in cluttered scenes, it

is a challenging task to find the target character and produce

a pixelwise segmentation map, even difficult for segmenting

previously unseen targets under few-shot settings.

As huge discrepancy lies in classification and segmenta-

tion task, we make an incremental adjustment on the ba-

sis of proposed architecture MaskNet in this benchmark,

rather than reconstruct our model to adapt to the new task.

In training phase, MaskNet first generates some proposals

with associated instance segmentations prediction, and then

decides which of these proposals is the best match by a dis-

criminator. We then deploy our variational learning strategy

by two modifications: 1) Instead of predicting embeddings

of generated proposals, we predict the distributions with

auxiliary proposals. Those auxiliary proposals are gener-

ated in extra feed-forward passes with transformed versions

of target characters as input. 2) In test phase, we makes

the final decision of the best proposal by the distance be-

tween target embeddings and proposal distributions. Thus,

by fairly comparing with the original well-performed archi-

tecture, this configuration ensures a precise evaluation of

our variational learning method with minimal overhead.

Model 4 8 16 32 64 128 256

Siamese U-net 97.1 92.1 79.8 62.4 48.1 39.3 38.4

MaskNet 95.8 90.5 79.3 65.6 52.8 44.8 43.7

ours 97.9 93.5 83.4 67.0 53.9 45.4 43.2

Table 4. Few-shot segmentation accuracy (IOU in %) across dif-

ferent amounts of characters per cluttered scene. The best perfor-

mance is highlighted.

We report segmentation results in Table 4, using Inter-

section over Union (IOU) as measurement. Siamese U-net

also proposed in [31] serves as the baseline. We observe

that our variational strategy strengthens the original archi-

tecture MaskNet by a considerable margin. This is because

we improve the quality of segmentation proposals by mak-

ing them insensitive to the distortion of the input. With-

out any auxiliary information, our assumption that we can

well estimate the distribution of correct-located segmenta-

tion proposals fails in a seriously occluded situation, which

results in a slight decrease on performance with 255 distrac-

tors per cluttered scene.

5. Conclusion

We propose a variational Bayesian framework for few-

shot learning. Different from the deterministic point esti-

mate methods, we approximate class-specific distributions

instead and straightforwardly compute the probability of

novel input. This probabilistic-based metric is an exten-

sion of weighted Euclidean distance, further consolidating

the estimated distribution as irrelevant information is sup-

pressed. Our method requires no fine-tuning before test and

is easy to implement on other task, which is of great flexibil-

ity and transportability. It is further proven effective on few-

shot recognition and segmentation benchmarks, in terms of

superior classification accuracy and robustness.
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