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Abstract

Skull registration plays a fundamental role in forensic

science and is crucial for craniofacial reconstruction. The

complicated topology, lack of anatomical features, and low

quality reconstructed mesh make skull registration chal-

lenging. In this work, we propose an automatic skull regis-

tration method based on the discrete uniformization theory,

which can handle complicated topologies and is robust to

low quality meshes. We apply dynamic Yamabe flow to real-

ize discrete uniformization, which modifies the mesh combi-

natorial structure during the flow and conformally maps the

multiply connected skull surface onto a planar disk with cir-

cular holes. The 3D surfaces can be registered by matching

their planar images using harmonic maps. This method is

rigorous with theoretic guarantee, automatic without user

intervention, and robust to low mesh quality. Our experi-

mental results demonstrate the efficiency and efficacy of the

method.

1. Introduction

The skull is an intrinsic biological feature of humans.

Wilkinson [39] shows that the shape of a skull determines

the person’s facial features, therefore the face can be recon-

structed from the skull, which is called craniofacial recon-

struction. With the rapid development of computer tech-

nology, computer-assisted craniofacial reconstruction plays

an important role in the unknown corpse identification of

criminal investigation, skull identification in forensic sci-

ence, understanding of human beings evolution in anthro-

pology, etc. Skull registration is a key pre-processing step

of craniofacial reconstruction.

Surface registration is a fundamental problem in com-

puter vision, which seeks an optimal mapping from the tar-

get data to the reference data to achieve one-to-one corre-

spondence between them. The three-dimensional(3D) skull

registration aims at finding a one-to-one correspondence be-

tween the dense points for different posed and sized 3D

skull models. Establishing accurate registration of cranio-

facial data is the foundation and premise of building cranio-

facial statistical models.

In general, skull registration is challenging, because

skull surfaces have very complicated topological structures,

different morphology, and non-rigid deformation. Further-

more, feature definition and extraction are difficult as well.

Hence conventional methods can hardly achieve automatic

registration. Meshes produced by 3D scanning or recon-

struction from CT images are with low qualities; this makes

the numerical computation highly unstable. Although many

researchers have made great efforts, automatic and robust

skull registration still remains a fundamental challenge.

In order to handle complex topologies and improve the

robustness for the registration, we propose a novel method

based on the recent theoretic break through : discrete uni-

formization theory, which can handle surfaces with arbi-

trary topologies and poor mesh qualities. Different from

the previous method, dynamic Yamabe flow is used to re-

alize discrete uniformization. So our method is rigorous

with theoretic guarantee to convergence on an arbitrary tri-

angular mesh and achieves global diffeomorphism and high

registration accuracy, which outperforms other methods.

Contributions This work proposes a novel method for

skull registration. The method has some merits:

1. Rigorous: the discrete uniformization theory guaran-

tees the existence and the uniqueness of the solution,

hence the algorithm has solid theoretic foundation;
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2. Automatic: the whole computational pipeline is auto-

matic, without any manual input or user intervention;

3. Robust: the uniformization theory holds for arbitrary

polygonal surfaces, therefore the algorithm is insensi-

tive to the mesh qualities;

4. Effective: the experimental results demonstrate the ef-

fectiveness, accuracy and robustness of our method;

5. General: the method is general enough to handle sur-

faces with complicated topologies.

2. Related Work

The literature for registration is vast, here we only briefly

review the most related 3D surface registration works.

2.1. Rigid Registration Method

The rigid registration methods use rigid transformations

to match shapes. The Iterative Closest Point (ICP) pro-

posed by Besl and McKay [2] is the most classical rigid

registration method. Due to local search, ICP often falls

into local optima and is sensitive to the initialization qual-

ity. There are various improved ICP methods [40, 1] pro-

posed. Rusinkiewicz and Levoy [33] summarized various

ICP variant algorithms, and improved the ICP algorithm

from the following aspects: control point selection, feature

metrics, spatial search, point pair weights and rigid body

transformation.Cheng et al.[8] proposed a 3d skull registra-

tion method based on clifford algebra pupil distance invari-

ability and built a corresponding visualization registration

platform. Accurate point-to-point correspondence between

skulls is difficult to establish by rigid registration.

2.2. Non­Rigid Registration Method

Non-rigid registration methods adopt non-rigid transfor-

mations, which can capture the deformation between differ-

ent samples. Thin Plate Splines (TPS) transformation meth-

ods are popular [11, 4, 5, 23, 3]. Chui and Rangarajan [11]

proposed the TPS-RPM registration method which aims to

add TPS into the framework of ICP. Schneider and Eisert

proposed an automatic registration method for 3D head data

[34] by combining ICP and TPS. Deng et al. [13] proposed

a skull registration method that combines global and local

deformation. Chen et al [7] proposed a non-rigid 3D cran-

iofacial registration method using TPS transformation and

cylindrical projection. Most of these methods depend on the

manually calibrated feature points which is time-consuming

and subjective. Although Hu et al. [22, 32] proposed iter-

ative TPS registration methods based on random sampling

control points, the registration results can not be guaranteed.

2.3. Conformal Parameterization Method

Conformal parameterization [16, 37, 45] is a power-

ful tool in delivering 2D representations from 3D surfaces

while preserving local features and constructing the corre-

spondence between them. The nature of conformal map-

ping makes it insensitive to surface deformation and is par-

ticularly suitable for 3D non-rigid surfaces registration.

Several conformal parameterization registration methods

are realized in 3D facial surface registration and show good

results [41, 25, 29, 50, 36]. Many computational approaches

have been introduced such as least-square conformal map-

ping [27, 26], holomorphic differentials based approaches

[46] and Ricci flow techniques [25, 24, 45]. Koebe’s iter-

ation was generalized to compute conformal parameteriza-

tion for genus zero surface with multiple boundary com-

ponents [47] and high genus surfaces with boundaries in

[49]. Wang [38]applied harmonic map for high resolution,

non-rigid dense 3D point tracking, and Shi [35]applied it to

study constrained human brain surface registration. Zeng et

al. [46] have applied Hyperbolic Ricci Flow into 3D face

matching and registration.

In order to handle complicated topology and large de-

formation, we select the conformal parameterization as the

main tool for skull registration because 3D shape registra-

tion through 2D conformal parameterization greatly reduces

the difficulty and improves the accuracy. Unfortunately

most existing conformal parameterization methods require

good mesh quality. Eventually, we choose the discrete uni-

formization method [17], because this method can handle

surfaces with arbitrary topology and low mesh quality.

3. Theoretic Background

This section briefly introduces the theoretic background,

for detailed treatments we refer readers to [30, 18, 12]. Es-

pecially, detailed proofs for discrete uniformization theo-

rem are avalable [17] and [14].

3.1. Smooth Surface Uniformization

Uniformization theorem is one of the most fundamental

theorems in differential geometry.

Theorem 1 (Poincaré-Koebe Uniformization 1907)

Suppose S is a closed surface with a Riemannian metric

g, there exists a function u : S → R, such that the metric

e2ug induces constant Gaussian curvature. The constant

is +1, 0,−1 for surfaces with positive, zero and negative

Euler characteristic number respectively.

A modern proof is based on Hamilton’s Ricci flow.

Definition 1 (Normalized Hamilton’s Ricci flow) Given

a closed Riemannian surface (S, g), the flow equation is

defined as:

du(t)

dt
= −2

(

K(t)− 2π
χ(S)

A(t)

)
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Figure 1: Hyperbolic hull of a Euclidean triangle on the

plane at infinity.

where g(t) = e2u(t)g(0), K(t) denotes the Gaussian curva-

ture, while χ(S) and A(t) represent the Euler characteristic

and the total area of the surface S respectively.

The proof of convergence of Ricci flow equation [19, 20,

10] and the solution leads to the conformal uniformization

metric. For registration purposes, conformal mapping has

been broadly used.

Definition 2 (Conformal mapping) Given that (S1,g1)
and (S2,g2) are Riemannian surfaces with Riemannian

metric g1 and g2 respectively, a smooth mapping φ : S1 →
S2 is conformal, if the pull-back metric induced by φ and the

original metric differ by a scalar function: φ∗
g2 = e2λg1,

where λ : S1 → R is scalar function.

Conformal mappings preserve angles and thus map in-

finitesimal circles to infinitesimal circles [18]. Multiple

techniques [46, 45, 25, 6] have been introduced in the lit-

erature.

3.2. Discrete Uniformization

This work is based on discrete uniformization theory [17,

14]. The upper half space model for hyperbolic space H
3

is assigned with a Riemannian metric ds2 = (dx2 + dy2 +
dz2)/z2. The geodesics are vertical lines or circular arcs

orthogonal to the xy-plane. The hyperbolic planes are the

semi-spheres with equators on the xy-plane. The xy-plane

is the plane at infinity.

Suppose we put a Euclidean triangle ∆ at the xy-plane,

the hemisphere through its circumcircle is a hyperplane H
2

(As shown in Figure 1). Through each pair of vertices, there

is a hyperbolic geodesic. The three geodesics on H
2 form

a hyperbolic ideal triangle, which is the hyperbolic convex

hull of the three vertices.

Suppose M is a triangular polyhedral surface, a pair of

adjacent triangles ∆1 and ∆2, the intersection is an edge

∆1∩∆2 = e. The two triangles are isometrically embedded

on the xy-plane, the two hyperbolic convex hull are glued

along the geodesic through the end vertices of e. In this

way, we can glue the hyperbolic convex hulls of all faces to

form a hyperbolic surface M̃ with cusps at the vertices.

Definition 3 (Discrete Conformal Equivalence) Given

two triangular polyhedral surfaces M1 and M2, if their

corresponding hyperbolic surfaces M̃1 and M̃2 are isomet-

ric, then two polyhedral surfaces are discrete conformal

equivalent, denoted as M1 ∼ M2.

The Euclidean metric on a triangle mesh induces discrete

curvature. On each triangle [vi, vj , vk], the metric deter-

mines the corner angles. θjki is denoted the angle at the

vertex vi.

Definition 4 (Discrete Gaussian Curvature) Discrete

Gaussian curvature is defined as angle deficit on vertices,

K : V → R,

K(v) =

{

2π −
∑

jk θ
jk
i , v /∈ ∂M

π −
∑

jk θ
jk
i , v ∈ ∂M

(1)

It can be easily shown that the total discrete Gaussian

curvature satisfies the discrete Gauss-Bonnet condition [18]

∑

i

K(vi) = 2πχ(M). (2)

Our method is based on the following newly discovered

theorem by Yau et al.[17]

Theorem 2 (Discrete Uniformization) Given a triangular

polygonal surface M , given target curvature K̄ : V →
R satisfying Gauss-Bonnet condition 2 and K̄(vi) ∈
(−∞, 2π], then there exists another polyhedral surface M̃
discrete conformal to M , such that the discrete Gaussian

curvature of M̃ equals to K̄.

3.3. Dynamic Yamabe Flow

The discrete uniformization can be obtained by dynamic

Yamabe flow. The metric g on discrete surface M is repre-

sented as edge length function, l : E → R
+, with triangle

inequality satisfied.

Derived from finite element method, the cotangent edge

weight for an interior edge [vi, vj ], adjacent to faces

[vi, vj , vk] and [vj , vi, vl], is defined as

wij = cot θijk + cot θijl (3)

Since a boundary edge [vi, vj ] is only adjacent to one face

[vi, vj , vk], the corresponding edge weight is defined as

wij = cot θijk (4)

We say a triangulation is Delaunay if all edge weights are

non-negative.

Definition 5 (Discrete Surface Dynamic Yamabe Flow)

Discrete surface dynamic Yamabe flow is defined as

dui(t)

dt
= K̄i −Ki(t) (5)
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where ui is the discrete conformal factor, denoted as u :
V → R, and K̄i is the target curvature at the vertex vi. The

length of an edge [vi, vj ] in terms of u is given by

lij = exp(ui)l̄ij exp(uj) (6)

where l̄ij is the initial edge length. During the flow, we

update the triangulation to be Delaunay.

To accelerate the computation, we use Newton’s method by

solving the Hessian matrix of the discrete Yamabe energy,

which is defined as

E(u) =

∫ u n
∑

i=1

(K̄i −Ki)dui

Then the Hessian matrix can be solved as

∂Ki

∂uj

=
∂Kj

∂ui

= wij (7)

∂Ki

∂ui

= −
∑

[i,j]∈E

wij (8)

where E represents the edge set of the triangulation and wij

is defined in Equations 3 and 4.

3.4. Koebe’s Iteration for Topological Poly­annulus

Even though rigorous proof and analysis of the tech-

niques mentioned above have been provided for simply

connected domains of arbitrary topology, conformal map-

ping for multiply connected domains, such as human skull

surface, requires additional procedure. Koebe’s iteration

method [47] provides an elegant approach for genus zero

multiply connected surfaces.

Theorem 3 (Koebe) Suppose (S, g) is a multiply con-

nected annulus with a Riemannian metric g, then there ex-

ists a conformal map φ : S → C, which maps S to the unit

disk with circular holes. Such kind of conformal mappings

are unique up to a Möbius transformation [43]. (The proof

can be found in [43]).

4. Computational Algorithms

The skull surface in our case is regarded as a multiply

connected region with zero genus and multiple boundaries.

Dynamic Yamabe flow is applied to compute the confor-

mal mapping to planar circle domains with Koebe’s iter-

ation framework. For registration purpose, we use con-

strained harmonic mapping to determine the matching be-

tween skulls.Figure 2 shows the flowchart of our method.

Figure 2: A general flowchart of our method

Algorithm 1: Conformal Mapping on Annulus

Input: The input topological annulus mesh M with

boundary ∂M = γ1 − γ0,target curvature K̄,

threshold ǫ
Output: The resulting metric function lij , and the

embedding to canonical annulus

1 Double cover M to construct M1, which is close with

genus of 1;

2 Compute the initial edge length l̄ij induced by the the

surface embedding in R
3, initialize the conformal

factor u to be all zeros;

3 while true do

4 Compute the edge lengths with Eqn 6;

5 Compute corner angles and edge weight as in Eqn

3 and 4;

6 Update the triangulation to be Delaunay according

to the cotangent edge weight by edge swapping ;

7 Compute vertex curvature using Eqn 1;

8 if ∀i, |K̄i −Ki| < ǫ then

9 break;

10 Compute the gradient of the Ricci flow;

11 Compute the Hessian of the Ricci energy with Eqn

7 and 8;

12 Solve the linear system Hess(u)δu = ∇E(u);
13 u = u+ δu;

end

14 Compute the edge length {lij};

15 Cut the surface to remove the double covering to get

M̄ ;

16 Embed M̄ on C equidistantly to make the length of

image φ(γ1) of γ1 to be 2π;

17 Map the surface φ(M̄) into a planar annulus with

complex exponential map exp z;

18 return the metric {lij} and the embedding of exp z

4.1. Dynamic Yamabe Flow on Poly­annulus

Dynamic Yamabe flow on topological disks has been dis-

cussed thoroughly [41]. Based on the theoretic correctness
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(a) Original mesh with eight boundaries (b) Fill 6 holes (c) Step 1 (d) Fill the first hole and open another

(e) Result after step 2 (f) Result after step 4 (g) Result after step 6 (h) Final result

Figure 3: Demonstration of Koebe’s iteration method. (a) is the original surface with eight boundaries. (b) illustrates the

hole-filling results. (c) shows the first conformal mapping result from (b) to canonical annulus. (d) closes the first hole and

opens the second. (e) is the second conformal mapping result after removing all fillings for better visualization. (f)(g) are

results after the step 4 and 6. (h) represents the final result, where all the boundaries are perfect circles.

for arbitrary topology[18], we will generalize the algorithm

to topological poly-annulus .

Hole filling and puncturing It is necessary to fill and

puncture the holes on skull models so that Koebe’s iteration

algorithm can be used, as well as that the poly-annulus can

be modified to annulus or vice versa. The quality of filling

has no effect on the algorithm result. So we will just find the

center point of each hole and connect the center point to the

vertices on the hole boundary edges to construct triangles.

When puncturing, we remove the center points and all the

triangles attached to those points.

Dynamic Yamabe flow on Annulus To compute the

conformal mapping from topological annulus to canonical

planar annulus, we first double cover the annulus [21] to

construct a closed surface with genus of 1. Then we can ap-

ply the euclidean Ricci flow process to compute the planar

metric. Finally, an exponential map on the complex plane

will be composed to the planar embedding to get the final

mapping to the canonical annulus. The details of the algo-

rithm are shown in Algorithm 1.

4.2. Koebe’s Iteration for Poly­annulus

In order to solve the multiply connected region skull

surface with boundary and 7 holes conformal mapping,

Koebe’s iterative framework is used. The basic idea is as

follows: first, fill the holes of a skull, open a hole each time

to generate a topological annulus with zero genus and two

boundaries. Then, calculate the conformal mapping of the

annulus to canonical annulus using dynamic Yamabe flow.

Repeat this step, each hole is mapped to a circle in turn until

all the inner boundaries converge to standard circles. After

completing the iterative process, the conformal mapping be-

Algorithm 2: Generalized Koebe’s Iteration for

Poly-annulus

Input: Multi-connected surface M with boundaries

γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, threshold ǫ
Output: Conformal mapping φ : M → M̄ , where M̄

is planar circle domain with (c0i , r
0
i )

representing the center and radius for each

boundary

1 Fill all boundaries γk with topological disks Dk,

∂Dk = γk, k = 1, ..., 7;

while
∑7

k=1 |c
t+1
k − ctk|+ |rt+1

k − rtk| > ǫ do

for k = 1, ..., 7 do

2 Remove one disk Dk to construct an annulus

Sk;

3 Solve for the conformal mapping φ : Sk → S̄k

using Algorithm 1;

4 Fill the hole on S̄k with D̄k;

end

5 compute the centers and radii (ct+1
k , rt+1

k ) for

disks D̄k, ∀k;

end

6 return φ

tween multi-connected region with holes and the unit disk

with circular holes is obtained.The steps of Koebe’s itera-

tion algorithm are stated in Algorithm 2, demonstrated in

Figure 3 and the result is in Figure 4. The conformal map-

ping preserves intrinsic symmetry, hence the final results

are symmetric.
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