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Abstract

SLAM technology has recently seen many successes and

attracted the attention of high-technological companies.

However, how to unify the interface of existing or emerging

algorithms, and effectively perform benchmark about the

speed, robustness and portability are still problems. In this

paper, we propose a novel SLAM platform named GSLAM,

which not only provides evaluation functionality, but also

supplies useful toolkit for researchers to quickly develop

their SLAM systems. Our core contribution is an univer-

sal, cross-platform and full open-source SLAM interface

for both research and commercial usage, which is aimed

to handle interactions with input dataset, SLAM implemen-

tation, visualization and applications in an unified frame-

work. Through this platform, users can implement their own

functions for better performance with plugin form and fur-

ther boost the application to practical usage of the SLAM.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a

hot research topic in computer vision and robotics for sever-

al decades since the 1980s [3, 10, 14]. SLAM provides fun-

damental function for many applications that need real-time

navigation like robotics, unmanned aerial vehicles (UAVs),

autonomous driving, as well as virtual and augmented reali-

ty. In recent years, SLAM technology develops rapidly and

a variety of SLAM systems have been proposed, including

monocular SLAM system (key-point based [12, 37, 49], di-

rect [15, 16, 53] and semi-direct methods [22, 23]), multi-

sensor SLAM (RGBD [7, 36, 68], Stereo [17, 23, 51] and

inertial aided methods [45, 56, 66]), learning based SLAM

(supervised [6, 55, 67] and unsupervised methods [71, 72]).
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However, with the rapidly developing SLAM technolo-

gy, almost all the researchers focus on the theory and im-

plementation of their own SLAM systems, which makes it

difficult to exchange ideas and not easy to port the imple-

mentation to other systems. This prevents the quick apply

to various industry fields. Currently, there exist many im-

plementations of SLAM systems, how to effectively perfor-

m benchmark about the speed, robustness and portability

is still a problem. Recently, Nardi et al. [52] and Bod-

in et al. [4] proposed uniform SLAM benchmark systems

to perform quantitative, comparable and validatable exper-

imental research for investigating trade-offs among various

SLAM systems. Through these systems, the evaluation ex-

periments can be easily performed by using the dataset, and

metric evaluation modules.

As those systems only provide evaluation benchmarks,

we consider it is possible to build a platform to serve the

whole life-circle of SLAM algorithms including develop-

ment, evaluation and application stages. In addition, deep

learning based SLAM has achieved remarkable progress in

recent years, it is necessary to create a platform which not

only supports C++ but also Python for better supporting

integration for geometric and deep learning based SLAM

system. Therefore, in this paper we introduce a novel S-

LAM platform which provides not only evaluation func-

tionality, but also useful toolkit for researchers to quickly

develop their own SLAM systems. Through this platform,

frequently used functions are provided with plugin form-

s, therefore, users could implement their own projects with

directly using them or creating their own functions for bet-

ter performance. We hope this platform could further boost

the SLAM systems to practical applications. In summary,

the main contributions of this work are as follows:

1. We presented an universal, cross-platform and ful-

l open-source SLAM platform for both research and

commercial usages, which is beyond that of previ-

ous benchmarks. The SLAM interface is consisted by

several lightweight, dependency-free headers, which

makes it easy to interact with different datasets, S-
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LAM algorithms and applications with plugin forms

in an unified framework. In addition, both JavaScript

and Python are also provided for web based and deep

learning based SLAM applications.

2. We introduced three optimized modules as utility

classes including Estimator, Optimizer and Vocabulary

in the proposed GSLAM platform. Estimator aim-

s to provide a collection of close-form solvers cov-

er all interesting cases with robust sample consensus

(RANSAC); Optimizer aims to provide an unified in-

terface for popular nonlinear SLAM problems; Vocab-

ulary aims to provide an efficient and portable bag of

words implementation for place recolonization with

multi-thread and SIMD optimization.

3. Benefit from the above interface, we implemented and

evaluated plugins for existing datasets, SLAM imple-

mentations and visualized applications in an unified

framework, and emerging benchmark or applications

could be further integrated easily in the future.

The source code of GSLAM with documentation wiki

has been released, which can be found at our GitHub1.

2. Related Works

In this section, we will briefly review the SLAM tech-

niques including methods, systems and benchmarks.

2.1. Simultaneous Localization And Mapping

SLAM techniques build a map of an unknown environ-

ment and localize the sensor in the map with a strong focus

on real-time operation. Early SLAM are mostly based on

extended kalman filter (EKF) [12]. The 6 DOF motion pa-

rameters and 3D landmarks are probabilistically represent-

ed as a single state vector. The complexity of classic EKF

grows quadratically with the number of landmarks, restrict-

ing its scalability. In recent years, SLAM technology de-

velops rapidly and lots of monocular visual SLAM system-

s including key-point based [12, 37, 49], direct [15, 16, 53]

and semi-direct methods [22, 23] are proposed. However,

monocular SLAM systems lack scale information and are

not able to handle pure rotation situation, then, some oth-

er multi-sensor SLAM systems including RGBD [7,36,68],

Stereo [17,23,51] and inertial aided methods [45,56,66] are

being studied for higher robustness and precision.

While a large number of SLAM algorithms have been p-

resented, there has little effort to unify the interface of such

algorithms, or to perform a holistic comparison of their ca-

pabilities. Implementations of these SLAM algorithms are

often released as standalone executables rather than as li-

braries, and often do not conform to any standard structure.

1https://github.com/zdzhaoyong/GSLAM

Recently, supervised [6,55,67] and unsupervised [71,72]

deep learning based visual odometers (VO) present novel

ideas compared to traditional geometry based methods, but

it is still not easy to optimize the predicted poses further for

consistencies of multiple keyframes. GSLAM could help

them for obtaining better global consistency, it is more easi-

er to visualize or evaluate the results, and further be applied

to various industry fields.

2.2. Computer Vision and Robotics Platform

Within the robotics and computer vision community,

robotics middle-ware (e.g., ROS [57]) presents a very con-

venient communication way between nodes and is favored

by most robotics researchers. Lots of SLAM implemen-

tations provide ROS wrapper to subscribe sensor data and

publish visualization results. But it does not unify the input

and output of SLAM implementations and is hard to further

evaluate different SLAM systems. In this paper, GSLAM

provides an alternative option to replace ROS inside the S-

LAM implementation, and maintains the compatibility.

2.3. SLAM Benchmarks

Currently, there exist several SLAM Benchmarks, in-

cluding KITTI Benchmark Suite [28], TUM RGB-D

Benchmarking [62] and ICL-NUIM RGB-D Benchmark

Dataset [32], which only provide evaluation functionality.

In addition, SLAMBench2 [4] expanded these benchmarks

into algorithms and datasets, which requires users to make

released implementation SLAMBench2-compatible for e-

valuation and it is difficult to extend to further applications.

Different from these systems, the proposed GSLAM plat-

form provides a solution which serves the whole life-circle

of the SLAM implementation from development, evaluation

to application. We provide useful toolkit for researchers to

quickly develop their own SLAM system, and further visu-

alization, evaluation and applications are developed based

on an unified interface.

3. General SLAM Framework

The core work of GSLAM is to provide a general S-

LAM interface and framework. For better experience, the

interface is designed to be lightweight, which is consisted

by several headers and only relies on the C++11 standard

library. And based on the interface, script language like

JavaScript and Python are supported. In this section, the

GSLAM framework is presented and a brief introduction of

several basic interface classes is given.

3.1. Framework Overview

The framework of GSLAM is shown in Fig. 1, generally

speaking, the interface is aimed to handle interaction with

three parts:
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Figure 1: The framework overview of GSLAM.

1. The input of a SLAM implementation. When running

a SLAM, the sensor data and some parameters are re-

quired. For GSLAM, a Svar class is used for param-

eters configuration and command handling. And al-

l sensor data required by SLAM implementations are

provided by a Dataset implementation and transfered

using the Messenger. GSLAM implemented several

popular visual SLAM datasets and users are free to im-

plement his own dataset plugins.

2. The SLAM implementation. GSLAM treats each im-

plementation as a plugin library. It is very easy for de-

velopers to design a SLAM implementation based on

the GSLAM interface and utility classes. Developers

can also wrap the implementation using the interface

without extra dependency imported. Users can focus

on the development of core algorithms without caring

the input and output which should be handled outside

the SLAM implementation.

3. The visualization part or applications using SLAM re-

sults. After SLAM implementations handled the input

frames, users probably want to demonstrate or utilize

the results. For generality, SLAM results should be

published in a standard format. Default GSLAM uses

Qt for visualization, but users are free to implemen-

t a customized visualizer and add application plugins

such as an evaluation application.

The framework is designed to be compatible with differ-

ent kinds of SLAM implementations include but not limited

to monocular, stereo, RGBD and multiple camera visual in-

ertial odometer with multi-sensor fusion. And now it best

match feature based implementations while direct or deep

learning based SLAM systems are also supported. As mod-

ern deep learning platforms and developers prefer Python

for coding, GSLAM provides Python binding and thus de-

velopers are able to implement a SLAM using Python and

Table 1: Transform comparison with three popular imple-

mentations. The table statistics the time usage to run 1e6

times of transform multiply, point transform, exponential

and logarithm in Milli seconds on an i7-6700 CPU running

64bit Ubuntu.

Method GSLAM Sophus TooN Ceres

SO(3)

mult 14.9 34.3 17.8 159.1

trans 15.4 17.2 14.5 90.4

exp 80.7 98.4 106.8 -

log 55.7 72.5 63.8 -

SE(3)

mult 28.6 55.2 29.3 -

trans 19.3 19.8 12.1 -

exp 152.4 249.2 99.2 -

log 152.7 194.0 205.8 -

SIM(3)

mult 33.2 58.5 34.5 -

trans 16.9 17.2 13.7 -

exp 180.2 286.8 229.0 -

log 202.5 341.6 303.6 -

call it with GSLAM or call a C++ based SLAM imple-

mentation with Python. Moreover, GSLAM could be used

to train SLAM-modules, the supervised procedure can be

summarized as: 1) compute sparse depth maps and cam-

era poses with traditional SLAM plugin; 2) use the depth

maps and camera poses as supervision to train estimators.

GSLAM can also apply an unsupervised method to jointly

learns depth and pose estimators, which only requires image

sequence without ground truth depth for training via dataset

plugins. Then, multi-view geometry constrains as losses are

employed to train the network.

3.2. Basic Interface Classes

There are some data structures that are often used by the

SLAM interface, including the parameter setting/reading,

image format, pose transformation, camera model and map

data structures. Here is going to give a brief introduction of

some basic interface classes.

3.2.1 Parameter Setting

GSLAM uses a tiny arguments parsing and parameter set-

ting class Svar, which only consists of a single header file

depending on C++11 with the following features:

1. Arguments parsing and configure loading with help in-

formation. Similar to popular argument parsing tools

like Google gflags2, the variable configuration could

be loaded from arguments, files and system environ-

ment. Users could also define different types of param-

eters with introduction which will be shown in help.

2https://github.com/gflags/gflags
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2. A tiny script language with variable, function and con-

dition, which makes configure file more powerful.

3. Thread-safe variable binding and sharing. Variables

used with very high frequency are suggested to bind

with pointer or reference, which provides high efficien-

cy along with convenience.

4. Simple function definition and calling from both C++

or plain script. A binding between command and func-

tion helps developers decouple the file dependencies.

5. Support tree structure presentation, which means it is

easy to load or save configuration with XML, JSON

and YAML formats.

3.2.2 Intra-Process Messaging

As ROS presents a very convenient communication way be-

tween nodes and is favored by most robotics researchers.

Inspired by the ROS2 messaging architecture, GSLAM im-

plements a similar intra-process communication utility class

named Messenger. This provides an alternative option to re-

place ROS inside the SLAM implementation and maintains

the compatibility. Due to the intra-process design, the Mes-

senger is able to publish and subscribe any class without

extra cost. More features are listed below:

1. The interface keeps ROS style and easily for users to

get started. And all ROS defined messages are support-

ed, which means very few works are needed to replace

the original ROS messaging.

2. Since there is no serialization and data transferring,

messages can be sent without latency and extra cost.

Meanwhile the payload is not limited to ROS defined

messages but any copyable data structures are support-

ed.

3. The source are header files only based on C++11 with

no extra dependency, which makes it portable.

4. The API is thread-safe and supports multi-thread con-

dition notify when the queue size is greater than ze-

ro. Both topic name and RTTI data structure check are

done before a publisher and subscriber are connected

from each other to ensure correct calls.

3.2.3 3D Transformation

Rotation, rigid and similarity are three of the most used

transformations in SLAM research. A similarity transfor-

mation of a point p = (x, y, z)T is common to use a 4 × 4
homogeneous transformation matrix or decompose such a

matrix into rotational and translational components:

Table 2: Algorithms which the GSLAM Estimator imple-

mented.

Algorithm Ref. Model

2D-2D

F8-Point [20] Fundamental

F7-Point [33] Fundamental

E5-Stewenius [61] Essential

E5-Nister [54] Essential

E5-Kneip [42] Essential

H4-Point [33] Homography

A3-Point [5] Affine2D

2D-3D

P4-EPnP [44] SE3

P3-Gao [27] SE3

P3-Kneip [41] SE3

P3-GPnP [40] SE3

P2-Kneip [38] SE3

T2-Triangulate [39] Translation

3D-3D

A4-Point [5] Affine3D

S3-Horn [34] SIM3

P3-Plane [41] SE3

[

p′

1

]

=

[

sR t

0T 1

] [

p

1

]

. (1)

Here R ∈ R
3×3 represents the rotation matrix, which is

given as a member of the SO(3) Lie group [31] with three

unit direction axises. t ∈ R
3 means the translation and s is

the scale factor. The similarity transform matrix belongs to

the SIM(3) group. When the scale s = 1, the transform

becomes a rigid transform and belongs to the SE(3) group.

For the rotational component, there are several choices

for representation, including the matrix, Euler angle, unit

quaternion and Lie algebra so(3). For a given transforma-

tion, we can use any of these for representation and can con-

vert one to another. However, we need to pay close atten-

tion to the selected representation when we consider mul-

tiple transformations and manifold optimization. The ma-

trix representation is overparamatrized with 9 parameters

where as the rotation only has 3 degrees of freedom (DOF).

The Euler angle representation uses 3 variable and is easy to

understand but faces the well-known gimbal lock problem

and not convenience to multiple transformations. The unit

quaternion is the most efficient way to perform multiple and

Lie algebra is the common representation to perform mani-

fold optimization. The matrix representation of rotation R

is calculated from φ ∈ R
3 using the exponential function

according to Lie algebra so(3):

R = exp(φ∧) = exp(θa∧) (2)

= cos θI+ (1− cos θ)aaT + sin θaT . (3)

Where a is the rotation axis and θ is the angle to rotate. φ∧

is the skew-symmetric matrix of φ.

1113



Similarly the Lie algebra of rigid and similarity trans-

formation se(3) and sim(3) are defined. GSLAM uses

quaternion to represent the rotational component and pro-

vide functions converting from one representation to other

representations. Table 1 demonstrates our transforms im-

plementation with comparison to three other popular im-

plementations Sophus, TooN and Ceres. Since Ceres im-

plementation uses the angle axis representation, the rota-

tion exponential and logarithm are not needed. As the ta-

ble demonstrates, the GSLAM implementation outperforms

due to the use of quaternion and better optimization, while

TooN utilizes the matrix implementation and outperforms

on point transformation.

3.2.4 Image Format

Image data storing and transferring are two of the most im-

portant functions for visual SLAM. For efficiency and con-

venience, GSLAM utilizes a data structure GImage which is

compatible to cv::Mat. It has a smart point counter for safe-

ly memory free and is easy to be transfered without memo-

ry copy. And the data pointer is aligned so that it would be

easier for single instruction multiple data (SIMD) speed up.

Users can convert between GImage and cv::Mat seamlessly

and safely without memory copy.

3.2.5 Camera Models

A camera model should be defined to project a 3D point pc

from camera coordinates to 2D pixel x. One most popular

camera model is the pinhole model where the projection can

be represented by multiply an intrinsic matrix K known as:

x = Kpc =





fx cx
fy cy

1



pc (4)

As images for SLAM possibly contain radial and tangen-

tial distortion due to imperfect manufacturing or are cap-

tured with a fish-eye or panorama camera, different camera

models are proposed to describe the projection. GSLAM

provides implementations including the OpenCV [24] (used

by ORBSLAM [51]), ATAN (used by PTAM [37]) and O-

CamCalib [59] (used by MultiCol-SLAM [65] ). Users are

also easy to inherit the class and implement some other

camera models like Kannala-Brandt [35] and Equirectan-

gular panorama model.

3.2.6 Map Data Structure

For a SLAM implementation, its goal is to localize the real-

time poses and generate a map. GSLAM suggests an unified

map data structure which is consisted by several mapframes

and mappoints. This data structure is appropriate for most

Table 3: Comparison of four BoW implementations in load-

ing, saving and training a same vocabulary with memory

usage statistics. The experiment is performed on a comput-

er with i7-6700 CPU, 16GB RAM running 64bit Ubuntu.

400 and 10k images from DroneMap [8] dataset are used to

train the models with 4 and 6 levels.

Implementation Ours DBoW2 DBoW3 FBoW

Load

ORB-4 67.3us 47.2ms 7.1ms 72.3us

ORB-6 7.2ms 6.8 s 1.1 s 9.5ms

SIFT-4 1.0ms 436.1ms 5.1ms 1.1ms

Save

ORB-4 437.9us 40.4ms 1.7ms 553.1us

ORB-6 34.4ms 4.8 s 632.4ms 20.6ms

SIFT-4 4.4ms 437.6ms 6.7ms 2.7ms

Train

ORB-4 7.6 s 24.8 s 23.6 s 8.5 s

ORB-6 230.5 s 1.1Ks 911.4 s 270.4 s

SIFT-4 23.5 s 327.7 s 299.0 s 18.7 s

Trans

ORB-4 615.5us 2.1ms 1.9ms 862.4us

ORB-6 723.7us 6.0ms 4.9ms 1.2ms

SIFT-4 1.1ms 10.3ms 9.2ms 11.5ms

Mem

ORB-4 0.44MB 2.5MB 2.5MB 0.45MB

ORB-6 44.4MB 247.1MB 246.5MB 45.3MB

SIFT-4 5.8MB 7.8MB 7.8MB 5.8MB

of the existed visual SLAM systems including both feature

based or direct methods.

Mapframes are used to represent location statuses in dif-

ferent times with various information captured by sensors or

estimated results including IMU or GPS raw data, depth in-

formation and camera models. Relationships between them

are estimated by SLAM implementations and their connec-

tions form a pose graph.

Mappoints are used to express the environment observed

by frames, which are generally used by feature based meth-

ods. However, a mappoint could not only represents a key-

point but also a GCP, edge line or 3D object. Their cor-

respondences with mapframes form an observation graph

which are often called as bundle graph.

4. SLAM Implementation Utilities

For making things easier to implement a SLAM system,

GSLAM provides some utility classes. This section will

briefly introduce three optimized modules named Estimator,

Optimizer and Vocabulary.

4.1. Estimator

The purely geometric computation remains a fundamen-

tal problem that requires robust and accurate real-time solu-

tions. Both classical visual SLAM algorithms [22, 37, 49])

or modern visual-inertial solutions [45, 56, 66] rely on ge-

ometric vision algorithms for initialization, relocalization

and loop-closure. OpenCV [5] provides several geometry
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Table 4: Dataset plugins build-in implemented until now.

Dataset Year Environment Type

KITTI [29] 2012 outdoors multi-cam, imu

TUMRGBD [63] 2012 indoors RGBD

ICL [32] 2014 simulation RGBD

TUMMono [18] 2016 indoors mono

Euroc [9] 2016 indoors stereo, imu

NPUDroneMap [8] 2016 aerial mono

TUMVI [60] 2018 in/outdoors stereo, imu

CVMono [5] - - mono

ROS [57] - - -

algorithms and Kneip presents a toolbox for geometric vi-

sion OpenGV [39] which is limited to camera pose compu-

tation. Estimator of GSLAM aims to provide a collection

of close-form solvers cover all interesting cases with robust

sample consensus (RANSAC) [19] methods.

Table 2 lists the algorithms supported by the estimator.

They are divided into three categories according to the giv-

en observations. 2D-2D matches are used to estimate epipo-

lar or homography constraints and relative pose could be

decomposed from them. 2D-3D correspondences are used

to estimate both central or non-central absolute pose for

monocular or multiple camera systems, which is the famous

PnP problem. 3D geometry functions such as plane fit-

ting, and estimating the SIM3 transformation of two point

clouds are also supported. Most algorithms are implement-

ed depending on the linear algebra library Eigen, which is

header-only and readily for most platforms.

4.2. Optimizer

Nonlinear optimization is the core part of state-of-the-art

geometric SLAM systems. Due to the high dimensional-

ity and sparseness of Hessian matrix, graph structures are

used to modeling complex estimation problems for SLAM.

Several frameworks including Ceres [1], G2O [43] and GT-

SAM [13] are proposed to solve general graph optimization

problems. These frameworks are popular used by differen-

t SLAM systems. ORB-SLAM [49, 51], SVO [22, 23] use

G2O for bundle adjustment and pose graph optimization.

OKVIS [45], VINS [56] use Ceres for graph optimization

with IMU factors and sliding window is used to control the

computation complex. Forster et al. present a visual-initial

method [21] based on SVO and implement the back-end

with GTSAM.

Optimizer of GSLAM aims to provide an unified inter-

face for most of nonlinear SLAM problems such as PnP

solver, bundle adjustment, pose graph optimization. A gen-

eral implementation plugin for these problems is carried out

based on the Ceres library. For a particular problem such

as bundle adjustment, some more efficient implementations

Figure 2: ORBSLAM [49, 51] can run on different dataset-

s with only one parameter modified in GSLAM, including

NPUDroneMap [8] (left-top), Euroc [9] (right-top), KIT-

TI [29] (left-bottom) and TUMMono [18] (right-bottom).

such as PBA [70] and ICE-BA [46] could also be provided

as a plugin. With the optimizer utility, developers are able

to access different implementations with an united interface,

particularly for deep learning based SLAM systems.

4.3. Vocabulary

Place recognition is one of the most important part for

SLAM relocalization and loop detection. Bag of words

(BoW) approach is popular used in SLAM systems since

its efficiency and performance. FabMap [11] [30] propose a

probabilistic approach to the problem of recognizing places

based on their appearance, which is used by RSLAM [47],

LSD-SLAM [16]. As it uses float descriptors like SIFT and

SURF, DBoW2 [25] builds a vocabulary tree for training

and detection, which supports both binary and float descrip-

tors. Rafael presents two improved versions of DBoW2

named DBoW3 and FBoW [48], which simplify the inter-

face and accelerate the training and loading speed. After

ORB-SLAM [49] adopts the ORB [58] descriptor and us-

es DBoW2 for loop detection [50], relocalization and fast

matching, a varies of SLAM systems such as ORB-SLAM2

[51], VINS-Mono [56] and LDSO [26] use DBoW3 for loop

detection. It has become the most popular tool to implement

place recognition for SLAM systems.

Inspired by the above works, GSLAM carries out a head-

er only implementation of DBoW3 vocabulary with the fol-

lowing features:

1. Removed OpenCV dependency and the all function-

s are implemented within one single header file only

depending on C++11.

2. Combined the advantages of both DBoW2/3 and F-

BoW [48] which are extremely fast and easy to use.

Interface similar to DBoW3 is provided and both bina-

ry and float descriptors are accelerated using SSE and

AVX instructions.
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Figure 3: Screenshots of some SLAM and SfM plugins implemented, including direct DSO [15], semi-direct visual odometer

SVO [22, 23], feature based ORBSLAM [49, 51], global SfM system TheiaSfM [64] and dense depth learning [2].

3. We improved the memory usage and accelerated the

speed of loading, saving or training a vocabulary and

transformation from images features to a BoW vector.

A comparison of the four implementations is demon-

strated in Table 3. In the experiment, each parent node

has 10 children, and for ORB feature detection we use the

ORB-SLAM [51], and SiftGPU [69] is used for SIFT de-

tection. Two ORB vocabularies with 4 and 6 levels and

one SIFT vocabulary are used in the results. Both FBoW

and GSLAM use multi-thread for vocabulary training. Our

implementation outperforms in almost all items including

loading and saving the vocabulary, training a new vocabu-

lary, transforming a descriptor list to a BoW vector for place

recognition and a feature vector for fast feature matching.

Furthermore, the GSLAM implementation uses less mem-

ory and allocates less pieces of dynamic memories as we

found that the fragmentation problem is the main reason that

DBoW2 needs lots of memory.

5. SLAM Evaluation Benchmark

Existed benchmarks [29, 63] need users download test

datasets and upload results for precision evaluation, which

are not able to unify the running environment and evalu-

ate a fairy performance comparison. Benefit from the uni-

fied interface of GSLAM, the evaluation of SLAM systems

becomes much more elegant. With help of GSLAM, de-

velopers just need to upload the SLAM plugin and various

evaluations on speed, computation cost and accuracy could

be done in a dockerlized environment with fixed resources.

In this section, an evaluation is carried out with three

representative SLAM implementations on speed, accuracy,

memory and CPU usages, which is performed to demon-

strate the possibility of an united SLAM benchmark with

different SLAM implementation plugins.

5.1. Datasets

A sensor data stream with corresponding configuration

is always needed to run a SLAM system. For letting devel-

opers focus on the development of the core SLAM plugins,

GSLAM provides a standard dataset interface where devel-

opers do not need to take care of the SLAM inputs. Both

online sensor input and offline data are provided through d-

ifferent dataset plugins, and correct plugin is dynamic load-

ed by identify the given dataset path suffix. A dataset imple-

mentation should provide all sensor stream requested with

related configurations, thus no extra setting is needed for d-

ifferent datasets. All different sensor streams are published

through Messenger introduced in Sec. 3.2.2 with standard

topic names and data formats.

GSLAM has already implemented several popular visu-

al SLAM dataset plugins which are listed in Table. 4. It is

also very easy for users to implement a dataset plugin based

on the header-only GSLAM core and publish it as a plugin

or compile it along with the applications. Furthermore, We

provide the screenshots that ORBSLAM can run on differ-

ent datasets with only one parameter modified in Fig. 2.

5.2. SLAM Implementations

Fig. 3 demonstrates the screenshots of some open-source

SLAM and SfM plugins running with build-in Qt visual-

izer. Different architectures of SLAM systems including

direct, semi-direct, feature based, even SfM methods and

learning based dense depth estimation are supported by our

framework. It should be mentioned that since SVO, ORB-

SLAM and TheiaSfM utilize the map data structure intro-

duced in Sec. 3.2.6, the visualization is auto supported. The

DSO implementation needs to publish the results such as

pointcloud, camera poses, trajectory and pose graph for vi-

sualization just like the ROS based implementation does.

Users are able to access different SLAM plugins with the

unified framework and it is very convenient to develop a S-

LAM based applications depending on the C++, Python and

Node-JS interfaces. As many researchers use ROS for de-

velopment, GSLAM also provides the ROS visualizer plu-

gin to transfer the ROS defined messages seamlessly, and

developers could utilize Rviz for display or continue to de-

velop other ROS based applications.

5.3. Evaluation

As most benchmarks only provide datasets with or with-

out ground-truth for users to perform evaluations by them-

selves. GSLAM provides a build-in plugin and script tools

for both computation performance and accuracy evaluation.

The sequence nostructure-texture-near-withloop from

TUMRGBD dataset is used to demonstrate how the eval-

uation performs. And three open-source monocular SLAM

plugins DSO, SVO and ORBSLAM are adopted for the fol-

lowing experiments. A computer with i7-6700 CPU, GTX
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(a) Memory usage (b) Memory malloc number (c) CPU usage (d) Frame duration

Figure 4: Computation performance statistics of three monocular implementations integrated within the evaluation tool. The

recordings of memory usage and memory allocated numbers are started after the SLAM application loaded, and updated

after every frame processed. CPU usage is updated when the process occupied CPU time increases a curtain value. Frame

duration is measured by the time between current frame published and processed.

(a) Trajectory aligned (b) DSO (c) SVO (d) ORBSLAM

Figure 5: Odometer trajectories aligned with ground-truth (left) and absolute pose error (APE) distributions of DSO, SVO

and ORBSLAM. The odometer trajectories published lively instead of final results are used.

1060 GPU and 16GB RAM running 64bit Ubuntu 16.04 is

used for all the experiments.

The computation performance evaluation including

memory usage, malloc numbers, CPU usage and time used

by every-frame statistics are shown in Fig. 4. The result-

s demonstrate that SVO uses the least memory, CPU re-

sources and obtains fastest speed. And all cost keeps sta-

ble since SVO is a visual odometer and just a local map is

maintained inside the implementation. DSO mallocs fewer

memory block numbers, but consumes more than 100M-

B RAM which increases slowly. One problem of DSO is

that the processing time increases dramatically when frame

number is below 500, in addition, the processing times for

key-frames are even longer. ORBSLAM uses the most CPU

resources and the computation time is stable, but the mem-

ory usage increases fast and it allocates and frees a lot of

memory blocks since the bundle adjustment uses the G2O

library and no incremental optimization approach is used.

The odometer trajectory evaluation is presented in Fig.

5. As we can see, SVO is faster but have much higher drift,

while ORBSLAM achieves the best accuracy in terms of

absolute pose error (APE). The relative pose error (RPE)

are also provided, however due to the limitation of the para-

graph, more experimental results are provided in the sup-

plementary materials. Since the integrated evaluation is a

pluggable plugin application, it can be reimplemented with

more evaluation metrics such as the precision of pointcloud.

6. Conclusions

In this paper, we introduce a novel and generic SLAM

platform named GSLAM, which provides support from

development, evaluation to application. Frequently used

toolkits are provided by plugin form, and users can also eas-

ily develop their own modules. To make the platform easy

to be used, we make the interfaces only depend C++11. In

addition, Python and JavaScript interfaces are provided for

better integrating traditional and deep learning based SLAM

or distributed on the web.
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[25] Dorian Gálvez-López and J. D. Tardós. Bags of binary words

for fast place recognition in image sequences. IEEE Trans-

actions on Robotics, 28(5):1188–1197, October 2012.

[26] Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cre-

mers. Ldso: Direct sparse odometry with loop closure. In

International Conference on Intelligent Robots and Systems

(IROS), October 2018.

[27] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and

Hang-Fei Cheng. Complete solution classification for the

perspective-three-point problem. IEEE transactions on

pattern analysis and machine intelligence, 25(8):930–943,

2003.

[28] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[29] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[30] Arren Glover, William Maddern, Michael Warren, Stephanie

Reid, Michael Milford, and Gordon Wyeth. Openfabmap:

An open source toolbox for appearance-based loop closure

detection. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 4730–4735, May 2012.

1118



[31] Jose Manuel Pardos Gotor. Lie groups and lie algebras in

robotics. In Computational Noncommutative Algebra and

Applications, pages 101–125. Springer, 2004.

[32] Ankur Handa, Thomas Whelan, John McDonald, and An-

drew J Davison. A benchmark for rgb-d visual odometry,

3d reconstruction and slam. In Robotics and automation (I-

CRA), 2014 IEEE international conference on, pages 1524–

1531. IEEE, 2014.

[33] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge university press,

2003.

[34] Berthold KP Horn. Closed-form solution of absolute orien-

tation using unit quaternions. JOSA A, 4(4):629–642, 1987.

[35] Juho Kannala and Sami S Brandt. A generic camera mod-

el and calibration method for conventional, wide-angle, and

fish-eye lenses. IEEE transactions on pattern analysis and

machine intelligence, 28(8):1335–1340, 2006.

[36] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Dense

visual slam for rgb-d cameras. In Intelligent Robots and Sys-

tems (IROS), 2013 IEEE/RSJ International Conference on,

pages 2100–2106. IEEE, 2013.

[37] Georg Klein and David Murray. Parallel tracking and map-

ping for small ar workspaces. In Mixed and Augmented Re-

ality, 2007. ISMAR 2007. 6th IEEE and ACM International

Symposium on, pages 225–234. IEEE, 2007.

[38] Laurent Kneip, Margarita Chli, and Roland Y Siegwart. Ro-

bust real-time visual odometry with a single camera and an

imu. In Proceedings of the British Machine Vision Confer-

ence 2011. British Machine Vision Association, 2011.

[39] Laurent Kneip and Paul Furgale. Opengv: A unified and gen-

eralized approach to real-time calibrated geometric vision. In

Robotics and Automation (ICRA), 2014 IEEE International

Conference on, pages 1–8. IEEE, 2014.

[40] Laurent Kneip, Paul Furgale, and Roland Siegwart. Using

multi-camera systems in robotics: Efficient solutions to the

npnp problem. In Robotics and Automation (ICRA), 2013

IEEE International Conference on, pages 3770–3776. IEEE,

2013.

[41] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart.

A novel parametrization of the perspective-three-point prob-

lem for a direct computation of absolute camera position and

orientation. 2011.

[42] Laurent Kneip, Roland Siegwart, and Marc Pollefeys. Find-

ing the exact rotation between two images independently of

the translation. In European conference on computer vision,

pages 696–709. Springer, 2012.

[43] Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt

Konolige, and Wolfram Burgard. g2o: A general framework

for graph optimization. In IEEE International Conference on

Robotics and Automation, 2011.

[44] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.

Epnp: An accurate o (n) solution to the pnp problem. Inter-

national journal of computer vision, 81(2):155, 2009.

[45] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland

Siegwart, and Paul Furgale. Keyframe-based visual–inertial

odometry using nonlinear optimization. The International

Journal of Robotics Research, 34(3):314–334, 2015.

[46] Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao,

and Yingze Bao. Ice-ba: Incremental, consistent and ef-

ficient bundle adjustment for visual-inertial slam. In The

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2018.

[47] Christopher Mei, Gabe Sibley, Mark Cummins, Paul New-

man, and Ian Reid. Rslam: A system for large-scale map-

ping in constant-time using stereo. International journal of

computer vision, 94(2):198–214, 2011.

[48] Rafael Muoz-Salinas. FBox fast bag of words, 2017.

[49] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. Orb-

slam: a versatile and accurate monocular slam system. arXiv

preprint arXiv:1502.00956, 2015.
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