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Abstract

Object part parsing in the wild, which requires to simul-

taneously detect multiple object classes in the scene and ac-

curately segments semantic parts within each class, is chal-

lenging for the joint presence of class-level and part-level

ambiguities. Despite its importance, however, this problem

is not sufficiently explored in existing works. In this pa-

per, we propose a joint parsing framework with boundary

and semantic awareness to address this challenging prob-

lem. To handle part-level ambiguity, a boundary awareness

module is proposed to make mid-level features at multiple

scales attend to part boundaries for accurate part localiza-

tion, which are then fused with high-level features for effec-

tive part recognition. For class-level ambiguity, we further

present a semantic awareness module that selects discrimi-

native part features relevant to a category to prevent irrele-

vant features being merged together. The proposed modules

are lightweight and implementation friendly, improving the

performance substantially when plugged into various base-

line architectures. Our full model sets new state-of-the-art

results on the Pascal-Part dataset, in both multi-class and

the conventional single-class setting, while running sub-

stantially faster than recent high-performance approaches.

1. Introduction

Semantic part parsing, which decomposes objects into

semantic components, has became an increasingly attended

topic in computer vision. With the proposals of large bench-

marks [10, 20, 24, 16] and deep learning models [25, 7, 15],

recent research has shown remarkable performances in ac-

curate segmenting of one specific category, such as vehi-

cles [30, 35], animals [32, 31] and human bodies [40, 18].

High-quality part parsing results would be of great use in

further applications, such as object detection [2], pose esti-

∗Correspondence should be addressed to Jia Li and Yu Zhang. URL:

http://cvteam.net

Figure 1. Motivation of the proposed approach. Simultaneously

parsing the parts of multiple semantic classes an input scene (a)

has its own challenges, including inaccurate boundary localization

and inter-class appearance ambiguity (b). The proposed boundary-

semantic awareness network effectively addresses these issues (c).

mation [12], fine-grained action detection [34] and catego-

rization [41].

Various existing approaches have been proposed to ad-

dress object part parsing, which could be roughly divided

into two categories. The first category usually focuses on

exploring the inner relationship [31, 32] and the structure

information [18, 16] of object parts. For example, Liang et

al. [16] proposed a self-supervised structure loss to main-

tain the parsing structure. Wang et al. [31] built a hierarchi-

cal tree structure to compose basic boundary landmarks into

parts according to their spatial relations. Some other work-

s [37, 38, 30] also resorted to additional structural infor-

mation, e.g., human pose and 3d information. The second

category [9, 36, 7, 8, 42] focuses on improving the parsing

resolutions in images or feature maps. For example, Chen et

al. [9] proposed an attention model to fuse the parsing re-

sults of different image zooming scales. Xia et al. [36] pro-

posed a two-stage network to fuse the global feature with

detected local features.

Despite the effectiveness of existing models, they mainly

address single-class setting, where the object is assumed to

be well-localized beforehand. In this paper, we propose to

9177



investigate the wilder multi-class object part parsing prob-

lem, which simultaneously handles all semantic classes and

parts within each class in the scene. As shown in Fig. 1, in

this novel setting, even the strong recent baseline [8] may

face additional challenges. In particular, the cluttered ap-

pearance of multiple objects and the inter-class ambiguity

may cause inaccurate boundary localization and severe clas-

sification error.

To address multi-class part parsing and handle the above

issues, we propose a novel deep architecture with boundary-

semantic awareness. At the core of the proposed approach,

we develop two simple yet effective modules. The first one

is a boundary-aware spatial selection module, which makes

mid-level features attend to part-level boundaries at multi-

ple scales. At each scale, features are promoted by a spatial

attention block supervised with class-agnostic part bound-

aries, and passed to the next scale. With such a coarse-to-

fine boundary refinement strategy, the network learns to fo-

cus on solving the ambiguity along part boundaries and pro-

duce finer parsing results. After that, the boundary-filtered

mid-level features are then fused with the high-level fea-

tures, to jointly preserve the shallow boundary information

and the deep semantic context.

The final aggregated features are a mixing of part-class

attributes, which may lead to confusions for parts with sim-

ilar appearance across different classes, such as the bus ex-

ample in Fig. 1. However, if the model understands the class

distributions at each pixel, the head of the bus would not

be mistakenly recognized as a car and classification errors

could be fixed largely. Based on this observation, we fur-

ther introduce a semantic-aware module to select the most

beneficial features at each pixel to avoid such confusions. In

this module, channel selection is performed at each location

of the aggregated features, which is supervised by an ad-

ditional branch predicting semantic classes. The proposed

modules are lightweight and simple to implement, and can

boost the performance significantly when plugged into var-

ious baseline architectures. Combining the proposed two

lightweight modules into a unified parsing network, the pro-

posed approach achieves new state-of-the-art results on the

Pascal-Part dataset, in both the multi-class and single-class

settings for semantic object parsing.

Contributions of this paper are summarized as follows:

1) We propose to address object part parsing in the less ex-

plored multi-class setting, and propose a unified network

architecture to solve this important problem. 2) We intro-

duce two lightweight yet effective modules, the boundary

awareness and semantic awareness module, to address the

part-level and class-level ambiguities in multi-class object

part parsing. 3) The proposed approach is able to achieve

the state-of-the-art results on both the multi-class and the

conventional single-class settings, while running a magni-

tude faster than recent high-performance approaches.

2. Related Work

Structure-based part parsing. The structure-based

methods [24, 19, 31, 32, 18, 16, 37, 38] mainly resort to

the compositional or morphological model to regularize part

parsing. For example, Wang et al. [31] build a composi-

tional model under different viewpoints and poses to parse

certain animal classes. In [33], a hierarchical poselets mod-

el is built to represent the composition of human bodies.

Wang et al. [32] propose a joint deep model to explore the

relationship between parts and body with fully-connected

CRF. Some studies [38, 35] also use the structured tree mod-

el to organize the part in hierarchical ways. While Liang et

al. [17] propose a structure-evolving LSTM to refine the

parsing results by generated super-pixel maps.

For human parsing tasks, recent studies [27, 13, 16, 37,

19, 11, 14] usually explore relationships between segmen-

tation and other tasks, especially pose estimation. For ex-

ample, Liang et al. [19] propose a structure evolving LST-

M model to learn a structure graph model for human pars-

ing. Xia et al. [37] propose a joint model to refine the seg-

mentation results by supervised pose estimation. Liang et

al. [16] propose a self-supervised structure-sensitive net-

work to simultaneously estimate human pose and part pars-

ing. Fang et al. [13] propose a pose-guided model to make

use of the dataset annotations as part priors. Yamaguchi et

al. [40] propose a joint estimation to benefit clothing seg-

mentation and human pose and then improve the garment

retrieval methods [39]. Nie et al. [27] propose a mutual

learning model to adapt pose estimation task to promote the

part segmentation results. Besides, Song et al. [30] em-

bed the extra 3D information into part segmentation models

with a teacher-student architecture.

Scale aggregation. The scale aggregation techniques [7,

3, 21] in semantic segmentation have become a popular way

to enhance the model representation. Badrinarayanan et

al. [3] propose a short connection way to transfer the lower

features into higher-level representations. Chen et al. [7]

propose a novel atrous spatial pyramid pooling architec-

ture to aggregate feature maps with different field of views.

Amirul et al. [1] propose a feedback refinement network

with gating strategy to aggregate features of multiple levels.

In the specific area of part segmentation, some represen-

tative works also make use of aggregation of different scale

features. Xia et al. [36] propose an auto-zoom framework to

fuse the global feature with the detected large local features.

Chen et al. [9] present a attention-based fusion strategy to

fuse the image features with different resolutions. Zhao et

al. [42] propose a weight-sharing network with input im-

age of different resolutions. Luo et al. [26] use generative

adversarial networks in both high and low resolution fea-

tures to enhance the semantic consistency. Moreover, there

are also some works which focus on the accurate boundary

matting [28] and self-attention mechanism [5].
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Figure 2. Our joint Boundary-Semantic Awareness Network (BSANet) framework, is mainly composed of a boundary aware spatial selec-

tion module and a semantic aware channel selection module. The boundary awareness module aims to aggregate the local features near

boundaries in low-level and semantic context in high-level, which is supervised by an edge regression loss. Semantic awareness module

aims to use the supervised semantic object context to enhance the expression of class-relevant feature channels.

3. Method

3.1. Overview

In this section, we propose a novel joint Boundary-

Semantic Awareness Network (BSANet) for multi-class ob-

ject part parsing, which is composed of two modules, i.e.,

a boundary-aware spatial selection module and a semantic-

aware channel selection module (see Fig. 2). In the first

module, we adopt a boundary-aware spatial attention to en-

hance the features near boundaries, which are usually am-

biguous in the downsampled high-level features. Features

from each level pass through the boundary module to con-

struct a cascade feature pyramid. These features are step-

wise fused to predict initial segmentation results. We then

concatenate these features with 1 × 1 convs and pass them

into the semantic selection module, which emphasizes the

class-correlated features and suppresses the irrelevant ones.

Given a picture I with extracted feature PW×H×C , our

joint Boundary-Semantic Awareness Network can be for-

mulated as follows:

φ(I) = C(S(P⊙Ws)⊙Wc), (1)

where S is the boundary supervised spatial selection module

and C is the semantic supervised channel selection module.

Ws and Wc are the attention weights for S and C, respec-

Figure 3. Differences of three pyramid decoders. (a): Top-down

pyramid decoder. (b): Top-down pyramid decoder with feature

transfer. (c): Spatial aware feature pyramid.

tively. φ is the final segmentation model and ⊙ represents

the dot product operation.

3.2. Boundary Aware Spatial Selection

For object part parsing, boundary ambiguities exist uni-

versally as there is often no apparent image evidence that
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Figure 4. Illustration of boundary-aware spatial selection mech-

anism. P
i represents the pyramid feature from different encode

blocks. ⊕ represents the light-weight fusion block (view in yel-

low). These features are finally concatenated to get the final output

(view in green).

implies the transition of parts. To address this issue, sever-

al existing approaches [6, 4] propose to add an additional

branch to learn accurate boundary predictions, which may

introduce large computational burdens. In this section, we

propose a lightweight boundary attention module.

The basic idea is that in the task of part parsing, low-

level and mid-level features should take more responsibili-

ty along part boundaries as they provide more detailed lo-

calization cues, while being suppressed in the inner region

of parts due to their limited discriminative power. Keep-

ing this idea in mind, we propose to detect class-agnostic

part boundaries at early stages of feature extraction, which

is possible as no semantic information needs to be inferred.

The predicted soft boundaries are then used in an attention

mechanism to emphasize the features along boundaries and

suppress others for mid-level and low-level stages. Such at-

tention is performed at multiple feature scales to detect part

transitions at various levels. Finally, the boundary-attended

early-stage features then serve as compensations to high-

level features to preserve both classification and boundary

localization accuracy.

As illustrated in Fig. 3, the classical top-down path-

way decodes the high level feature by up-sampling or trans-

convolutions to enlarge the parsing resolution, which pro-

vides strongly semantical features but coarser in spatial.

While in the state-of-the-art models [22, 3], lateral connec-

tions are adopted to fuse the low-level and high-level fea-

tures (see Fig. 3 (b)). However, in this way, the low-level

and high-level features are treated equally in spatial, which

may suppress the semantical features. To this end, we pro-

pose a novel boundary awareness feature pyramid which

emphasizes the features near boundaries at low level to pro-

vide finer spatial predictions, and maintain the high-level

features to provide the semantical predictions.

As it stands, the boundary awareness module takes a

recurrent multi-scale structure. In Fig. 4, we show the

detailed architecture of the first scale, which for other s-

cales share the similar structures. Given the low-level fea-

tures P1, two linear mappings are adopted to produce t-

wo transformed feature maps VN×C and KN×C , where

N = W ×H . The feature map K is then passed through an

edge encoder ϕ(K) to get the part boundary features. With

these features, we pass them to a softmax attention func-

tion σ to generate the attention map, and point-wise mul-

tiply with the feature map V to yield boundary-enhanced

features. The above operations can be formally represented

as:

S(Ps) =
ϕ(Ks

i,j)∑
i ϕ(K

s
i,j)

⊙Vs
i,j ,

Vs
i,j = tanh(wvP

s + bv),

Ks
i,j = tanh(wkP

s + bk),

(2)

where wk,bk,wv,bv are the learnable parameters and ⊙

is the scalar-product operation.

Note that instead of self-supervised attention, the edge

features ϕ(K) is directly regularized by class-agnostic part

boundaries. One typical edge decoder is composed of 1×1,

3×3, 1×1 convolutional blocks with batchnorm and ReLU.

To this end, we pass ϕ(K) through a binary cross-entropy

classifier, which generates soft part boundaries and com-

pared with the ground-truth. Such supervision is adopted

on all three scales. Thus, the total loss of the auxiliary part

boundary detection task is given by

Ledge = −

S∑

k=1

∑

i∈ΩI

γs
kγ

c(1− yik)log(1− pik)

+γs
k(1− γc)yiklog(pik),

(3)

where pik is the prediction of ground-truth yik and ΩI is

the lattice domain of image I. γs
k is the balanced weight of

each scale and γc is the class balance weight. By regulariz-

ing the feature attention by the edge loss, each pyramid fea-

ture Ps of scale s is filtered by the spatial attention S. These

features are stepwise fused with light-weighted fuse opera-

tions (denoted as ⊕ in Fig. 4) to get Qs. Then these features

are concatenated to fuse to the final output F , which can be

formulated in Eqn. (4)

Qk = S(P1)⊕ S(P2)⊕ . . . S(Pk), k = 1...S,

F =

S∑

i=1

Qi ·wi
q,

(4)

where S is the downsample scale in the spatial feature pyra-

mid. Especially, for the high-level feature of the last layer,

we adopt the ASPP architecture without spatial selection to

emphasize its semantic comprehending.
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Figure 5. Qualitative comparisons on PASCAL-Part dataset. Our model generates superior results with finer local details and semantic

understanding comparing to the-state-of-the-art models.

3.3. Semantic Aware Channel Selection

As discussed in Section 3.1, each channel map has a cer-

tain mapping relation to corresponding semantic categories,

while the unrelated features would be confusions to the final

prediction. In order to address this limitation, we use auxil-

iary semantic information to supervise the attention weights

on related features. As a result, it actually makes multi-class

part segmentation a cascade process, in which understating

part semantics requires understanding the classes as a prior.

As shown in Fig. 2, we obtain features F ∈ R
W ′×H′×C′

of image I from the spatial selection module. The seman-

tic encoder ξ shares similar structures with edge encoder,

which is composed of several 3 × 3, 1 × 1 convolutional

blocks with batchnorm and ReLU. To obtain the predicted

semantic features ξ(Fc
i,j), we use per-pixel semantic labels

to regularize this feature map with a softmax cross-entropy

loss Lobj . In this way, features relevant to specific objec-

t categories are emphasized by the supervision, which can

further eliminate the inter-class confusions.

We resort to soft semantic label V to encode the channel

information of semantic feature ξ(Fc
i,j), which is generated

by global pooling operations to reduce the size W ′×H ′×C ′

to 1× 1× C ′. The cth value of V can be represented as:

V c =
1

W ′ ×H ′

W ′∑

i=1

H′∑

j=1

ξ(Fc
i,j), c = 1 . . . C ′, (5)

The final channel attention operation A is learned by t-

wo fully connected layers, which emphasizes the object-

relevant channels in feature F :

A = σ(τ(w1V + b1)w2 + b2),

Gc = Ac · Fc, c = 1 . . . C ′,
(6)

where τ is the Rectified Linear Unit(ReLU) and σ is the sig-

moid function. w{1,2},b{1,2} are learned parameters of ful-

ly connected layers. G is the final feature map after channel

selection. This fused feature map passes through a simple

classifier with channel reductions to get the final prediction.

3.4. Joint Boundary­Semantic Awareness

With the proposal of two selection modules, we further

build our joint Boundary-Semantic Awareness Network (B-

SANet) based on DeeplabV3 [9] encoder, which is the state-

of-the-art semantic segmentation network. The boundary

aware module and semantic aware module are conducted

sequentially to get the final prediction. Our final framework

is a boundary-semantic joint solving procedure, which con-

ducts different losses in corresponding stages.

At the end of spatial feature pyramids in Fig. 2, we fur-

ther add an auxiliary loss Laux for the last block in feature

pyramid to accelerate the training procedure. The final part

prediction loss Lpart and Laux are standard cross-entropy

loss defined on part categories. The final loss function Lsum

of our framework is calculated as a balanced sum of 4 terms,

Lsum = λe · Ledge + λo · Lobj + λa · Laux + Lpart, (7)

where λ{e,o,a} are balanced terms. Moreover, the boundary

and object semantic maps are automatically generated from

the semantic part labels, which do not requires additional

annotations.

4. Experiments

4.1. Experiment Settings

Dataset. PASCAL-Part dataset [10] is the largest dataset

to date for multi-class object part parsing with pixel-level

part annotations. It contains 10103 images with pixel-

level part annotation of 20 semantic objects collected from

PASCAL-VOC2010 challenge. Specially, the dataset con-

tains very detailed part annotations, including eyes, noses

and mouths of humans and animals. We follow the merging

rules of [31, 32] for animals, [30] for vehicles, and [9, 16]

for human bodies. This dataset yields 58 part classes in to-

tal. We use 4998 images in the trainset for training and

5105 images in valset for testing, which is divided by [10].

For single-class part parsing, PASCAL-Person-Part is a

widely used benchmark with dozens of models, which is

also a sub-dataset generated from PASCAL-Part [10]. We
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Table 1. Segmentation Performance of mIoU on PASCAL-Part Benchmark. Avg.: the average per-object-class mIoU. mIoU: per-part class

mIoU. †: use pretrained model on MS-COCO dataset.

Method b
ac

k
g

ae
ro

b
ik

e

b
ir

d

b
o
at

b
o
tt

le

b
u
s

ca
r

ca
t

ch
ai

r

co
w

ta
b
le

d
o
g

h
o
rs

e

m
b
ik

e

p
er

so
n

p
o
tt

ed

sh
ee

p

so
fa

tr
ai

n

tv mIoU Avg.

SegNet [3] 85.4 13.7 40.7 11.3 21.7 10.7 36.7 26.3 28.5 16.6 8.9 16.6 24.2 18.8 44.7 35.4 16.1 17.3 15.7 41.3 26.1 24.4 26.5

FCN [25] 87.0 33.9 51.5 37.7 47.0 45.3 50.8 39.1 45.2 29.4 31.2 32.5 42.4 42.2 58.2 40.3 38.3 43.4 35.7 66.7 44.2 42.3 44.9

Deeplab-Fov† [7] 89.8 40.7 58.1 43.8 53.9 44.5 62.1 45.1 52.3 36.6 41.9 38.7 49.5 53.9 66.1 49.0 45.3 45.3 40.5 76.8 56.5 49.9 51.9

Deeplabv3 [8] 90.8 44.8 60.9 46.7 56.8 47.9 65.9 50.0 60.4 35.7 50.5 42.1 55.9 60.6 69.3 54.5 52.0 48.7 43.8 79.8 56.8 54.4 55.9

Baseline 90.6 45.7 60.7 48.5 55.7 46.8 66.9 50.2 59.4 33.1 48.9 38.3 55.0 58.7 68.6 54.3 50.3 46.5 42.6 78.1 56.4 54.0 55.0

BSANet-101 91.6 50.0 65.7 54.8 60.2 49.2 70.1 53.5 63.8 36.5 52.8 43.7 60.8 66.0 73.3 58.4 55.0 49.6 43.1 82.2 61.4 58.2 59.1

Table 2. Segmentation Performance of mIoU on Pascal-Person-Part Benchmark. ∗ : re-trained on the proposed dataset. Pose An.: learning

with auxiliary pose annotation.

Method Pose An. head torso u-arms l-arms u-legs l-legs bkg Avg.

HAZN [36] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11
Attention [9] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39
LG-LSTM [19] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97
SS-JPPNet [16] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36
Graph-LSTM [19] 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16
SS-NAN [42] 86.43 67.28 51.09 48.07 44.82 42.15 97.23 62.44
Deeplabv3∗ [8] 84.06 66.96 54.26 52.80 48.08 43.59 94.79 63.50
Str.-LSTM [17] 82.89 67.15 51.42 48.72 51.72 45.91 97.18 63.57
Joint [37] X 85.50 67.87 54.72 54.30 48.25 44.76 95.32 64.39
MuLA [27] X - - - - - - - 65.10

Baseline 82.94 66.18 53.90 52.71 46.54 43.02 94.51 62.83
BSANet-101 86.49 70.20 59.31 58.72 51.91 49.32 95.62 67.37
BSANet-152 86.98 71.35 61.36 60.26 53.28 49.95 95.79 68.43

follow the annotations of [9, 37], which is composed of

3533 images (1716 images for training and 1817 images

for testing) of 7 classes, i.e., Background, Head, Torso, Up-

per/Lower Arms and Upper/Lower Legs. This challenging

dataset contains images of multi-person in various scales.

Training details. We refer to the same training schemes

in prior works [7, 8]. These images are randomly left-right

flipped and resized from 0.5 to 2.0 times in our experiments.

We train our model with the start learning rate 7e − 3 with

a weight decay for all these datasets. Our super parame-

ters are simply set without bells and whistles. It takes us

about 15 hours to train a model with 50K iterations for

PASCAL-Part dataset on one NVIDIA 1080Ti GPU. For

the PASCAL-Person benchmark, we only trained our mod-

el for 30K iterations to prevent possible overfitting. The

inference time is within 0.2 seconds per 512 × 512 image.

The atrous rate of ASPP follows the prior work [7], which

is set as (6, 12, 18). We set the downsample stride = 16 in

all our models and we use the Resblock 2 ∼ 5 to build our

pyramid decoder considering the memory and computation

cost. We set λe = 0.10, λa = 0.20 and λo = 0.40 to make

the weight balance and enhance the part classification regu-

larization. The γs
k is simply set as 1 when upsampled to the

same scale and γc = 0.1 to emphasize the boundaries.

Baselines and evaluations. To validate our first attempt

on the multi-object class part parsing challenge, we com-

pare our framework with four state-of-the-art representative

works [3, 25, 7, 8]. To make a fair comparison with these

models, we carefully tuned the sup-parameters following

the training schemes in original papers. For [3, 25], we fine-

tune the official model of with ImageNet pretrained VGG-

16 [29] backbone. For [7], we adopt the ResNet-101 model

pretrained on MS-COCO dataset [23], which is provided

by the author. For [8, 7] and our model, we use the ResNet-

101 as backbone for a fair comparison. Notably, our model

is trained without any additional datasets like MS-COCO.

We reproduce the Deeplabv3 model [8] in PyTorch as

our baseline, which performs a bit lower performance in the

part segmentation benchmark, as shown in Tab. 1. In this

paper, we choose the mean Intersection over Union (mIoU)

as evaluation criteria for all experiments owing that pixel

accuracy is not sensitive to the segmentation of small parts.

4.2. Comparisons with the state­of­the­art

PASCAL-Part Benchmark. As shown in Tab. 1, we

compare our model and four state-of-the-art methods with

two criterions, i.e., per-object-class mIoU and per-part-class

mIoU. FCN [25], which is the fundamental work of seman-

tic segmentation, achieves 42.3% in per-part mIoU of 58

classes. With the improvement of larger field of views, [7]

improves a lot by achieving 49.9%, which is finetuned on

the COCO-pretrained model. By reproducing Deeplab-

v3 [8] as our baseline, [8] and our reproduction obtain

similar results as 54.4% and 54.0%, respectively. Starting
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Table 3. Performances of Ablation Experiments on Pascal-Person-

Part Dataset. BA-1: boundary awareness module with only one

pyramid block. w/o sup: model without auxiliary supervision.

Method head torso uarm larm uleg lleg bg Avg.

baseline 82.94 66.18 53.90 52.71 46.54 43.02 94.51 62.83

lateral-all 84.98 68.04 56.30 55.12 49.82 45.90 95.24 65.06

BA-1 84.92 67.64 55.07 54.78 49.07 45.49 95.18 64.59

BA-all 86.53 69.76 58.64 57.57 51.38 47.96 95.55 66.77

BA-all(w/o sup) 84.97 68.17 55.69 54.50 49.78 46.24 95.22 64.94

BSANet-final 86.49 70.20 59.31 58.72 51.91 49.32 95.62 67.37

from a strong baseline, our final model combining with the

boundary selection and semantic selection, achieves a high-

er result on multi-class object part segmentation: 58.2% on

mIoU, outperforms state-of-the-art models by a margin.

Moreover, our model shows superior performance on

objects with more part components or detailed informa-

tion, e.g., bird by 8.1% and horse by 5.4%. This verifies the

effectiveness of our model which focuses on detailed infor-

mation by aggregating multi-level features. For some spe-

cial categories, such as chair and sofa, which are not com-

posed of multiple parts, our model also generates compara-

ble results to other methods. The qualitative comparisons

of parsing results are shown in Fig. 5. Comparing to those

methods in the visualized results, our model generates clear

boundaries and is sensitive to pixels in finer scales. More-

over, our method generates superior results on both single-

class part parsing and multi-class occlusion scenarios.

PASCAL-Person-Part. To validate the performance on

single-class parsing tasks, we conduct experiments on the

widely-used human parsing benchmark. We compare our

methods with 10 state-of-the-art models with the reported

performances, as shown in Tab. 2. Especially, in [37, 27],

human pose annotation is used as auxiliary information to

facilitate the part parsing task. The Deeplabv3 model [8]

achieves results of 63.50% mIoU with only pixel-level part

annotations. While [17] generates a little higher results by

conducting refinement with superpixels.

Moreover, our baseline model shows a slightly lower

performance than Deeplabv3 [8], but still surpass most of

the state-of-the-art models. Benefiting from the boundary-

semantic awareness framework, our model reaches a huge

performance boost of 68.43%, improved about 5.6% in

mIoU. With class-agnostic part-level boundary guidance,

our model shows superior results on parts with confused

outlines, e.g., human arms and legs. Our model improves

6.0% mIoU on lower-arms and 6.6% on upper-arms, com-

paring to the best model [37] with additional annotations.

Figure 6. Qualitative results of boundary module on PASCAL-

Person-Part. Our model obviously improves the detailed local in-

formation, especially in the area near boundary attention.

4.3. Performance Analysis

In this section, we evaluate the effectiveness of our two

proposed modules of BSANet, which is boundary-aware s-

patial selection module and semantic-aware channel selec-

tion module, respectively. We further analysis the perfor-

mances of extensions on other similar backbones.

Boundary-aware spatial selection. To evaluate the ef-

fectiveness of our spatial selection module, we reconstruct

our model with different ablation factors. Tab. 3 shows the

ablations on PASCAL-Person dataset. In the first row, We

first build our model with lateral connections between low-

level and high-level feature maps, shown in Fig. 3 (b). This

effective operation can improve the baseline by 2.2 mIoU in

total, while our boundary aware spatial selection (BA) mod-

ule further improves the baseline from 62.83% to 67.37%.

We further conduct experiments with different spatial

blocks, while BA-1 is the model which only concatenates

the block-2 feature of ResNet backbone. By introducing

more blocks into our module, the performance improves

steadily from 64.59% to 66.77%. The forth line in Tab.

3 shows the model without boundary regularization loss,

which is similar to a self-attention procedure. The perfor-

mance drops steadily without the auxiliary loss and our se-

mantic supervised selection block can further boost the per-

formance to 67.37%, finally outperforms 4.5% by the high

baseline. From the visualized results in Fig. 5, our mod-

el improves notably on details near the boundary attention

area, which is visualized in the fifth column calculated by

softmax operations.

Semantic-aware channel selection. To further evaluate

the semantic-aware module, we conduct our experiments

on PASCAL-Part dataset of 20 VOC semantic object cat-

egories. As illustrated in Fig. 7, the model without the se-

mantic selection would be confused in near-duplicated local

features, e.g., the boats in the second column are mistaken

as cars.
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Table 4. Module Ablation Experiments on PASCAL-Part Dataset.

(Both baseline and BSANet adopt the same Res-101 backbone.)

Method Boundary Sel. Semantic Sel. Loss Reg. mIoU

baseline 54.03

BSANet X X 56.97

BSANet X X 55.87

BSANet X X 54.59

BSANet X X X 58.18

Figure 7. Qualitative results on PASCAL-Part Dataset. The sec-

ond column without semantic selection is hard to distinguish con-

fuse classes, while our model in the third column shows better

performance.

Quantitative results can be found in Tab. 4. The bound-

ary selection module achieves nearly 3% mIoU boost com-

pared to the baseline in the first row. Our single seman-

tic selection module is also effective in many situations,

which promote the results from 54.03% to 55.87%. Final-

ly combining these two modules reaches the best perfor-

mance, which also has a bit higher computation cost. Our

final model achieves a huge performance boost by 4.15%
in mIoU of all 58 part categories. By adopting these mod-

els without supervised selection, which is a self-attention

procedure, reaches a small performance boost of 54.59%.

Models with different backbones. We further explore

on more backbone with different depths of [8], as shown

in Tab. 5. Our model is easy to extend on several encoder-

decoder architectures, which promotes the baseline by a

large margin. While the shallower network shows compa-

rable performance with the IoU of 62.29%, drops by 6.1%.

The deeper network has a strong ability in handling small

and confusing parts like legs and arms.

Inference Time. Comparing to [37] with 6.0s and [17]

with 1.3s per image in inference phase, our model takes

less than 200ms per 512× 512 image on a single consumer

1080Ti GPU, which only adds 9.8% inference time com-

paring to the baseline [8]. While other fast model [42] with

500ms inference time generates much lower performance.

Failure modes. As the first row in Fig. 8, our model

Table 5. Performances of different backbones on PASCAL-

Person-Part Dataset.

Method head torso uarm larm uleg lleg bg Avg.

Baseline(Res50) 82.07 63.00 49.46 48.22 43.57 39.35 94.09 59.96

BSANet-50 84.11 65.92 53.23 51.79 45.07 41.33 94.56 62.29

Baseline(Res101) 82.94 66.18 53.90 52.71 46.54 43.02 94.51 62.83

BSANet-101 86.49 70.20 59.31 58.72 51.91 49.32 95.62 67.37

Baseline(Res152) 83.60 66.23 54.46 52.76 47.02 42.76 94.65 63.07

BSANet-152 86.98 71.35 61.36 60.26 53.28 49.95 95.79 68.43

Figure 8. Two typical failure modes. Input image, DeepLabv3,

our results and ground truth masks. Our model can be confused in

complex images which are easily annotated by human.

mistakes the dogs as horses and introduces more errors that

the heads and legs are recognized as horse heads and legs.

While dogs in Deeplabv3 [8] with large class confusions

show higher performance in mIoU. For the second case with

severely occlusions and viewpoint variances, both baseline

and our model still face great challenges.

5. Conclusion

In this paper, we make an attempt on the less explored

multi-class object part parsing task and propose a unified

framework to handle its two main challenges, i.e., inaccu-

rate boundary localization and inter-class appearance ambi-

guity. For the first challenge, we resort to semantic bound-

ary information generated from part labels to regularize a

spatial selector, which aims to aggregate low-level features

with more local details and high-level feature with seman-

tic comprehending. For the second challenge, we propose a

semantic supervised channel selector to choose the object-

relevant feature maps. By conducting these two modules se-

quentially, our framework outperforms the-state-of-the-art

models in both single-class and multi-class parsing tasks.
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