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Abstract

We present recursive cascaded networks, a general ar-

chitecture that enables learning deep cascades, for de-

formable image registration. The proposed architecture is

simple in design and can be built on any base network.

The moving image is warped successively by each cascade

and finally aligned to the fixed image; this procedure is

recursive in a way that every cascade learns to perform

a progressive deformation for the current warped image.

The entire system is end-to-end and jointly trained in an

unsupervised manner. In addition, enabled by the recur-

sive architecture, one cascade can be iteratively applied

for multiple times during testing, which approaches a bet-

ter fit between each of the image pairs. We evaluate our

method on 3D medical images, where deformable registra-

tion is most commonly applied. We demonstrate that re-

cursive cascaded networks achieve consistent, significant

gains and outperform state-of-the-art methods. The per-

formance reveals an increasing trend as long as more cas-

cades are trained, while the limit is not observed. Code

is available at https://github.com/zsyzzsoft/

Recursive-Cascaded-Networks.

1. Introduction

Deformable image registration has been studied in plenty

of works and raised great importance. The non-linear cor-

respondence between a pair of images is established by pre-
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dicting a deformation field under the smoothness constraint.

Among traditional algorithms, an iterative approach is com-

monly suggested [2, 3, 4, 7, 10, 18, 27, 52], where they for-

mulate each iteration as a progressive optimization problem.

Image registration has drawn growing interests in terms

of deep learning techniques. A closely related area is optical

flow estimation, which is essentially a 2D image registration

problem but the flow fields are discontinuous across objects

and the tracking is mainly about motion with rare color dif-

ference. Occlusions and folding areas requiring a guess are

inevitable in optical flow estimation (but not expected in

deformable image registration). Automatically generated

datasets (e.g., Flying Chairs [24], Flying Things 3D [41])

are of great help for supervising convolutional neural net-

works (CNNs) in such settings [24, 29, 30, 54, 55]. Some

studies also try to stack multiple networks. They assign dif-

ferent tasks and inputs to each cascade in a non-recursive

way and train them one by one [30, 45], but their perfor-

mance approaches a limit with only a few (no more than 3)

cascades. On the other hand, cascading may not help much

when dealing with discontinuity and occlusions. Thus by

intuition, we suggest that cascaded networks with a recur-

sive architecture fits the setting of deformable registration.

Learning-based methods are also suggested as an ap-

proach in deformable image registration. Unlike optical

flow estimation, intersubject registration with vague corre-

spondence of image intensity is usually demanded. Some

initial works rely on the dense ground-truth flows obtained

by either traditional algorithms [14, 56] or simulating in-

trasubject deformations [36, 53], but their performance is

restricted due to the limited quality of training data.

Unsupervised learning methods with comparable per-

formance to traditional algorithms have been presented re-

cently [8, 9, 19, 20, 37, 38]. They only require a similarity

measurement between the warped moving image and the

fixed image, while the gradients can backpropagate through

the differentiable warping operation (a.k.a. spatial trans-
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Figure 1. Example of recursive cascaded networks for registering liver CT scans. The moving image is recursively and progressively

warped by each of the cascades, finally aligned to the fixed image. Each φk denotes a predicted flow field, taken both the preceding warped

image and the fixed image as inputs. Only image slices are presented but note that the registration is actually performed in 3D.
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Figure 2. Composition of flow fields, corresponding to the exam-

ple shown in Figure 1. The final flow prediction is composed of an

initial affine transformation and φ1, . . . , φn, each of which only

performs a rather simple displacement. We can see that the top

cascades mainly learn a global alignment, while the bottom cas-

cades play a role of refinement. Flow fields are drawn by mapping

the abosolute value of the three components (x, y, z) of flow dis-

placements into color channels (R, G, B) respectively. White area

indicates zero displacement.

former [32]). However, most proposed networks are en-

forced to make a straightforward prediction, which proves

to be a burden when handling complicated deformations es-

pecially with large displacements. DLIR [19] and VTN [37]

also stack their networks, though both limited to a small

number of cascades. DLIR trains each cascade one by one,

i.e., after fixing the weights of previous cascades. VTN

jointly trains the cascades, while all successively warped

images are measured by the similarity compared to the fixed

image. Neither training method allows intermediate cas-

cades to progressively register a pair of images. Those non-

cooperative cascades learn their own objectives regardless

of the existence of others, and thus further improvement can

hardly be achieved even if more cascades are conducted.

They may realize that network cascading possibly solves

this problem, but there is no effective way of training deep

network cascades for progressive alignments.

Therefore, we propose the recursive cascade architec-

ture, which encourages the unsupervised training of an un-

limited number of cascades that can be built on existing base

networks, for advancing the state of the art. The difference

between our architecture and existing cascading methods

is that each of our cascades commonly takes the current

warped image and the fixed image as inputs (in contrast

to [30, 45]) and the similarity is only measured on the fi-

nal warped image (in contrast to [19, 37]), enabling all cas-

cades to learn progressive alignments cooperatively. Figure

1 shows an example of applying the proposed architecture

built on 10 deformable cascades of the base network VTN.

Conceptually, we formulate the registration problem

as determining a parameterized flow prediction function,

which outputs a dense flow field based on the input of an

image pair. This function can be recursively defined on the

warped moving image with essentially the same function-

ality. Instead of training the function in a straightforward

way, the final prediction can be considered a composition

of recursively predicted flow fields, while each cascade only

needs to learn a simple alignment of small displacement that

can be refined by deeper recursion. Figure 2 verifies our

conception. Our method also enables the use of shared-

weight cascades, which potentially achieves performance

gains without introducing more parameters.

To summarize, we present a deep recursive cascade ar-

chitecture for deformable image registration, which facil-

itates the unsupervised end-to-end learning and achieves

consistent gains independently of the base network; shared-

weight cascading technique with direct test-time improve-

ment is developed as well. We conduct extensive experi-

ments based on diverse evaluation metrics (segmentations

and landmarks) and multiple datasets across image types

(liver CT scans and brain MRIs).

2. Related Work

Cascade approaches have been involved in a variety of

domains of computer vision, e.g., cascaded pose regression
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Figure 3. Illustration of our recursive cascade architecture. Circle denotes a composition, where the preceding warped image (I
(k−1)
m ) is

reconstructed by the predicted flow field (φk), resulting in the successive warped image (I
(k)
m ). The unsupervised end-to-end learning is

only guided by the image similarity between I
(n)
m and If , in contrast to previous works.

progressively refines a pose estimation learned from super-

vised training data [23], cascaded classifiers speed up the

process of object detection [25].

Deep learning also benefits from cascade architectures.

For example, deep deformation network [57] cascades two

stages and predicts a deformation for landmark localiza-

tion. Other applications include object detection [13], se-

mantic segmentation [17], and image super-resolution [16].

There are also several works specified to medical images,

e.g., 3D image reconstruction for MRIs [6, 49], liver seg-

mentation [46] and mitosis detection [15]. Note that shal-

low, non-recursive network cascades are usually proposed

in those works.

In respect of registration, traditional algorithms itera-

tively optimize some energy functions in common [2, 3,

4, 7, 10, 18, 27, 52]. Those methods are also recursive in

general, i.e., similarly functioned alignments with respect

to the current warped images are performed during itera-

tions. Iterative Closest Point is an iterative, recursive ap-

proach for registering point clouds [12, 58], where the clos-

est pairs of points are matched at each iteration and a rigid

transformation that minimizes the difference is solved. In

deformable image registration, most traditional algorithms

basically works like this but in a much more complex way.

Standard symmetric normalization (SyN) [4] maximizes the

cross-correlation within the space of diffeomorphic maps

during iterations. Optimizing free-form deformations using

B-spline [48] is another standard approach.

Learning-based methods are presented recently. Super-

vised methods entail much effort on the labeled data that can

hardly meet the realistic demands, resulting in the limited

performance [14, 56, 36, 53]. Unsupervised methods are

proposed to solve this problem. Several initial works shows

the possibility of unsupervised learning [19, 20, 38, 50],

among which DLIR [20] performs on par with the B-

spline method implemented in SimpleElastix [40] (a multi-

language extension of Elastix [35], which is selected as one

of our baseline methods). VoxelMorph [8] and VTN [37]

achieve better performance by predicting a dense flow field

using deconvolutional layers [44], whereas DLIR only pre-

dicts a sparse displacement grid interpolated by a third order

B-spline kernel. VoxelMorph only evaluates their method

on brain MRI datasets [8, 9], but shown deficiency on other

datasets such as liver CT scans by later work [37]. Ad-

ditionally, VTN proposes an initial convolutional network

which performs an affine transformation before predicting

deformation fields, leading to a truly end-to-end framework

by substituting the traditional affine stage.

State-of-the-art VTN and VoxelMorph are selected as

our base networks, and the suggested affine network is also

integrated as our top-level cascade. To our knowledge, none

of those work realizes that training deeper cascades ad-

vances the performance for deformable image registration.

3. Recursive Cascaded Networks

Let Im, If denote the moving image and the fixed image

respectively, both defined over d-dimensional space Ω. A

flow field is a mapping φ : Ω → Ω. For deformable image

registration, a reasonable flow field should be continuously

varying and prevented from folding. The task is to construct

a flow prediction function F which takes Im, If as inputs

and predicts a dense flow field that aligns Im to If .

We cascade this procedure by recursively performing

registration on the warped image. The warped image I ′m
is exactly the composition of the flow field and the moving

image, namely

I ′m = φ ◦ Im. (1)

Conceptually,

F (Im, If ) = φ ◦ F1(φ ◦ Im, If ), (2)

where F1 may be the same as F , but in general a different

flow prediction function. This recursion can be infinitely

applied in theory.
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Following this recursion, the moving image is warped

successively, enabling the final prediction (probably with

large displacement) to be decomposed into cascaded, pro-

gressive refinements (with small displacements). One cas-

cade is basically a flow prediction function (fk), and the

k-th cascade predicts a flow field of

φk = fk(I
(k−1)
m , If ). (3)

I
(k)
m denotes the moving image warped by the first k cas-

cades. Figure 3 depicts the proposed architecture. Assum-

ing for n cascades in total, the final output is a composition

of all predicted flow fields, i.e.,

F (Im, If ) = φn ◦ · · · ◦ φ1, (4)

and the final warped image is constructed by

I(n)m = F (Im, If ) ◦ Im. (5)

3.1. Subnetworks

Each fk is implemented as a convolutional neural net-

work in this paper. Every network is designed to predict a

deformable flow field on itself based on the input warped

image and the fixed image. f1, . . . fn can be different in

network architecture, but surely using a common base net-

work is well-designed enough for convenience. Those cas-

cades may learn different network parameters on each, since

one cascade is allowed to learn a part of measurements or

perform some type of alignment specifically. Note that the

images input to the networks are discretized and so are the

output flow fields, thus we treat them by multilinear interpo-

lation (or simply trilinear interpolation for 3D images), and

out-of-bound indices by nearest-point interpolation [37].

An architecture similar to the U-Net [31, 47] is

widely used for deformable registration networks, such as

VTN [37] and VoxelMorph [8]. Such network consists of

encoders followed by decoders with skip connections. The

encoders help to extract features, while the decoders per-

form upsampling and refinement, ending with a dense pre-

diction.

For medical images, it is usually the case that two scans

can be roughly aligned by an initial rigid (or affine) transfor-

mation. VoxelMorph [8] assumes that input images are pre-

affined by an external tool, whereas VTN [37] integrates an

efficient affine registration network which outperforms the

traditional stage. As a result, we also embed the affine regis-

tration network as our top-level cascade, which behaves just

like a normal one except that it is only allowed to predict an

affine transformation rather than general flow fields.

3.2. Unsupervised End­to­End Learning

We suggest that all cascades can be jointly trained by

merely measuring the similarity between I
(n)
m and If to-

gether with regularization losses. Enabled by the differ-

entiable composition operator (i.e., warping operation), re-

cursive cascaded networks can learn to perform progres-

sive alignments cooperatively without supervision. To our

knowledge, no previous work achieves good performance

by stacking more than 3 deformable registration networks,

partly because they train them one by one [19] (then the

performance can hardly improve) or they measure the simi-

larity on each of the warped images [37] (then the networks

can hardly learn progressive alignments).

Regularization losses are basically the smooth terms of

φ1, . . . , φn, and thus are necessary. Every predicted flow

field is penalized by an L2 variation loss as done in [8, 37].

The affine cascade works with its own regularization losses

introduced in VTN [37].

3.3. Shared­Weight Cascading

One cascade can be repetitively applied during recursion.

I.e., multiple cascades can be shared with the same param-

eters, and that is called shared-weight cascading.

After an n-cascade network is trained, we can still possi-

bly apply additional shared-weight cascades during testing.

For example, we may replicate all cascades as an indivisible

whole by the end of I
(n)
m , i.e., totally 2n cascades are asso-

ciated with flow prediction functions f1, . . . , fn, f1, . . . , fn
respectively. We develop a better approach by immediately

inserting one or more shared-weight cascades after each,

i.e., totally r×n cascades are constructed by substituting

each fk by r times of that. This approach will be proved to

be effective later in the experiments.

Shared-weight cascading during testing is an option

when the quality of output flow fields can be improved by

further refinement. However, we note that this technique

does not always get positive gains and may lead to over de-

formation. Recursive cascades only ensure an increasing

similarity between the warped moving image and the fixed

image, but the aggregate flow field becomes less natural if

the images are too perfectly matched.

The reason we do not use shared-weight cascading in

training is that shared-weight cascades consume extra GPU

memory as large as non-shared-weight cascades during

gradient backpropagation in the platform we use (Tensor-

flow [1]). The number of cascades to train is constrained by

the GPU memory, but they would perform better with the

allowance of learning different parameters when the dataset

is large enough to avoid overfitting.

4. Experiments

4.1. Experimental Settings

We build our recursive cascaded networks mainly based

on the network architecture of VTN [37], which is a state-

of-the-art method for deformable image registration. Note
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that VTN already stacks a few cascades of their deformable

subnetworks, and a single cascade is being used as our base

network. Up to 10-cascade VTN (excluding the affine cas-

cade) is jointly trained using our proposed method. To show

the generalizability of our architecture, we also choose Vox-

elMorph [9] as another base network. We train up to 5-

cascade VoxelMorph, because each cascade of VoxelMorph

consumes more resources.

We evaluate our method on two types of 3D medical im-

ages: liver CT scans and brain MRI scans. For liver CT

scans, we train and test recursive cascaded networks for

pairwise, subject-to-subject registration, which stands for a

general purpose of allowing the fixed image to be arbitrary.

For brain MRI scans, we follow the experimental setup of

VoxelMorph [8], where each moving image is registered to

a fixed atlas, called atlas-based registration. Both settings

are common in medical image registration.

Implementation. Inherited from the implementation of

VTN [37] using Tensorflow 1.4 [1] built with a custom

warping operation, the correlation coefficient is used as the

similarity measurement, while the ratios of regularization

losses are kept the same as theirs. We train our model us-

ing a batch size of 4, on 4 cards of 12G NVIDIA TITAN

Xp GPU. The training stage runs for 105 iterations with the

Adam optimizer [33]. The learning rate is initially 10−4 and

halved after 6× 104 steps and again after 8× 104 steps.

Baseline Methods. VTN [37] and VoxelMorph [8] are

state-of-the-art learning-based methods. We cascade their

base networks and also compare with the original systems.

Besides, we also compare against SyN [4] (integrated in

ANTs [5] together with the affine stage) and B-spline [48]

(integrated in Elastix [35] together with the affine stage),

which are shown to be the top-performing traditional meth-

ods for deformable image registration [8, 34, 37]. We run

ANTs SyN and Elastix B-spline with the parameters recom-

mended in VTN [37].

Evaluation Metrics. We quantify the performance by the

Dice score [22] based on the segmentation of some anatom-

ical structure, between the warped moving image and the

fixed image, as done in [8, 19]. The Dice score of two re-

gions A,B is formulated as

Dice(A,B) = 2 ·
|A ∩B|

|A|+ |B|
. (6)

Perfectly overlapped regions come with a Dice score of 1.

The Dice score explicitly measures the coincidence between

two regions and thereby reflects the quality of registration.

If multiple anatomical structures are annotated, we compute

the Dice score with respect to each and take an average.

In addition, landmark annotations are available in some

datasets and can be utilized as an auxiliary metric. We

compute the average distance between the landmarks of the

fixed image and the warped landmarks of the moving im-

age, also introduced in VTN [37].

4.2. Datasets

For liver CT scans, we use the following datasets:

• MSD [42]. This dataset contains various types of med-

ical images for segmenting different target objects. CT

scans of liver tumours (70 scans excluding LiTS), hep-

atic vessels (443 scans), and pancreas tumours (420

scans) are selected since liver is likely to be included.

• BFH (introduced in VTN [37]), 92 scans.

• SLIVER [28], 20 scans with liver segmentation ground

truth. Additionally, 6 anatomical keypoints selected as

landmarks are annotated by 3 expert doctors, and we

take their average as ground truth.

• LiTS [39], 131 scans with liver segmentation ground

truth.

• LSPIG (Liver Segmentation of Pigs, provided by the

First Affiliated Hospital of Harbin Medical Univer-

sity), containing 17 pairs of CT scans from pigs, along

with liver segmentation ground truth. Each pair comes

from one pig with (perioperative) and without (preop-

erative) 13 mm Hg pneumoperitoneum pressure.

Unsupervised methods are trained on the combination of

MSD and BFH with 10252 (1025 = 70 + 443 + 420 + 92)

image pairs in total. SLIVER (20 × 19 image pairs) and

LiTS (131 × 130 image pairs) are used for regular eval-

uation, while LSPIG is regarded as a challenging dataset

which entails generalizability. Only 34 intrasubject image

pairs in LSPIG, each of which comes from a same pig (pre-

operative to perioperative, or vice versa), are evaluated.

For brain MRI scans, we use the following datasets:

• ADNI [43], 66 scans.

• ABIDE [21], 1287 scans.

• ADHD [11], 949 scans.

• LPBA (LONI Probabilistic Brain Atlas) [51]. This

dataset contains 40 scans, each of which comes with

segmentation ground truth of 56 anatomical structures.

ADNI, ABIDE, ADHD are used for training, and LPBA

for testing. All 56 anatomical structures are evaluated by

an average Dice score. For atlas-based registration, the first

scan in LPBA is fixed as the atlas in our experiments, which

10604



Method SLIVER LiTS LSPIG LPBA Time (sec)

Dice Lm. Dist. Dice Dice Avg. Dice GPU CPU

ANTs SyN [4, 5] 0.895 (0.037) 12.2 (5.7) 0.862 (0.055) 0.825 (0.063) 0.708 (0.015) - 748

Elastix B-spline [35, 48] 0.910 (0.038) 12.6 (6.6) 0.863 (0.059) 0.825 (0.059) 0.675 (0.013) - 115

VoxelMorph1 [9] 0.883 (0.034) 14.0 (4.6) 0.831 (0.061) 0.715 (0.090) 0.685 (0.017) 0.20 17

VoxelMorph (reimplem.)2 0.913 (0.025) 13.1 (4.7) 0.870 (0.048) 0.833 (0.057) 0.688 (0.015) 0.15 14

5-cascade VoxelMorph 0.944 (0.017) 12.4 (4.9) 0.903 (0.055) 0.849 (0.062) 0.708 (0.015) 0.41 69

3×5-cascade VoxelMorph 0.950 (0.014) 11.9 (4.9) 0.905 (0.065) 0.842 (0.066) 0.715 (0.014) 1.09 201

VTN (ADDD)3 [37] 0.942 (0.020) 12.0 (4.9) 0.897 (0.049) 0.846 (0.064) 0.701 (0.014) 0.13 26

10-cascade VTN 0.953 (0.014) 10.8 (4.9) 0.909 (0.060) 0.855 (0.060) 0.716 (0.013) 0.25 87

2×10-cascade VTN 0.956 (0.012) 10.2 (4.7) 0.908 (0.070) 0.849 (0.063) 0.719 (0.012) 0.42 179

Table 1. Comparison among traditional methods (ANTs SyN and Elastix B-spline), our baseline networks (VoxelMorph and

VTN), and our proposed recursive cascaded networks with and without shared-weight cascading. r×n-cascade means that every

deformable cascade is repetitively applied for r times during testing, using our proposed shared-weight cascading method. For

liver datasets (SLIVER, LiTS, and LSPIG), the Dice score measures the overlap of liver segmentations, and Lm. Dist. means an

average distance among 6 annotated landmarks. Avg. Dice means an average Dice score among all 56 segmented anatomical

structures for the brain dataset LPBA. Standard deviations across instances are in parentheses.

1 Images for training and testing are pre-affined (as required in VoxelMorph [9]) using ANTs [5].
2 Reimplemented with an integrated affine network and trained using our method.
3 Denotes one affine registration subnetwork plus three dense deformable subnetworks [37].

is shown to be without loss of generality later in the atlas

analysis.

We carry out standard preprocessing steps referring to

VTN [37] and VoxelMorph [8]. Raw scans are resampled

into 128 × 128 × 128 voxels after cropping unnecessary

area around the target object. For liver CT scans, a simple

threshold-based algorithm is applied to find a rough liver

bounding box for cropping. For brain MRI scans, skulls are

first removed using FreeSurfer [26]. The volumes are vi-

sualized for quality control so that seldom badly processed

images are manually removed. (An overview of the evalua-

tion datasets is provided in the supplementary material.)

4.3. Results

Table 1 summarizes our overall performance compared

with state-of-the-art methods. Running times are approx-

imately the same across datasets, so we test them on

SLIVER, with an NVIDIA TITAN Xp GPU and an Intel

Xeon E5-2690 v4 CPU. No GPU implementation of ANTs

or Elastix has been found, nor in previous works [5, 8, 19,

35, 37]. Figure 4 visualizes those methods on an example

in the brain dataset LPBA. (See the supplementary material

for more examples.)

As shown in Table 1, recursive cascaded networks out-

perform the existing methods in all our datasets with signif-

icant gains. More importantly, the proposed architecture is

independent of the base network, not limited to VTN [37]

and VoxelMorph [8]. Although the number of cascades

causes linear increments to the running times, a 10-cascade

VTN still runs in a comparable (GPU) time to the baseline

networks, showing the efficiency of our architecture.

Flow
W
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G
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W
arped

ANTs 
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Elastix
B-spline

VoxelMorph
(reimplem.)
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VTN

2×10-cascade 
VTN

Input
Images
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Figure 4. Visualization of an example in the brain dataset LPBA.

Grids of deeper color represent lower height. Segmentations of

5 chosen anatomical structures are presented by projection. Blue

areas stand for the segmentations of the fixed image, and red areas

for the moving image or the warped images.

Number of Cascades. Table 2 presents the results with

respect to different number of recursive cascades, choosing

either VTN or VoxelMorph as our base network. As shown

in the table, recursive cascaded networks achieve consis-

tent performance gains independently of the base network.

Our 3-cascade VTN (in Table 2) already outperforms VTN

(ADDD) (in Table 1) although they have similar network ar-

chitectures, mainly because our intermediate cascades learn

progressive alignments better with only the similarity loss

drawn on the final warped image. Figure 5 plots our results

for better illustrating the increasing trend. Note that our ar-

chitecture requires a linear time increment, but cascading a

small-size base network like VTN is quite efficient.
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Architecture SLIVER LiTS LSPIG LPBA Time (sec)

Dice Lm. Dist. Dice Dice Avg. Dice GPU CPU

Affine only 0.794 (0.042) 14.8 (4.7) 0.754 (0.059) 0.727 (0.054) 0.628 (0.017) 0.08 0.4

1-cascade VoxelMorph 0.913 (0.025) 13.1 (4.7) 0.867 (0.050) 0.833 (0.057) 0.688 (0.015) 0.15 14

2-cascade VoxelMorph 0.933 (0.021) 12.8 (4.8) 0.888 (0.048) 0.845 (0.057) 0.699 (0.014) 0.21 27

3-cascade VoxelMorph 0.940 (0.018) 12.6 (5.0) 0.897 (0.049) 0.849 (0.060) 0.706 (0.014) 0.28 40

4-cascade VoxelMorph 0.943 (0.017) 12.5 (5.1) 0.900 (0.052) 0.851 (0.058) 0.707 (0.014) 0.35 54

5-cascade VoxelMorph 0.944 (0.017) 12.4 (4.9) 0.903 (0.055) 0.849 (0.062) 0.708 (0.015) 0.41 69

1-cascade VTN 0.914 (0.025) 13.0 (4.8) 0.870 (0.048) 0.833 (0.054) 0.686 (0.014) 0.10 10

2-cascade VTN 0.935 (0.020) 12.2 (4.7) 0.891 (0.045) 0.843 (0.061) 0.697 (0.014) 0.12 18

3-cascade VTN 0.943 (0.018) 11.8 (4.7) 0.900 (0.045) 0.850 (0.060) 0.703 (0.014) 0.13 26

4-cascade VTN 0.948 (0.016) 11.6 (4.8) 0.906 (0.047) 0.852 (0.063) 0.708 (0.014) 0.15 35

5-cascade VTN 0.949 (0.015) 11.5 (4.8) 0.908 (0.051) 0.853 (0.064) 0.709 (0.014) 0.17 47

6-cascade VTN 0.951 (0.015) 11.3 (4.9) 0.910 (0.050) 0.852 (0.064) 0.712 (0.014) 0.18 57

7-cascade VTN 0.951 (0.015) 11.2 (4.9) 0.908 (0.055) 0.852 (0.061) 0.712 (0.013) 0.20 65

8-cascade VTN 0.952 (0.014) 11.1 (4.7) 0.910 (0.056) 0.854 (0.059) 0.714 (0.013) 0.22 75

9-cascade VTN 0.953 (0.014) 10.9 (4.7) 0.910 (0.059) 0.851 (0.064) 0.716 (0.013) 0.23 90

10-cascade VTN 0.953 (0.014) 10.8 (4.9) 0.909 (0.060) 0.855 (0.060) 0.716 (0.013) 0.25 87

Table 2. Comparison among different number of recursive cascades. n-cascade means n recursive cascades of the base

network, excluding the affine cascade. Standard deviations across instances are in parentheses.
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Figure 5. Plot of our results with respect to the number of cascades (n) of the base network VTN, corresponding to the data in Table 2.

The x-axes are in log scale since it better reflects the trends. (a) plots the Dice scores evaluated on the liver datasets (SLIVER, LiTS, and

LSPIG). (b) plots the landmark distances evaluated on SLIVER, while the distances (average across instances) of 6 landmarks are scattered

with respective colors and the line stands for the mean values. (c) plots the Dice scores evaluated on the brain dataset LPBA, while the

Dice scores (average across instances) of 56 anatomical structures are scattered respectively and the line stands for the mean values.

Shared-Weight Cascading. Deeper cascades can be di-

rectly constructed using weight sharing. As we suggest,

an r×n-cascade network successively repeats each of the

jointly trained n cascades for r times during testing. A lin-

ear time increment is also required. This technique ensures

an increasing similarity between the warped moving image

and the fixed image, but we note that it does not always get

positive performance gains.

Table 3 presents the results of shared-weight cascaded

networks, together with the image similarity (correlation

coefficient is used in this paper). The image similarity is

always increasing as we expect. Shallower cascaded net-

works benefit more from this technique relatively to the

deeper ones, since the images are still not well-registered

(with relatively low similarity, as shown in the table). Less

expected results on LiTS and LSPIG datasets may imply

that this additional technique has a limited generalizability.

Note that shared-weight cascades generally perform

worse than their jointly trained counterparts. More than 3

times of shared-weight cascades are very likely to deterio-

rate the quality (which partly coincides with previous stud-

ies), further proving the end-to-end learning to be vital.

Cascades vs. Channels vs. Depth. VoxelMorph (VM) [9]

suggests that the number of channels in the convolutional

layers can be doubled for a better performance. We compare

this variant (VM x2) against the jointly trained 2-cascade

VM as well as a shared-weight 2×1-cascade VM, shown in

Table 4. VM x2 performs better than the original one as

they suggest, but worse than both of our cascade methods.
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Cascade SLIVER LiTS LSPIG LPBA

Dice Lm. Dist. Similarity Dice Similarity Dice Similarity Avg. Dice Similarity

1×1 0.914 (0.025) 13.0 (4.8) 0.7458 (0.0396) 0.870 (0.048) 0.7386 (0.0468) 0.833 (0.054) 0.7527 (0.0515) 0.686 (0.014) 0.9814 (0.0021)

2×1 0.932 (0.020) 12.6 (5.0) 0.8108 (0.0289) 0.886 (0.048) 0.8045 (0.0376) 0.840 (0.057) 0.8162 (0.0392) 0.694 (0.014) 0.9845 (0.0016)

3×1 0.937 (0.019) 12.5 (5.1) 0.8333 (0.0248) 0.888 (0.050) 0.8272 (0.0336) 0.839 (0.057) 0.8369 (0.0338) 0.695 (0.013) 0.9854 (0.0014)

4×1 0.938 (0.018) 12.5 (5.2) 0.8444 (0.0227) 0.887 (0.053) 0.8381 (0.0314) 0.837 (0.057) 0.8467 (0.0305) 0.692 (0.013) 0.9857 (0.0011)

5×1 0.939 (0.018) 12.5 (5.2) 0.8510 (0.0214) 0.886 (0.056) 0.8446 (0.0300) 0.835 (0.058) 0.8518 (0.0289) 0.686 (0.013) 0.9857 (0.0010)

1×2 0.935 (0.020) 12.2 (4.7) 0.8270 (0.0297) 0.891 (0.045) 0.8209 (0.0367) 0.843 (0.061) 0.8435 (0.0369) 0.697 (0.014) 0.9854 (0.0017)

2×2 0.947 (0.017) 11.6 (4.8) 0.8779 (0.0198) 0.900 (0.049) 0.8715 (0.0282) 0.847 (0.063) 0.8919 (0.0243) 0.701 (0.014) 0.9885 (0.0011)

3×2 0.948 (0.016) 11.5 (4.8) 0.8930 (0.0171) 0.900 (0.054) 0.8865 (0.0254) 0.845 (0.063) 0.9039 (0.0211) 0.697 (0.014) 0.9895 (0.0008)

1×3 0.943 (0.018) 11.8 (4.7) 0.8584 (0.0245) 0.900 (0.045) 0.8535 (0.0318) 0.850 (0.060) 0.8774 (0.0282) 0.703 (0.014) 0.9876 (0.0014)

2×3 0.951 (0.015) 11.2 (4.8) 0.8977 (0.0168) 0.905 (0.052) 0.8927 (0.0246) 0.852 (0.061) 0.9102 (0.0210) 0.710 (0.014) 0.9904 (0.0009)

3×3 0.951 (0.015) 11.1 (4.9) 0.9088 (0.0146) 0.904 (0.058) 0.9037 (0.0225) 0.850 (0.062) 0.9189 (0.0188) 0.711 (0.014) 0.9916 (0.0007)

1×5 0.949 (0.015) 11.5 (4.8) 0.8926 (0.0186) 0.908 (0.051) 0.8893 (0.0254) 0.853 (0.063) 0.9088 (0.0223) 0.709 (0.014) 0.9894 (0.0010)

2×5 0.954 (0.013) 10.8 (4.9) 0.9215 (0.0131) 0.908 (0.061) 0.9184 (0.0198) 0.851 (0.063) 0.9334 (0.0164) 0.715 (0.013) 0.9921 (0.0006)

3×5 0.954 (0.013) 10.6 (5.0) 0.9308 (0.0115) 0.906 (0.067) 0.9278 (0.0182) 0.845 (0.065) 0.9406 (0.0145) 0.715 (0.013) 0.9930 (0.0005)

1×10 0.953 (0.014) 10.8 (4.9) 0.9163 (0.0145) 0.909 (0.060) 0.9129 (0.0211) 0.855 (0.059) 0.9290 (0.0174) 0.716 (0.013) 0.9918 (0.0008)

2×10 0.956 (0.012) 10.2 (4.7) 0.9384 (0.0106) 0.908 (0.070) 0.9355 (0.0171) 0.849 (0.062) 0.9471 (0.0132) 0.719 (0.012) 0.9942 (0.0005)

3×10 0.956 (0.012) 10.2 (4.7) 0.9461 (0.0094) 0.905 (0.076) 0.9434 (0.0158) 0.841 (0.068) 0.9534 (0.0112) 0.717 (0.012) 0.9951 (0.0004)

Table 3. Results of recursive cascaded networks built on the base network VTN, with different times (1×, 2×, 3×, or more) of shared-weight

cascades. Similarity is measured by the correlation coefficient between the warped moving image and the fixed image.

Architecture SLIVER LiTS LSPIG LPBA

Dice Lm. Dist. Dice Dice Avg. Dice

VoxelMorph 0.913 (0.025) 13.1 (4.7) 0.867 (0.050) 0.833 (0.057) 0.688 (0.015)

VM x2 0.922 (0.024) 13.0 (4.9) 0.879 (0.047) 0.839 (0.058) 0.691 (0.015)

VM-double 0.919 (0.025) 12.9 (4.9) 0.877 (0.048) 0.833 (0.059) 0.689 (0.015)

VM xx2 0.925 (0.023) 12.8 (4.9) 0.881 (0.047) 0.843 (0.057) 0.693 (0.014)

2×1-cascade VM 0.930 (0.021) 12.8 (4.8) 0.883 (0.051) 0.840 (0.060) 0.697 (0.014)

2-cascade VM 0.933 (0.021) 12.8 (4.8) 0.888 (0.048) 0.845 (0.057) 0.699 (0.014)

Table 4. Comparison against other variants of VoxelMorph (VM),

including VM x2 (doubling the feature counts of every convolu-

tional layer), VM-double (doubling the number of convolutional

layers at each level), and VM xx2 (doubling the encoder-decoder

architecture cascade-like).

Method Avg. Dice

Atlas1 Atlas2 Atlas3

ANTs SyN 0.708 (0.015) 0.717 (0.011) 0.707 (0.015)

Elastix B-spline 0.675 (0.013) 0.684 (0.011) 0.670 (0.013)

VoxelMorph 0.688 (0.015) 0.694 (0.010) 0.678 (0.015)

5-cascade VoxelMorph 0.708 (0.015) 0.714 (0.011) 0.702 (0.014)

3×5-cascade VoxelMorph 0.715 (0.014) 0.721 (0.012) 0.713 (0.013)

VTN (ADDD) 0.701 (0.014) 0.709 (0.011) 0.695 (0.015)

10-cascade VTN 0.716 (0.013) 0.723 (0.010) 0.712 (0.013)

2×10-cascade VTN 0.719 (0.012) 0.725 (0.011) 0.716 (0.013)

Table 5. Experiments on different atlases in LPBA.

On the other hand, the number of parameters in VM x2 is

4 times as large as that in VoxelMorph (as well as 2×1-

cascade VM), and 2 times as large as that in 2-cascade VM.

However, one may wonder that whether simply deeper

networks would do the trick. To this end, we construct

VM-double by doubling the number of convolutional layers

at each U-net level, and also an encoder-decoder-encoder-

decoder architecture denoted VM xx2, which looks similar

to a 2-cascade VM except the explicit warping. They have

approximately the same amount of parameters compared to

the 2-cascade VM, but are outperformed by a considerable

margin. This experiment implies that our improvements are

essentially based on the proposed recursive cascade archi-

tecture rather than simply introducing more parameters.

Atlas Analysis. The performance for atlas-based registra-

tion may vary depending on the chosen atlas. As a compari-

son, we retrain the models on two more (the second and the

third) atlases in the LPBA dataset, shown in Table 5. These

results indicate that our performance is consistent and ro-

bust to the choice of atlas.

5. Discussion

Recursive cascaded networks are quite simple to imple-

ment, and also easy to train. We do not tune the ratios of

losses when training more cascades, nor the training sched-

ule, showing the robustness of our architecture. If more re-

sources are available or a distributed learning platform is be-

ing used, we expect that the performance can be further im-

proved by deeper cascades, and also, training or fine-tuning

shared-weight cascades would be an alternative choice. A

light-weight base network is also worth an exploration.

A possible limitation of this work would be on the

smoothness of the composed field. Theoretically, recursive

cascaded networks preserve the image topology as long as

every subfield does. However, folding area is common in

currently proposed methods and may be amplified during

recursion, which brings challenges especially for the use of

weight sharing techniques. This problem can be reduced by

taking a careful look on the regularization terms, or design-

ing a base network that guarantees invertibility.

6. Conclusion

We present a deep recursive cascade architecture and

evaluate its performance in deformable medical image reg-

istration. Experiments based on diverse evaluation met-

rics demonstrate that this architecture achieves significant

gains over state-of-the-art methods on both liver and brain

datasets. With the superiority of good performance, the gen-

eral applicability of the unsupervised method, and being in-

dependent of the base network, we expect that the proposed

architecture can potentially be extended to all deformable

image registration tasks.
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