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Abstract

Sounds originate from object motions and vibrations of

surrounding air. Inspired by the fact that humans is capable

of interpreting sound sources from how objects move visu-

ally, we propose a novel system that explicitly captures such

motion cues for the task of sound localization and separa-

tion. Our system is composed of an end-to-end learnable

model called Deep Dense Trajectory (DDT), and a curricu-

lum learning scheme. It exploits the inherent coherence of

audio-visual signals from a large quantities of unlabeled

videos. Quantitative and qualitative evaluations show that

comparing to previous models that rely on visual appear-

ance cues, our motion based system improves performance

in separating musical instrument sounds. Furthermore, it

separates sound components from duets of the same cat-

egory of instruments, a challenging problem that has not

been addressed before.

1. Introduction

In a scorching afternoon, you relax under the shadow of a

tree and enjoy the breeze. You notice that the tree branches

are vibrating and you hear a rustling sound. Without a sec-

ond thought, you realize that the sound is caused by the

leaves rubbing one another. Despite a short notice, humans

have the remarkable ability to connect and integrate signals

from different modalities and perceptual inputs. In fact, the

interplay among senses are one of the most ancient scheme

of sensory organization in human brains [44] and is the key

to understand the complex interaction of the physical world.

With such inspiration in mind, researchers have been

painstakingly developing models that can effectively exploit

signals from different modalities. Take audio-visual learn-

ing for example, various approaches have been proposed

such as sound recognition [3, 1, 26], sound localization

[22, 24, 33, 2, 12], etc. In this work, we are particularly in-

terested in the task of sound source separation [12, 53, 17],

where the goal is to distinguish the components of the sound

and associate them with the corresponding objects. While

current source separation methods achieve decent results on
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Figure 1. Motion matters: When watching a violin duet video, we

can separate the melody from harmony. (a) Yet it is hard to tell the

sources without looking or with only one glance. (b) By watch-

ing for a bit longer, we can differentiate who is playing the first

violin and who is playing the second by associating their motions

with the tempo of the music. In this work, we take inspirations

from human to disambiguate and separate the sounds from multi-

ple sources by exploring motion cues.

respective tasks, they often ignore the motion cues and sim-

ply rely on the static visual information. Motion signals,

however, are of crucial importance for audio-visual learn-

ing, in particular when the objects making sounds are visu-
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ally similar. Consider a case where two people are playing

violin duets, as depicted in Figure 1. It is virtually impos-

sible for humans to separate their melody from harmony by

peaking at a single image. Yet if we see the movement of

each person for a while, we can probably conjecture accord-

ing to the temporal repetition of the motions and the beats

of music. This illustration serves to highlight the impor-

tance of motion cues in the complex multi-modal reason-

ing. Our goal is to mimic, computationally, the ability to

reason about the synergy between visual, audio, and motion

signals1.

We build our model upon previous success of Zhao et

al. [53]. Instead of relying on image semantics, we explic-

itly consider the temporal motion information in the video.

In particular, we propose an end-to-end learnable network

architecture called Deep Dense Trajectory (DDT) to learn

the motion cues necessary for the audio-visual sound sepa-

ration. As the interplay among different modalities are very

complex, we further develop a curriculum learning scheme.

By starting from different instruments and then moving to-

wards same types, we force the model to exploit motion

cues for differentiation.

We demonstrate the effectiveness of our model on two

recently proposed musical instrument datasets, MUSIC [53]

and URMP [28]. Experiments show that by explicitly mod-

eling the motion information, our approach improves prior

art on the task of audio-visual sound source separation.

More importantly, our model is able to handle extremely

challenging scenarios, such as duets of the same instru-

ments, where previous approaches failed significantly.

2. Related Work

Sound source separation. Sound source separation is a

challenging classic problem, and is known as the “cock-

tail party problem” [30, 19] in the speech area. Algo-

rithms based on Non-negative Matrix Factorization (NMF)

[47, 10, 43] were the major solutions to this problem. More

recently, several deep learning methods have been pro-

posed, where Wang et al. gave an overview [48] on this

series of approaches. Simpson et al. [42] and Chandna et

al. [8] used CNNs to predict time-frequency masks for mu-

sic source separation and enhancement. To solve the iden-

tity permutation problem in speech separation, Hershey et

al. [21] proposed a deep learning-based clustering method,

and Yu et al. [52] proposed a speaker-independent training

scheme. While these solutions are inspiring, our setting is

different from the previous ones in that we use additional

visual signals to help with sound source separation.

1We encourage the readers to watch the video

https://www.youtube.com/watch?v=XDuKWUYfA U to

get a better sense of the difficulty of this task.

Audio-visual learning. Learning the correspondences be-

tween vision and sound has become a popular topic re-

cently. One line of work has explored representation learn-

ing from audio-visual training. Owens et al. [35] used

sound signals as supervision for vision model training; Ay-

tar et al. [3] used vision as supervision for sound models;

Arandjelovic et al. [1] and Korbar et al. [26] trained vision

and sound models jointly and achieve superior results. An-

other line of work explored sound localization in the visual

input [23, 22, 2, 40, 53]. More recently, researchers used

voices and faces to do biometric matching [32], generated

sounds for videos [56], generated talking faces [55], seg-

mented images and audios jointly [39], and predicted stereo

sounds [18] or 360 ambisonics [31] from videos.

Although a few recent papers have demonstrated how vi-

sual cues could help with music separation [53, 17], their

visual cues mostly come from appearance, which can be

obtained from a single video frame. Our work differentiate

from those in that we explicitly model motion cues, to make

good use of the video input.

Sounds and motions. Early works in vision and audition

have explored the strong relations between sounds and mo-

tions. Fisher et al. [14] used a maximal mutual information

approach and Kidron et al. [24, 23] proposed variations of

canonical correlation methods to discover such relations.

Lip motion is a useful cue in the speech processing

domain, Gabbay et al. [15] used it for speech denoising;

Chung et al. [9] demonstrated lip reading from face videos.

Ephrat et al. [12] and Owens et al. [34] demonstrated

speech separation and enhancement from videos.

The most related work to ours is [4], which claimed the

tight associations between audio and visual onset signals,

and use the signals to perform audio-visual sound attribu-

tion. In this work, we generalize their idea by learning an

aligned audio-visual representations for sound separation.

Motion representation for videos. Our work is in part

related to motion representation learning for videos, as

we are working on videos of actions. Traditional tech-

niques mainly use handcrafted spatio-temporal features,

like space-time interest points [27], HOG3D [25], dense

trajectories [49], improved dense trajectories [50] as the

motion representations of videos. Recently, works have

shifted to learning representations using deep neural net-

works. There are three kinds of successful architectures

to capture motion and temporal information in videos: (1)

two-stream CNNs [41], where motion information is mod-

eled by taking optical flow frames as network inputs; (2)

3D CNNs [46], which performs 3D convolutions over the

spatio-temporal video volume; (3) 2D CNNs with tempo-

ral models on top such as LSTM [11], Attention [29, 5],

Graph CNNs [51], etc. More recently, researchers proposed
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Figure 2. An overview of model architecture. Our framework is consist of four components: a motion network, an appearance network, a

fusion module, and a sound separation network. The motion network takes a sequence of frames and outputs trajectory features; appear-

ance network takes the first video frame and outputs appearance features; fusion module fuses appearance and trajectory features; sound

separation network separates the input audio conditioned on the visual features.

to learn motion/trajectory representations for action recog-

nition [13, 54, 16]. In contrast to action recognition or local-

ization, our goal is to find correspondence between sound

components and movements in videos.

3. Approach

In this section, we first introduce the mix-and-separate

framework we used for the audio-visual sound separation.

Then we present the model architecture we used for learn-

ing motion representations for audio-visual scene analysis.

Finally, we introduce the curriculum training strategy for

better sound separation results.

3.1. Mix­and­Separate for Self­supervised Learning

Our approach adopted the Mix-and-Separate frame-

work [53] for vision guided sound separation. Mixture and

separated audio ground truths are obtained by mixing the

the audio signals from different video clips. And then the

task of our model is to separate the audio tracks from mix-

ture conditioned on their corresponding visual inputs. Criti-

cally, although the neural network is trained in a supervised

fashion, it does not require labeled data. Thus the training

pipeline can be considered as self-supervised learning.

During training, we randomly select N video clips with

paired video frames and audios {Vn, Sn}, and then mix

their audios to form a synthetic mixture Smix =
∑N

n=1 Sn.

Given one of the N video clips, our model f will ex-

tract visual features and audio features for source separa-

tion Ŝn = f(Smix, Vn). The direct output of our model

is a binary mask that will be applied on the input mixture

spectrogram, where the ground truth mask of the n-th video

is determined by whether the target sound is the dominant

component in the mixture,

Mn(u, v) = JSn(u, v) ≥ Sm(u, v)K, ∀m = (1, ..., N),
(1)

where (u, v) represents the time-frequency coordinates in

the spectrogram S. The model is trained with per-pixel bi-

nary cross-entropy loss.

3.2. Learning Motions with Deep Dense Trajecto­
ries

We use pixel-wise trajectories as our motion features for

its demonstrated superior performance in action recognition

tasks [50].

Given a video, the dense optical flow for each frame of

the video at time t is denoted as ωt = (ut, vt), and we
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represent the coordinate position of each tracked pixel as

Pt = (xt, yt). Then the pixels in adjacent frames can as-

sociated as Pt+1 = (xt+1, yt+1) = (xt, yt) + ω|(xt,yt),

and the full trajectory of a pixel is the concatenation of its

coordinates over time (Pt, Pt+1, Pt+2, ...). We use posi-

tion invariant displacement vectors as the trajectory repre-

sentation T = (∆Pt,∆Pt+1,∆Pt+2, ...), where ∆Pt =
(xt+1 − xt, yt+1 − yt).

We note that the aforementioned operators are all dif-

ferentiable, so they can fit into a learnable neural network

model. Given the recent advances on CNN-based optical

flow estimation, we incorporate a state-of-the-art optical

flow model PWC-Net [45] into our system. So our whole

system is an end-to-end learnable pixel tracking model, we

refer to it as Deep Dense Trajectory network (DDT).

In previous works on trajectories [50], people usually

sub-sample, smooth and normalize pixel trajectories to get

extra robustness. We do not perform these operations since

we assume that the dense, noisy signals can be handled by

the learning system. To avoid tracking drift, we first per-

form shot detection on the input untrimmed videos, and then

track within each video shot.

3.3. Model Architectures

Our full model is shown in Figure 2. It is comprised

of four parts: a motion network, an appearance network, a

fusion module and a sound separation network. We detail

them below.

Motion Network. The motion network is designed to

capture the motion features in the input video, on which

the sound separation outputs are conditioned. We introduce

Deep Dense Trajectories (DDT) network here, which is an

end-to-end trainable pixel tracking network. The DDT net-

work is composed of three steps:

(i) Dense optical flow estimation. This step enables

the followup trajectory estimation, and it can be

achieved by an existing CNN-based optical flow net-

work. We choose the state-of-the-art PWC-Net [45]

for its lightweight design and fast speed. PWC-Net

estimates optical flow at each level in the feature pyra-

mid, then uses the estimated flow to warp the feature

at the next level and constructs a cost volume.

(ii) Dense trajectory estimation. This step takes dense op-

tical flows as input to form dense trajectories. As dis-

cussed in Section 3.2, the position of each pixel at

the next time stamp is estimated as the current posi-

tion added by the current optical flow field. So the

whole trajectory is estimated by iteratively tracking the

points according to optical flow fields. In our neural

network model, this process is implemented as an it-

erative differentiable grid sampling process. Specif-

Multiply
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Spatial Pool
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V

Visual Features
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T × H ×W × K
T
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Figure 3. Fusion module of the model in Figure 2. A spatial at-

tention map from appearance features is used to gate trajectory

features.

ically, we start with a regular 2D grid G0 for the

first frame; then for each frame at time t, we sam-

ple its optical flow field ωt according to current grid

Gt to estimate the grid at next time stamp, Gt+1 =
Gt + grid sample(ωt, Gt). After tracking, our dense

trajectories are given by

T = (∆P0, ...,∆Pt, ...)

= (grid sample(ω0, G0), ..., grid sample(ωt, Gt), ...),

where t = (1, ..., T ). The dimension of trajectories T
is T ×H×W ×2, where the last dimension represents

the displacements in x and y direction.

(iii) Dense trajectory feature extraction. A CNN model is

further applied to extract the deep features of these tra-

jectories, the choice of architecture can be arbitrary.

Here we use an I3D model, which demonstrated good

capability in capturing spatiotemporal features [7]. It

is a compact design which inflates 2D CNN into 3D so

that 3D filters can be bootstrapped from pretrained 2D

filters.

Appearance Network The appearance network extracts

semantic information from the input video. In terms of ar-

chitecture, we use ResNet-18 [20] by removing the layers

after spatial average pooling. We only take the first frame

as input so that the trajectory feature maps are strictly reg-

istered with the appearance feature maps. The appearance

and trajectory features are then fused to form the final visual

features.
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Attention based Fusion Module To fuse the appearance

and trajectory features, we first predict a spatial attention

map from the RGB features, and use it to modulate tra-

jectory features. As shown in Figure 3, from the appear-

ance feature we predict a single-channel map activated by

sigmoid, with size H ×W × 1. It is inflated in time and

feature dimension, and multiplied with the trajectory feature

from the Motion Network. Then appearance features are

also inflated in time, and concatenated with the modulated

trajectory features. After a couple of convolution layers, we

perform max pooling to obtain the final visual feature. Such

attention mechanism helps the model to focus on important

trajectories.

Sound Separation Network The sound separation net-

work takes in the spectrogram of sound, which is the 2D

time-frequency representation; and predicts a spectrogram

mask conditioned on the visual features. The architecture

of sound separation network takes the form of a U-Net [38],

so that the output mask size is the same as the input. In the

middle part of the U-Net, where the feature maps are the

smallest, condition signals from visual features are inserted.

The way to incorporate visual features is by (1) aligning vi-

sual and sound features in time; (2) applying Feature-wise

Linear Modulation (FiLM) [36] on sound features. FiLM

refers to a feature-wise affine transformation, formally

FiLM(fs) = γ(fv) · fs + β(fv), (2)

where fv and fs are visual and sound features, γ(·) and β(·)
are single linear layers which output scaling and bias on the

sound features dependent on visual features.

The output spectrogram mask is obtained after a

sigmoid activation on the network output. Then it is

thresholded and multiplied with the input spectrogram to

get a predicted spectrogram. Finally, an inverse Short Time

Fourier Tranform (iSTFT) is applied to obtain the separated

sound.

3.4. Curriculum Learning

Directly training sound separation on a single class of

instruments suffers from overfitting due to the limited num-

ber training samples we have for each class. To remedy

this drawback, we propose a 3-stage curriculum training by

bootstrapping the model with easy tasks for good initial-

izations, so that it converges better on the main tasks. The

details are outlined as follows:

(i) Sound separation on mixture of different instruments.

It shares similar settings as Section 4.2, where we ran-

domly sample two video shots from the whole training

set, mix their sounds as model input for separation;

(ii) Sound separation on mixture of the same kinds of in-

struments. Initializing from the model weights trained

in Step 1, we then only train the model with mixtures

from the same instruments, e.g. two videos of cellos;

(iii) Sound separation on mixture from the same video. To

form the mixture, we sample two different video shots

from the same long video. This is the hardest stage

as semantic and context cues of those videos can be

exactly the same, and the only useful cue is motions.

Note that we will only use this curriculum learning strat-

egy in the same instrument sound separation task due to its

challenging nature.

4. Experiments

4.1. Dataset

We perform vision guided sound separation tasks on

the mixture of two video datasets: MUSIC [53] and

URMP [28]. MUSIC is an unlabeled video dataset of in-

strument solos and duets by keyword query from Youtube;

URMP is a small scale high quality multi-instrument video

dataset recorded in studio.

To prevent the models from overfitting, we enlarge the

MUSIC [53] dataset by collecting a larger number of mu-

sical instrument categories from web videos. Apart from

the 11 instrument categories defined in MUSIC dataset: ac-

cordion, acoustic guitar, cello, clarinet, erhu, flute, saxo-

phone, trumpet, tuba, violin and xylophone, we include an-

other 10 common instrument categories: bagpipe, banjo,

bassoon, congas, drum, electric bass, guzheng, piano, pipa

and ukulele. We follow the procedure of [53] to collect the

videos. Specifically, we construct a keyword with both in-

strument name with an additional “cover” and use it to re-

trieve videos from YouTube. We name the resulting dataset

MUSIC-21, it contains 1365 untrimmed videos of musical

solos and duets, where we split them into a training set of

1065 videos and a test set of 300 videos.

As our trajectory-based representation is sensitive to shot

changes, we pre-process the raw videos into video shots,

so that our training samples do not cross shot boundaries.

Concretely, we densely sample the video frames and calcu-

late the color histogram change of the adjacent frames over

time, then we use a double thresholding approach [6] to find

shot boundaries. After the processing, we obtain 5861 video

shots in total.

4.2. Sound Separation for Different Instruments

To verify the effective of the learning motion represen-

tation for sound separation, we first evaluate the model

performances in the task of separating sounds from differ-

ent kinds of instruments, which has been explored in other

works [47, 8, 53, 17].
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Method SDR SIR SAR

NMF [47] 2.78 6.70 9.21

Deep Separation [8] 4.75 7.00 10.82

MIML [17] 4.25 6.23 11.10

Sound of Pixels [53] 7.52 13.01 11.53

Ours, RGB single frame 7.04 12.10 11.05

Ours, RGB multi-frame 7.67 14.81 11.24

Ours, RGB+Flow 8.05 14.73 12.65

Ours, RGB+Trajectory 8.31 14.82 13.11

Table 1. Sound source separation performance (N = 2 mixture)

of baselines and our model with different input modalities. Com-

pared to Sound of Pixels, our models with temporal information

perform better in sound separation.

4.2.1 Experiment Configurations

During training, we randomly take 3-second video clips

from the dataset, and then sample RGB frames at 8 FPS

to get 24 frames, and sample audios at 11 kHz.

The motion network takes 24 RGB frames as input. The

flow network (PWC-Net) in it estimates 23 dense optical

flow fields; the trajectory estimator further extracts trajec-

tories with length of 23; and then the trajectory features

are extracted by I3D. The output feature maps are of size

T ×H ×W ×Km.

The appearance network takes the first frame of the clip,

and outputs appearance feature of size 1 × H × W × Ka.

This feature is fused with the trajectory features through the

fusion module, and after spatial pooling, we obtain the ap-

pearance feature of size T ×Kv .

The sound separation network takes a 3-second mixed

audio clip as input, and transforms it into spectrogram by

Short Time Fourier Transform (STFT) with frame size of

1022 and hop size of 172. The spectrogram is then fed

into a U-Net with 6 convolution and 6 deconvolution lay-

ers. In the middle of the sound separation network, visual

features are aligned with the sound features, and the FiLM

module modulates the sound features conditioned on visual

features. The U-Net outputs a binary mask after sigmoid

activation and thresholding. To obtain the final separated

audio waveforms, iSTFT with the same parameters as the

STFT is applied.

We use SGD optimizer with 0.9 momentum to train the

our model. The Sound Separation Network and the fusion

module use a learning rate of 1e-3; the Motion Network

and Appearance Network use a learning rate of 1e-4, as they

take pretrained ResNet and I3D on ImageNet and pretrained

PWC-Net on MPI Sintel.

N Method SDR SIR SAR

3

NMF [47] 2.01 2.08 9.36

Sound of Pixels [53] 3.65 8.77 8.48

Ours, RGB+Trajectory 4.87 9.48 9.24

4

NMF [47] 0.93 -1.01 9.01

Sound of Pixels [53] 1.21 6.58 4.19

Ours, RGB+Trajectory 3.05 8.50 7.45

Table 2. Sound separation performances with N = 3, 4 mixtures.

We compare our model against Sound of Pixels to show the ad-

vantage of motion features. Our model consistently improves sep-

aration metrics and outperforms in highly mixed cases.

4.2.2 Results

We evaluate the sound separation performance of our model

with different variants. RGB+Trajectory is our full model

as described in 3.3; RGB+Flow is the full model with-

out the tracking module, so the motion feature is extracted

from optical flow; RGB multi-frame further removes the

flow network, so motion feature directly comes from RGB

frame sequence; RGB single frame is a model without mo-

tion network, visual feature comes from appearance net-

work only.

At the same time, we re-implement 4 models to com-

pare against. NMF [47] is a classical approach based on

matrix factorization, it uses ground truth labels for training;

Deep Separation [8] is a CNN-variant supervised learning

model, it also takes ground truth labels for training; MIML

[17] is a model that combines NMF decomposition and

multi-instance multi-label learning; Sound of Pixels [53] is

a recently proposed self-supervised model which takes both

sounds and video frames for source separation.

For fair comparisons, all the models are trained and

tested with 3-second audios mixed from N = 2 input

audios, and models dependent on vision take in 24 video

frames. Model performances are evaluated on a validation

set with 256 pairs of sound mixtures. We use the follow-

ing metrics from the open-source mir eval [37] library

to quantify performance: Signal-to-Distortion Ratio (SDR),

Signal-to-Interference Ratio (SIR), and Signal-to-Artifact

Ratio (SAR). Their units are in dB.

Quantitative results are reported in Table 1. We observe

that previous methods achieves reasonable performance in

sound separation even though only appearance information

is used [53]. It shows that appearance based models are

already strong baselines for this task. In comparison, our

RGB multi-frame, RGB+Flow and RGB+Trajectory mod-

els outperform all baseline methods, showing the effective-

ness of encoding motion cues in the task of audio-visual

source separation. And among them, RGB+Trajectory

is best, and outperforms state-of-the-art Sound of Pixels

model by ≈ 0.8dB. It demonstrates that among these mo-

1740



Instrument 1 Motions

Input

Mixture Sound

Pred. Sound 1 G.T. Sound 1

Instrument 2 Motions

Pred. Sound 2 G.T. Sound 2 Pred. Sound 1 G.T. Sound 1 Pred. Sound 2 G.T. Sound 2

Input

Mixture Sound

Instrument 1 Motions Instrument 2 Motions

Input

Mixture Sound

Pred. Sound 1 G.T. Sound 1 Pred. Sound 2 G.T. Sound 2

Instrument 1 Motions Instrument 2 Motions

Figure 4. Results of sound separation on the same kinds of instruments. Our model can capture the motion information in videos to separate

the sound. This visualization is only performed for quantitative model evaluation.

tion representations, trajectories has the strongest correla-

tion with sound.

We further experiment on the task of separating larger

number of sound mixtures, where N = 3, 4. Results are

reported in Table 2. We observe that our best model out-

performs Sound of Pixels by a larger margin in these highly

mixed cases, ≈ 1.2dB at N = 3, and ≈ 1.8dB at N = 4.

4.3. Sound Separation for the Same Instruments

In this section, we evaluate the model performance in

separating sounds from instruments of the same kind, which

has rarely been explored before.

4.3.1 Experiment Configurations

To evaluate the performances of the our models, we select 5

kinds of musical instruments whose sounds are closely re-

lated to motions: violin, cello, congas, erhu and xylophone.

All the training settings are similar to Section 4.2 except that

we use curriculum learning strategy which is mentioned in

Section 3.4.

4.3.2 Results

First we evaluate the effectiveness of our proposed cur-

riculum learning strategy. With a fixed validation set, we

compare Single Stage strategy, which is directly trained on

mixtures of the same instruments, with our 3-stage training

strategy. In Curriculum Stage 1, model is trained to sep-

arate sound mixtures of instruments of different categories;

in Curriculum Stage 2, the task is to separate sound mix-

tures from the same kinds of instruments; in Curriculum

Stage 3, the goal is to separate sound mixtures of different

clips from the same long video. Results of our final model

on the validation set are shown in Figure 4.

Results in Table 3 show that curriculum learning greatly

improves the performance: it outperforms the Single Stage

model in the Curriculum Stage 1, and further improves

Schedule SDR SIR SAR

Single Stage 1.91 5.73 8.83

Curriculum Stage 1 3.14 7.52 13.06

Curriculum Stage 2 5.72 13.89 11.92

Curriculum Stage 3 5.93 14.41 12.08

Table 3. Performance improvement with the proposed curriculum

learning schedule.

with the second and third stages. The total improvement in

SDR is ≈ 4dB.

Then we compare the performance of our model with

Sound of Pixels model on the same instrument separation

task. To make fair comparisons, Sound of Pixels model is

trained with the same curriculum. Results on SDR metric

are reported in Table 4. We can see that Sound of Pixels

model gives much inferior results comparing to our model,

the gap is > 3dB.

Qualitative comparisons are presented in Figure 5, where

we show pixel-level sound embeddings. To recover sounds

spatially, we remove the spatial pooling operation in the fu-

sion module in Figure 3 at test time, and then feed the vi-

sual feature at each spatial location to the Sound Separation

Network. Therefore, we are able to get H ×W number of

separated sound components. We project those sound fea-

tures (vectorized spectrogram values) into a 3 dimensional

space using PCA, and visualize them in color. Different

colors in the heatmaps refer to different sounds. We show

that our model can tell the difference from duets of the same

instruments, while Sound of Pixels model cannot.

4.3.3 Human Evaluation

Since the popular metrics (e.g. SDR, SIR and SAR) for

sound separation might not reflect the actual perceptual

quality of the sound separation results, we further compare

the performances of these two methods on Amazon Me-
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Figure 5. Pixel-level sound embedding results. To visualize the

pixel-level sound separation results, we project sound features into

a low dimensional space, and visualize them in RGB space. Dif-

ferent colors mean different sounds. Our model can tell the differ-

ence from duets of the same instruments, while Sound of Pixels

model cannot.

Instrument Sound of Pixels Ours

violin 1.95 6.33

cello 2.62 5.48

congas 2.90 5.21

erhu 1.67 6.13

xylophone 3.56 6.50

Table 4. Sound source separation performance on duets of the

same instruments. We show the SDR metric on each instrument.

Our approach is consistently better than previous works.

chanical Turk (AMT) with subjective human evaluations.

Concretely, we collected 100 testing videos from

each instrument, and got separation results of the

Sound of Pixels baseline [53] and our best model.

We also provide the ground truth results for ref-

erences. To avoid shortcut, we randomly shuf-

fle the orders of two models and ask the following

question: Which sound separation result is

closer to the ground truth? The workers are

asked to choose one of the best sound separation results.

We assign 3 independent AMT workers for each job.

Results are shown in Table 5, our proposed motion-based

model consistently outperforms the Sound of Pixels sys-

tems for all the five instruments. We see the reasons lie

in two folds: (1) motion information is crucial for the sound

separation of the same instruments; (2) the Sound of Pix-

els model cannot capture motion cues effectively, while our

model is better by design.

Instrument Sound of Pixels Ours

violin 38.75% 61.25%

cello 39.21% 60.79%

congas 35.42% 64.58%

erhu 44.59% 55.41%

xylophone 35.56% 64.44%

Table 5. Human evaluation result for the sound source separation

on mixture of the same instruments.

Figure 6. Sounding object localization. Overlaid heatmaps show

the predicted sound volume at each pixel location. The model

tends to predict the instrument parts where people are interacting

with. Silent instruments such as the guitars on the wall are not

detected as sounding objects.

4.4. Sounding object localization

As a further analysis, we explore the sounding object

localization capability of our best model. We recover the

sounds spatially similar to what we did in Section 4.3.2.

And then we calculate the sound volume at each spatial

location, and display them in heatmaps, as shown in Fig-

ure 6. We observe that (1) the model gives roughly correct

predictions on the sounding object locations, but does not

cover the whole instruments. Interestingly, it focuses on the

parts where humans are interacting with; (2) Our model cor-

rectly predicts silent instruments, e.g. guitars on the wall, it

demonstrates that sounding object localization is not only

based on visual appearance, but also on audio input.

5. Conclusion

In this paper, we propose that motions are important cues

in audio-visual tasks, and design a system that captures vi-

sual motions with deep dense trajectories (DDT) to sepa-

rate sounds. Extensive evaluations show that, compared

to previous appearance based models, we are able to per-

form audio-visual source separation of different instruments

more robustly; we can also separate sounds of the same kind

of instruments through curriculum learning, which seems

impossible for the purely appearance based approaches.
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Gómez. Monoaural audio source separation using deep con-

volutional neural networks. In ICLVASS, pages 258–266,

2017. 2, 5, 6

[9] Joon Son Chung, Andrew W Senior, Oriol Vinyals, and An-

drew Zisserman. Lip reading sentences in the wild. In CVPR,

pages 3444–3453, 2017. 2

[10] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-

ichi Amari. Nonnegative matrix and tensor factorizations:

applications to exploratory multi-way data analysis and

blind source separation. John Wiley & Sons, 2009. 2

[11] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In ICCV, pages

2625–2634, 2015. 2

[12] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin

Wilson, Avinatan Hassidim, William T Freeman, and

Michael Rubinstein. Looking to listen at the cocktail party:

A speaker-independent audio-visual model for speech sepa-

ration. arXiv preprint arXiv:1804.03619, 2018. 1, 2

[13] Lijie Fan, Wenbing Huang, Stefano Ermon Chuang Gan, Bo-

qing Gong, and Junzhou Huang. End-to-end learning of mo-

tion representation for video understanding. In CVPR, 2018.

3

[14] John W Fisher III, Trevor Darrell, William T Freeman, and

Paul A Viola. Learning joint statistical models for audio-

visual fusion and segregation. In NIPS, 2001. 2

[15] Aviv Gabbay, Ariel Ephrat, Tavi Halperin, and Shmuel Pe-

leg. Seeing through noise: Speaker separation and en-

hancement using visually-derived speech. arXiv preprint

arXiv:1708.06767, 2017. 2

[16] Chuang Gan, Boqing Gong, Kun Liu, Hao Su, and

Leonidas J Guibas. Geometry-guided CNN for self-

supervised video representation learning. 2018. 3

[17] Ruohan Gao, Rogerio Feris, and Kristen Grauman. Learning

to separate object sounds by watching unlabeled video. In

ECCV, 2018. 1, 2, 5, 6

[18] Ruohan Gao and Kristen Grauman. 2.5 d visual sound. arXiv

preprint arXiv:1812.04204, 2018. 2

[19] Simon Haykin and Zhe Chen. The cocktail party problem.

Neural computation, 17(9):1875–1902, 2005. 2

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4

[21] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji

Watanabe. Deep clustering: Discriminative embeddings for

segmentation and separation. In Acoustics, Speech and Sig-

nal Processing (ICASSP), 2016 IEEE International Confer-

ence on, pages 31–35. IEEE, 2016. 2

[22] John R. Hershey and Javier R. Movellan. Audio vision: Us-

ing audio-visual synchrony to locate sounds. In S. A. Solla,

T. K. Leen, and K. Müller, editors, Advances in Neural Infor-

mation Processing Systems 12, pages 813–819. MIT Press,

2000. 1, 2

[23] Hamid Izadinia, Imran Saleemi, and Mubarak Shah. Mul-

timodal analysis for identification and segmentation of

moving-sounding objects. IEEE Transactions on Multime-

dia, 15(2):378–390, 2013. 2

[24] Einat Kidron, Yoav Y. Schechner, and Michael Elad. Pixels

that sound. In Proceedings of the 2005 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages 88–95,

Washington, DC, USA, 2005. IEEE Computer Society. 1, 2

[25] Alexander Klaser, Marcin Marszałek, and Cordelia Schmid.

A spatio-temporal descriptor based on 3d-gradients. In

BMVC, pages 275–1, 2008. 2

[26] Bruno Korbar, Du Tran, and Lorenzo Torresani. Co-training

of audio and video representations from self-supervised tem-

poral synchronization. arXiv preprint arXiv:1807.00230,

2018. 1, 2

[27] Ivan Laptev. On space-time interest points. International

journal of computer vision, 64(2-3):107–123, 2005. 2

[28] Bochen Li, Xinzhao Liu, Karthik Dinesh, Zhiyao Duan,

and Gaurav Sharma. Creating a multitrack classical music

performance dataset for multimodal music analysis: Chal-

lenges, insights, and applications. IEEE Transactions on

Multimedia, 21(2):522–535, 2019. 2, 5

[29] Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao

Liu, and Shilei Wen. Attention clusters: Purely attention

based local feature integration for video classification. In

CVPR, 2018. 2

[30] Josh H McDermott. The cocktail party problem. Current

Biology, 19(22):R1024–R1027, 2009. 2

[31] Pedro Morgado, Nuno Nvasconcelos, Timothy Langlois, and

Oliver Wang. Self-supervised generation of spatial audio for

360 video. In NIPS, 2018. 2

1743



[32] Arsha Nagrani, Samuel Albanie, and Andrew Zisserman.

Seeing voices and hearing faces: Cross-modal biometric

matching. arXiv preprint arXiv:1804.00326, 2018. 2

[33] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam,

Honglak Lee, and Andrew Y. Ng. Multimodal deep learn-

ing. In Proceedings of the 28th International Conference on

International Conference on Machine Learning, ICML’11,

pages 689–696, 2011. 1

[34] Andrew Owens and Alexei A Efros. Audio-visual scene

analysis with self-supervised multisensory features. arXiv

preprint arXiv:1804.03641, 2018. 2

[35] Andrew Owens, Jiajun Wu, Josh H McDermott, William T

Freeman, and Antonio Torralba. Ambient sound provides

supervision for visual learning. In European Conference on

Computer Vision, pages 801–816. Springer, 2016. 2

[36] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reason-

ing with a general conditioning layer. arXiv preprint

arXiv:1709.07871, 2017. 5

[37] Colin Raffel, Brian McFee, Eric J Humphrey, Justin Sala-

mon, Oriol Nieto, Dawen Liang, Daniel PW Ellis, and

C Colin Raffel. mir eval: A transparent implementation of

common mir metrics. In In Proceedings of the 15th Interna-

tional Society for Music Information Retrieval Conference,

ISMIR. Citeseer, 2014. 6

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 5

[39] Andrew Rouditchenko, Hang Zhao, Chuang Gan, Josh Mc-

Dermott, and Antonio Torralba. Self-supervised audio-visual

co-segmentation. In ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2357–2361. IEEE, 2019. 2

[40] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan

Yang, and In So Kweon. Learning to localize sound source

in visual scenes. arXiv preprint arXiv:1803.03849, 2018. 2

[41] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, pages 568–576, 2014. 2

[42] Andrew JR Simpson, Gerard Roma, and Mark D Plumbley.

Deep karaoke: Extracting vocals from musical mixtures us-

ing a convolutional deep neural network. In International

Conference on Latent Variable Analysis and Signal Separa-

tion, pages 429–436. Springer, 2015. 2

[43] Paris Smaragdis and Judith C Brown. Non-negative matrix

factorization for polyphonic music transcription. In Appli-

cations of Signal Processing to Audio and Acoustics, 2003

IEEE Workshop on., pages 177–180. IEEE, 2003. 2

[44] Barry E Stein and M Alex Meredith. The merging of the

senses. The MIT Press, 1993. 1

[45] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping,

and cost volume. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8934–

8943, 2018. 4

[46] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. Learning spatiotemporal features

with 3d convolutional networks. In ICCV, pages 4489–4497,

2015. 2

[47] Tuomas Virtanen. Monaural sound source separation by non-

negative matrix factorization with temporal continuity and

sparseness criteria. IEEE transactions on audio, speech, and

language processing, 15(3):1066–1074, 2007. 2, 5, 6

[48] DeLiang Wang and Jitong Chen. Supervised speech sepa-

ration based on deep learning: an overview. arXiv preprint

arXiv:1708.07524, 2017. 2

[49] Heng Wang, Alexander Kläser, Cordelia Schmid, and
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