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Person behind the wall

Figure 1: Dynamic human meshes estimated using radio signals. Images captured by a camera co-located with the radio sensor are

presented here for visual reference. (a) shows the estimated human meshes of the same person in sportswear, a baggy costume and when

he is behind the wall. (b) shows the dynamic meshes that capture the motion when the person walks, waves his hand, and sits.

Abstract – This paper presents RF-Avatar, a neural net-

work model that can estimate 3D meshes of the human body

in the presence of occlusions, baggy clothes, and bad light-

ing conditions. We leverage that radio frequency (RF) sig-

nals in the WiFi range traverse clothes and occlusions and

bounce off the human body. Our model parses such ra-

dio signals and recovers 3D body meshes. Our meshes are

dynamic and smoothly track the movements of the corre-

sponding people. Further, our model works both in sin-

gle and multi-person scenarios. Inferring body meshes

from radio signals is a highly under-constrained problem.

Our model deals with this challenge using: 1) a combi-

nation of strong and weak supervision, 2) a multi-headed

self-attention mechanism that attends differently to tempo-

ral information in the radio signal, and 3) an adversari-

ally trained temporal discriminator that imposes a prior

on the dynamics of human motion. Our results show that

RF-Avatar accurately recovers dynamic 3D meshes in the

presence of occlusions, baggy clothes, bad lighting condi-

tions, and even through walls.

1. Introduction

Estimating a full 3D mesh of the human body, capturing

both human pose and body shape, is a challenging task in

computer vision. The community has achieved major ad-

vances in estimating 2D/3D human pose [15, 44], and more

recent work has succeeded in recovering a full 3D mesh of

the human body characterizing both pose and shape [9, 23].

However, as in any camera-based recognition task, human

mesh recovery is still prone to errors when people wear

baggy clothes, and in the presence of occlusions or under

bad lighting conditions.

Recent research has proposed to use different sensing

modalities that could augment vision systems and allow

them to expand beyond the capabilities of cameras [46, 45,

12, 47, 50]. In particular, radio frequency (RF) based sens-

ing systems have demonstrated through-wall human detec-

tion and pose estimation [48, 49]. These methods leverage

the fact that RF signals in the WiFi range can traverse occlu-

sions and reflect off the human body. The resulting systems

are privacy-preserving as they do not record visual data, and

can cover a large space with a single device, despite occlu-

sions. However, RF signals have much lower spatial reso-

lution than visual camera images, and therefore it remains

an open question as to whether it is possible at all to capture

dynamic 3D body meshes characterizing the human body

and its motion with RF sensing.

In this paper, we demonstrate how to use RF sensing
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RF Sensor

Figure 2: Specularity of the human body with respect to RF.

The human body reflects RF signals as opposed to scattering them.

A single RF snapshot can only capture a subset of limbs depending

on the orientation of the surfaces.

to estimate dynamic 3D meshes for human bodies through

walls and occlusions. We introduce RF-Avatar, a neural net-

work framework that parses RF signals to infer dynamic 3D

meshes. Our model can capture body meshes in the pres-

ence of significant, and even total, occlusion. It stays accu-

rate in bad lighting conditions, and when people wear cos-

tumes or baggy clothes. Figure 1 shows RF-Avatar’s per-

formance on a few test examples. The left panel demon-

strates that RF-Avatar can capture the 3D body mesh accu-

rately even when the human body is obscured by a volumi-

nous costume, or completely hidden behind a wall. Further,

as shown in the right panel, RF-Avatar generates dynamic

meshes that track the body movement. In Section 5.2, we

show that RF-Avatar also works in dark settings and in sce-

narios with multiple individuals.

Inferring 3D body meshes solely from radio signals is a

difficult task. The human body is specular with respect to

RF signals in the WiFi range –i.e., the human body reflects

RF signals, as opposed to scattering them. As illustrated

in Figure 2, depending on the orientation of the surface of

each limb, the RF signal may be reflected towards our ra-

dio or away from it. Thus, in contrast to camera systems

where any snapshot shows all unoccluded body parts, in ra-

dio systems, a single snapshot has information only about

a subset of the limbs. This problem is further complicated

by the fact that there is no direct relationship between the

reflected RF signals from a person and their underlying 3D

body mesh. We do not know which part of the body actually

reflected the signal back. This is different from camera im-

ages, which capture a 2D projection of the 3D body meshes

(modulo clothing). The fact that the reflected RF signal at a

point in time has information only about a unknown subset

of the body parts means that using RF sensing to capture

3D meshes is a highly unconstrained problem – at a point

in time, the reflected RF signal could be explained by many

different 3D meshes, most of which are incorrect.

RF-Avatar tackles the above challenge as follows. We

first develop a module that uses the RF signal to detect and

track multiple people over time in 3D space, and create tra-

jectories for each unique individual. Our detection pipeline

extends the Mask-RCNN framework [21] to handle RF sig-

nals. RF-Avatar then uses each person’s detected trajec-

tory, which incorporates multiple RF snapshots over time,

to estimate their body mesh. This strategy of combining

information across successive snapshots of RF signals al-

lows RF-Avatar to deal with the fact that different RF snap-

shots contain information about different body parts due to

the specularity of the human body. We incorporate a multi-

headed attention module that lets the neural network selec-

tively focus on different RF snapshots at different times, de-

pending on what body parts reflected RF signals back to the

radio. RF-Avatar also learns a prior on human motion dy-

namics to help resolve ambiguity about human motion over

time. We introduce a temporal adversarial training method

to encode human pose and motion dynamics.

To train our RF-based model, we use vision to provide

cross-modality supervision. We use various types of super-

vision, ranging from off-the-shelf 2D pose estimators (for

pose supervision) to vision-based 3D body scanning (for

shape supervision). We design a data collection protocol

that scales to multiple environments, while also minimizing

overhead and inconvenience to subjects.

We train and test RF-Avatar using data collected in pub-

lic environments around our campus. Our experimental re-

sults show that in visible scenes, RF-Avatar has mean joint

position error of 5.84 cm and mean vertex-to-vertex dis-

tance of 1.89 cm. For through-wall scenes and subjects

wearing loose costumes, RF-Avatar has mean joint posi-

tion error of 6.26 cm and mean vertex-to-vertex distance of

1.97 cm whereas the vision-based system fails completely.

We conduct ablation studies to show the importance of our

self-attention mechanism and the adversarially learned prior

for human pose and motion dynamics.

2. Related Work

Shape representation. Compact and accurate representa-

tions for human body meshes have been studied in computer

graphics, with many models proposed in prior work such

as linear blend skinning (LBS), the pose space deforma-

tion model (PSD) [28], SCAPE [10], and others [8]. More

recently, the Skinned Multi-Person Linear (SMPL) model

was proposed by [33]. SMPL is a generative model that

decomposes the 3D mesh into a shape vector (characteriz-

ing variation in height, body proportions, and weight) and

a pose vector (modeling the deformation of the 3D mesh

under motion). This model is highly realistic and can repre-

sent a wide variety of body shapes and poses; we therefore

adopt the SMPL model as our shape representation.

Capturing human shapes. There are broadly two meth-

ods used to capture body shape in prior work. In scanning-

based methods, several images of a subject are obtained,
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typically in a canonical pose, and then optimization-based

methods are used to recover the SCAPE or SMPL pa-

rameters representing the subject’s shape. The authors of

[14, 19, 20, 41, 6] used scanning approaches, incorporat-

ing silhouette information and correspondence cues to fit a

SCAPE or SMPL model. However, scanning-based meth-

ods have the inherent limitation that they can be easily af-

fected by clothing, so they only work well when subjects are

in form-fitting clothes. They are also limited to indoor set-

tings and do not properly capture motion dynamics. Thus,

many recent works, including ours, use scanning methods

only to provide supervision to learning-based methods.

In learning-based methods, models are trained to predict

parameters of a shape model (e.g., SMPL). Such methods

are challenging due to the lack of 3D human mesh dataset.

Despite this, there has been significant success in this area.

Bogo et al. [13] proposed a two-stage process to firstly pre-

dict joint locations and then fit SMPL parameters from a 2D

image. Lassner et al. [27] developed on this approach, in-

corporating a semi-automatic annotation scheme to improve

scalability. More recent work [23, 36] captured 3D meshes

from 2D images using adversarial loss, and Kanazawa et

al. [24] learned dynamic 3D meshes using videos as an ad-

ditional data source. In this work, we adopt a learning-based

approach, building on the above literature, and expanding it

to deal with scenarios with occlusions and bad lighting.

Priors on human shape and motion. Capturing the prior

of human shape and human motion dynamics is essential

in order to generate accurate and realistic dynamic meshes.

Supervision for training such systems is typically in the

form of 2D/3D keypoints; often, there is no supervision for

full 3D joint angles, so priors must be used for regulariza-

tion. Bogo et al. [13] and Lassner et al. [27] used optimiza-

tion methods to fit SMPL parameters and thus encode hu-

man shape; however, priors on human motion were not en-

coded when training their systems. Kanazawa et al. [23, 24]

used an adversarial loss to provide a prior when considering

shape estimation from 2D images and video but this method

did not capture a prior on motion dynamics, as the discrim-

inator operated on a per timestep basis. In this work, we

introduce a new prior to capture motion dynamics. We also

incorporate an attention module to selectively attend to dif-

ferent keypoints when producing shape estimates.

Wireless sensing to capture shape. Radar systems can use

RF reflections to detect and track humans [5, 37, 29]. How-

ever, they typically only track location and movements and

cannot generate accurate or dynamic body meshes. Radar

systems that generate body meshes (e.g., airport security

scanners) operate at very high frequencies [42, 7, 11]; such

systems work only at short distances, cannot deal with oc-

clusions such as furniture and walls, and do not generate

dynamic meshes. In contrast, our system operates through

walls and occlusions and generates dynamic meshes. There

is also prior work utilizing RF signals to capture elements

of human shape. RF-Capture [4] presented a system that

can detect human body parts when a person is walking to-

wards a radio transceiver. RF-Pose [48] presented a system

to perform 2D pose estimation for multiple people, and RF-

Pose3D [49] extended this result to enable multi-person 3D

keypoint detection. Our work develops on these ideas by

providing the ability to reconstruct a full 3D mesh captur-

ing shape and motion, as opposed to only recovering limb

and joint positions.

3. RF Signals and Convolutions

Much of the work on sensing people using radio sig-

nals uses a technology called FMCW (Frequency Modu-

lated Continuous Wave) [40, 35]. An FMCW radio works

by transmitting a low power radio signal and receiving its

reflections from the environment. Different FMCW radios

are available [2, 3] and RF-Avatar uses one similar to that

used in [4] and can be ordered from [1]. Our model is not

specific to a particular radio, and applies generally to such

radar-based radios. In RF-Avatar , the reflected RF signal

is transformed into a function of the 3D spatial location and

time [49]. This results in a 4D tensor that forms the input

to our neural network. It can be viewed as a sequence of

3D tensors at different points of time. Each 3D tensor is

henceforth referred to as the RF frame at a specific time.

It is important to note that RF signals have intrinsically

different properties from visual data, i.e., camera pixels:

first, the human body is specular in the frequency range that

traverse walls (see Figure 2). Each RF frame therefore only

captures a subset of the human body parts. Also, in the

frequency range of interest (in which RF can pass through

walls), RF signals have low spatial resolution – our radio

has a depth resolution about 10 cm, and angular resolution

of 15 degrees. This is a much lower resolution than what is

obtained with a camera. The above properties have impli-

cations for human mesh recovery, and need to be taken into

account in designing our model.

CNN with RF Signals: Processing the 4D RF tensor with

4D convolutions has prohibitive computational and space

complexity. We use a decomposition technique [49] to de-

compose both the RF tensor and the 4D convolution into

3D ones. The main idea is to represent each 3D RF frame

as a summation of multiple 2D projections. As a result, the

operation in the original dimension is equivalent to a com-

bination of operations in lower-dimensions.

4. Method

We propose a neural network framework that parses

RF signals and produces dynamic body meshes for mul-

tiple people. The design of our model is inspired by the

Mask-RCNN framework [21]. Mask-RCNN is designed for
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Figure 3: Overview of the network model used in RF-Avatar.

instance-level recognition tasks in 2D images; we extend it

to handle 4D RF inputs and generate 3D body meshes over

time. Figure 3 illustrates the 2-stage network architecture

used in RF-Avatar. In the first stage of the model, we use a

Trajectory Proposal Network (TPN) to detect and track each

person in 3D space (Sec. 4.2). TPN outputs a trajectory (a

sequence of bounding boxes over time) for each person, and

we use this trajectory to crop the spatial regions in the RF

tensor that contain this particular person.

The second stage of the model takes the cropped features

as input and uses a Trajectory-CNN (TCNN) to estimate the

sequence of body meshes of this person (Sec. 4.3). TCNN

introduces an attention module to adaptively combine fea-

tures from different RF frames when predicting the body

shape (Sec. 4.3). TCNN also outputs a sequence of joint

angles capturing the body motion. It uses a Pose and Dy-

namics Discriminator (PDD) to help resolve the ambiguities

about human motion (Sec. 4.4). We describe how we use

various forms of supervision to train RF-Avatar in Sec. 4.5.

4.1. Human Mesh Representation

We use the Skinned Multi-Person Linear (SMPL)

model [33] to encode the 3D mesh of a human body. SMPL

factors the human mesh into a person-dependent shape vec-

tor and pose-dependent 3D joint angles. The shape vector

β ∈ R
10 corresponds to the first 10 coefficients of a PCA

shape model. The joint angles θ ∈ R
72 define the global ro-

tation of the body and the 3D relative rotations of 23 joints.

SMPL provides a differentiable function M(β,θ) that out-

puts N = 6890 vertices of a triangular mesh given β and θ.

A 3D mesh of a human body in the world coordinates is rep-

resented by 85 parameters including β, θ (describing shape

and pose via SMPL) and a global translation vector δ. Note

that the 3D location of body joints, J , can be computed via

a linear combination of mesh vertices.

RF-Avatar recovers dynamic body meshes, i.e., a se-

quence of SMPL parameters including a time-invariant

β characterizing the body, and a time-variant Θ =
(θ1,θ2, . . . ,θT ) describing the joint angles, and a time-

variant global translation vector ∆ = (δ1, δ2, . . . , δT ) cap-

turing the location.

4.2. Trajectory Proposal Network

The first stage in our 3D mesh estimation pipeline is to

detect regions containing individuals and then track them

over time to form trajectories. Our Trajectory Proposal Net-

work (TPN) takes as input the 4D RF tensor. It first extracts

features using a backbone with spatial-temporal convolu-

tions, and then uses a recurrent region proposal network to

propose candidate regions for each RF frame. After a fur-

ther candidate selection stage with a box head, we perform

a lightweight optimization to link the detections over time.

We describe each TPN component in detail:

Backbone: This takes the raw sequence of RF frames as

input and uses a set of decomposed 4D convolutional layers

(see Sec. 3) with residual connections to produce features.

Recurrent Region Proposal Network (Recurrent-RPN):

In contrast to prior work using RPN in detection and track-

ing [38, 21, 16], our recurrent-RPN has two major differ-

ences. First, we wish to detect individuals in the 3D world

space instead of the 2D image space. Thus, our model uses

3D bounding boxes as anchors and learns to propose 3D

regions by transforming these anchors. Proposing regions

in 3D space removes scale-variation of regions due to per-

spective projection to image space [30]. For tractability, we

choose 3D anchors to be those close to the ground plane.

Second, our RPN works in a recurrent manner to propose

regions for each RF frame sequentially. It uses recurrent

layers on top of convolutional layers to predict object scores

and regression outputs for all anchor regions. Non-maximal

suppression (NMS) is used to remove duplicated proposals.

Box Head: To improve detection precision, we use a box

head to further classify proposals into correct/incorrect de-

tections. We use standard box head with RoIAlign [21].

Tracker: The tracker module receives proposals from the

Box Head output at each timestep. It then associates to-

gether proposals that belong to the person, and stitches them
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over time to form trajectory tubes. We use a lightweight op-

timization tracker based on bipartite matching [16].

4.3. Trajectory­CNN with Attention

Trajectory-CNN (TCNN) uses the cropped features from

the TPN as input and estimates the body mesh parameters

for each individual. To deal with the fact that different

RF frames contain information about different body parts,

we introduce a self-attention module to predict a tempo-

rally consistent shape β. TCNN first extracts shape fea-

tures at different timesteps as H = (h1,h2, . . . ,hT ). Our

self-attention module uses a function f to attend to differ-

ent frames and combine all the shape features into a fixed-

length feature vector: h̃ = 1
C(H)

∑
t (f(ht) · ht), where

C(H) =
∑

t(f(ht) is a normalization factor. We utilize

multi-headed self-attention [31], allowing the neural net-

work to attend to different aspects of the shape features dif-

ferently. Feature vectors from different heads are concate-

nated together to produce the β prediction.

Empirical results show that this temporal self-attention

leads to improved shape estimation and model interpretabil-

ity. We further believe that the benefits of temporal attention

extend to video-based 3D mesh models, since it allows the

model to recognize that different frames may have different

importance for estimating a particular mesh parameter. For

example, height is better estimated from frames where the

subject is standing as opposed to sitting.

4.4. Learning Pose and Dynamics Priors

We would like to learn a prior that encodes feasible hu-

man pose and motion dynamics in order to ensure that the

3D meshes it produces over time are realistic. Without such

a prior, and especially given the weak supervision for the

3D joint angles (see Sec. 4.5), our model could produce

arbitrary rotations of joints and/or temporally inconsistent

meshes. This issue is exacerbated in the case of pose esti-

mation from RF signals, as we only get sparse observations

at each timestep, due to human body specularity.

We introduce an adversarial prior that regularizes both

human body pose and motion dynamics and ensures real-

istic predictions; we call this the Pose and Dynamics Dis-

criminator (PDD). PDD is a data-driven discriminator that

takes our predicted sequence of 3D joint angles, and aims

to distinguish it from real human poses and dynamics data.

We use MoSh-ed data from the CMU MoCap dataset [26]

as real dynamics data. It covers a diverse set of human sub-

jects performing different poses and actions. In contrast to

previous work, which uses a separate discriminator for each

joint at a single time instance [23, 24], PDD considers all

keypoints over a temporal window, which improves the es-

timated pose results.

The PDD is trained using a binary cross entropy loss and

a gradient penalty term on the real data. Its objective func-

tion takes the following form:

LPDD = −
(
EΦ∼pdata

[logD(Φ)] + EΘ∼pE

[
log(1−D(Θ)

])

+γ · EΦ∼pdata
[‖∇D(Φ)‖2],

(1)

where Θ is the estimated joint angles from TCNN, and D(·)
is our pose and dynamics discriminator.

Finally, we convert them to rotation matrices and feed

to the discriminator. This technique allows for more sta-

ble training by bypassing the 2π wrapping nature of angle

representations.

4.5. Training the Model

Past image-based solutions that recover 3D meshes use

mostly weak supervision during training, in the form of

the location of body joints. However, our empirical results

(Sec. 5.3) show that weak supervision is insufficient for RF-

based systems. Unfortunately, strong supervision that cap-

tures full information about 3D meshes is difficult to obtain,

as it requires highly constrained setups involving a sophisti-

cated multi-view camera setup, and minimally clothed sub-

jects [32, 22]; such setups are not scalable.

To deal with this issue, we train our model using a com-

bination of strong and weak supervision. The SMPL shape

representation decomposes into a time-independent shape

vector, β, and time-dependent joint angles, θ. We obtain

strong supervision for the time-independent shape vector by

using an adapted version of the scanning/silhouette method

from [6] once for each subject in our dataset, with each sub-

ject in a standard canonical pose. We need only perform this

procedure once for each person, as the shape vector, β, is

constant for a given person. We adapt the procedure in [6] as

follows. The original method solves an optimization prob-

lem to obtain both β and offsets for the N mesh vertices (to

capture clothing and other small perturbations). We remove

the optimization over the mesh vertices (as we wish to cap-

ture pure body shape, and do not wish to include clothing

information) to obtain only β. We henceforth refer to the

mesh obtained from this method as a VideoAvatar.

Additionally, we use a system of 12 calibrated cameras

and the AlphaPose algorithm [15, 44] to obtain ground truth

information for 3D joint locations, obtained as subjects en-

gage in activities (walking, standing up/sitting down, inter-

acting with objects, etc). This serves as weak supervision

for our system’s joint angle predictions, θ.

Training TPN: We use standard anchor classification and

regression losses [38, 21]. We compute ground truth 3D

bounding boxes from the 3D poses reconstructed by 3D-

AlphaPose. The total loss Ltraj is the sum of losses from the

RPN and the Box Head.

Training TCNN: As illustrated in Figure 3, TCNN has

three different loss terms. We compute shape loss Lβ and

10117



3D joint loss Ljoints by comparing our predictions with the

ground truth provided by corresponding vision algorithms.

We use the smooth L1 loss [17] for both of them. We note

that in order to compute the joint locations in 3D world

space, our model needs to predict the global translations ∆

as well. We use the bounding box centers and predicted lo-

cal translations with respect to the box centers to obtain the

global translations. Our TCNN also performs a gender clas-

sification and uses the SMPL model of the predicted gender

to compute the vertex and the joint locations.

When training TCNN together with the PDD, we follow

standard adversarial training schemes [18, 34] and use the

following loss term for TCNN:

Lprior = −EΘ∼pE
log(D(Θ)), (2)

where D(·) is our pose and dynamics discriminator.

The total loss for the TCNN is a sum of the terms:

LTCNN = Lβ + Ljoints + Lprior + Lgender. (3)

5. Experiments

We describe our dataset, implementation details, quanti-

tative and qualitative results on shape and pose estimation,

and analyze what is learned by the attention module.

5.1. Dataset and Implementation

Dataset: To train and test our model, we build a dataset

containing 84 subjects (male and female). For each subject,

we use an adapted version of the approach in [6] to obtain

ground truth β vectors with the subjects in a canonical pose

(Sec. 4.5) – we refer to this method as VideoAvatar. We

obtain data for the subjects walking around and engaging

in activities in 16 different environments around our cam-

pus, and use a co-located calibrated camera system to obtain

ground truth keypoint locations for the subjects. Our cam-

era system is mobile, allowing us to collect data in varied

environments and build a representative dataset.

Implementation details: We use decomposed 4D convo-

lutions (Sec. 3) with residual blocks. Each uses ReLu ac-

tivation and Group Normalization [43]. We use 12, 3, 12

and 12 layers of convolution in our backbone, RPN, box

head and TCNN, respectively. We also use 1 and 2 lay-

ers of spatially-distributed GRU for TPN and RCNN. Our

self-attention module uses two fully connected layers with

tanh(·) activation in the middle. Our PDD model uses 12

layers of 1D temporal convolution, followed by a fully con-

nected layer. We implement our model in PyTorch. Our

model is trained with the Adam [25] optimizer for 40000

iterations.

5.2. Qualitative Evaluation for Shape and Pose

RF-Avatar produces realistic meshes: Figure 4 shows the

3D meshes produced by our model for different poses and

subjects, as compared to the RGB images captured by a

co-located camera. As can be seen, qualitatively, the esti-

mated meshes are realistic, and agree well with the body

shapes of different subjects. Our model also handles differ-

ent body shapes (for male and female subjects), poses, and

multi-person scenarios effectively. In addition, considering

the bottom row of images in Figure 4, our model can pro-

duce accurate meshes for partially occluded subjects, sub-

jects behind a wall, and subjects in poor lighting conditions;

a vision-based system cannot produce full meshes in these

situations.

RF-Avatar effectively captures variation in body shape:

To evaluate the quality of body shape predicted by

RF-Avatar, we compare our prediction with the body shape

captured by VideoAvatar [6], shown in Figure 6. VideoA-

vatar leverages a sequence of images to estimate a body

mesh. The recovered mesh is overlaid on the RGB image

of each person and is shown on the right side of each pair.

To better compare the difference in body shape, we take

the predicted shape of a subject (obtained by averaging pre-

dictions over a window of 10 seconds) from RF-Avatar and

render the resulting mesh (in the same pose as VideoAvatar)

and overlay it on the same background. This is shown on the

left side of each pair. We see a close qualitative agreement

between the ground truth and the output from RF-Avatar for

male and female subjects with different body shapes.

RF-Avatar encodes human motion dynamics: Figure

5 demonstrates how our model can produce dynamic 3D

meshes for different people over time, and how these

meshes look realistic. We can see how the two subjects per-

form walking and lifting actions, and the produced meshes

over time closely map to the performed actions.

5.3. Quantitative Evaluation for Shape and Pose

We now present quantitative results for our method, eval-

uating its performs on standard pose and body shape met-

rics. We also conduct ablation studies comparing with vari-

ants of our model that lack a particular component, namely

variants that do not have supervision on the β parameters,

do not use an attention mechanism, and use a frame-based

discriminator (as in [23, 24]).

Metrics: We report the commonly used 3D joint metric

Mean Per Joint Position Error (MPJPE). We also compute

the per-vertex error as the average vertex to surface distance

between the predicted mesh and the ground truth.

Table 1 shows the results for MPJPE and Per-vertex er-

ror respectively. As can be seen, for both MPJPE and per-

vertex error, assessing recovered pose and shape quality re-

spectively, the model that incorporates supervision for β,

self-attention, and the temporal discriminator, performs the

best across all metrics. Of particular note is how the MPJPE

drops from 6.05 cm to 6.88 cm when we do not use the tem-

poral discriminator, demonstrating the value of the PDD in
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Prediction RGB image Prediction RGB image Prediction RGB image

Figure 4: Human mesh prediction from RF-Avatar. We show images for visual reference. Our model captures different body shapes,

poses, and multi-person scenarios effectively. The bottom row shows that RF-Avatar works despite occlusion and bad lighting conditions.

Figure 5: Dynamic human meshes predicted from RF-Avatar.

RF-Avatar can capture dynamic mashes for different actions, in-

cluding walking (top image) and lifting an object (bottom image).

learning motion dynamics to help resolve ambiguities. We

also see the importance of adding strong supervision for β:

the per-vertex error increases from 1.88 cm to 4.70 cm when

it is removed. We also note here that the previous image-

based mesh recovery methods have an MPJPE error around

8.8 cm [23] and a Per-vertex error around 11.8 cm [36].

Aside from the difference in datasets, we believe this dif-

ference in performance can be attributed to the fact that

RF signals capture information about 3D space and our

RF-based model is trained with stronger supervision than

image-based methods.

We further see that the results using the TPN output (top

row) are similar to the results using the ground truth bound-

ing boxes (bottom row), illustrating the effectiveness of our

entire detection, tracking, and shape estimation pipeline.

This applies for both pose and shape metrics.

MPJPE (cm) Per-vertex error (cm)

RF-Avatar 6.05 1.88

No β loss 6.72 4.70

No attention 6.43 2.55

Frame-based disc. 6.88 2.24

With g.t. boxes 5.75 1.65

Table 1: Joint and vertex errors, assessing pose and body shape

quality respectively.

Table 2 compares the results of our model for the shape

and pose metrics for the total occlusion (through-wall) and

line-of-sight scenarios. We see that our model performs

well in the through-wall setting, even though it was never

trained directly on through-wall data.

5.4. Analysis of Self­Attention

Table 1 shows that adding the self-attention module

helps our quantitative results on shape and pose metrics.
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RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar

Figure 6: Comparison of body shape recovered from RF-Avatar and VideoAvatar. We render the mesh with the predicted shape

estimated by RF-Avatar and the ground truth shape estimated by VideoAvatar and overlaid both on top of the corresponding RGB image.

3D MPJPE (cm) Per-vertex errors (cm)

Line-of-sight 5.84 1.79

Through-wall 6.26 1.97

Table 2: Results in the line-of-sight and through-wall settings.

Self-attention helps our model better combine information

over time when estimating the shape vector. We visualize

the learned multi-headed attention maps in Figure 7. Fo-

cusing on the second attention component first, we see that

it has high activation for timesteps 11 and 12. The high

activation at these times indicates that they may contain im-

portant shape information. When comparing with the RGB

images around timesteps 11 and 12, we see that the sub-

ject is facing the radio and waving at these times, so these

timesteps likely contain reflections from his arm and pro-

vide important information about his upper limbs.

Time step

A
tt

e
n

ti
o

n

co
m

p
o

n
e

n
t

Figure 7: Learned attention maps over time for the different at-

tention heads. We see that different attention components activate

differently when the person is turning, waving hands and showing

his side to the sensor.

5.5. Failure Modes

We analyze the failure cases of RF-Avatar. Typical fail-

ure examples are caused by (a) unusual body poses, (b)

interpenetration of body meshes [13, 39], and (c) highly

crowded scenes where people are very close to each other.

(a) Unusual body pose (b) Interpenetration (c) Crowded scene

Figure 8: Typical failure cases of RF-Avatar.

In Figure 8, we present examples of the typical failure

cases. Figure 8(b) shows that RF-Avatar fails to handle

unusual body poses (e.g. tying shoes). In Figure 8(b),

interpenetration of estimated body meshes happens when

the person raise his hand to hold glasses. In crowded

scenes (e.g. Figure 8(c)) where people are very close to

each other, RF-Avatar produces overlapped body meshes.

Failure modes (a) and (b) are related to our choice of body

mesh model, while failure mode (c) is due to the relatively

low spatial resolution of RF signals in comparison to visible

light.

6. Conclusion

This paper presented RF-Avatar a system that recovers

dynamic 3D mesh models of the human body using RF sig-

nals. RF-Avatar is trained using cross-modality supervision

from state-of-the-art vision algorithms, yet remains effec-

tive in situations that challenge vision systems, such as in

poor lighting, and when subjects are occluded. We believe

this work paves the way for many new applications in health

monitoring, gaming, smart homes, etc. RF-Avatar signifi-

cantly extends the capabilities of existing RF-based sensing

systems, and the principles involved in its design could be

utilized to improve the performance of existing computer

vision methodologies.
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