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Abstract

Many people search for foreground objects to use when

editing images. While existing methods can retrieve candi-

dates to aid in this, they are constrained to returning objects

that belong to a pre-specified semantic class. We instead

propose a novel problem of unconstrained foreground ob-

ject (UFO) search and introduce a solution that supports

efficient search by encoding the background image in the

same latent space as the candidate foreground objects. A

key contribution of our work is a cost-free, scalable ap-

proach for creating a large-scale training dataset with a va-

riety of foreground objects of differing semantic categories

per image location. Quantitative and human-perception ex-

periments with two diverse datasets demonstrate the advan-

tage of our UFO search solution over related baselines.

1. Introduction

Image-based search, the task of retrieving images based

on an image query, is a popular research problem with many

applications [16, 23, 1, 28, 7]. While it is often used to

find visually or semantically similar images to the query

image, a less explored subproblem in this domain is search-

ing for content to edit the query image. Yet the importance

of this subproblem is evidenced by the existence of many

stock image websites, for example shutterstock.com,

www.istockphoto.com, and stock.adobe.com to

name a few, which contain tens of millions of images of

objects on a white or plain background to make it easy to

cut out just the foreground object to use it in another image.

Whether a user is placing an object on top of a complete im-

age (compositing) or using an object to partially fill a hole

(created, for example, by removing another object or area),

an important part of the creative process is to find a large

variety of content that is compatible with the surrounding

background in order to explore multiple possible outcomes.

The most relevant related work to this subproblem are

compositing-aware methods which require a user to specify

the desired object type to be pasted into a query image, and
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Figure 1. We propose a method to search for foreground objects

that are semantically compatible with a background image. In this

example, our approach takes the background image with a hole on

the table, searches in a large object database consisting of multiple

semantic classes, and returns compatible foreground objects. This

example illustrates how UFO search can be used for hole filling

(using [4] to fill in the gaps around the object) and compositing.

then search for suitable objects [11, 30].1 While specifying

the object type to be inserted can guide the search process,

it also introduces a limitation that creatives cannot explore

many possible image modifications representing a variety of

objects that can be inserted into a query image believably.

In this paper, we propose the problem of unconstrained

foreground object search (UFO search). Specifically, the

goal is to search for foreground objects that are semanti-

cally compatible with a background image without any con-

straint on what objects to retrieve. An object is compatible

with a background image if it can be realistically compos-

ited into the image or used to aid hole filling, as illustrated

in Figure 1. Here, we focus on semantic compatibility as

other methods address correcting geometrical errors [12, 2]

and low-level color and appearance differences [24, 31].

1Of note, search is a valuable approach since deep learning based meth-

ods that synthesize realistic-looking content are unable to do so for large

holes with complex surrounding structures [15, 27, 8, 29].
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We also introduce a novel solution for UFO search. In-

spired by [30], our network projects background images and

foreground objects into a high-level feature space, without

requiring object labels, such that compatible objects and

backgrounds are near each other. These high-level features

are then used for efficient search. A key contribution of our

work is a cost free, scalable approach for creating a large

(noisy) dataset for training unconstrained foreground object

search methods. Experiments demonstrate the effectiveness

of our UFO search method over numerous related baselines.

2. Related Work

Constrained Foreground Object Search is the task of re-

trieving foreground objects that are compatible with the

background image given the desired object type. Early

works such as Photo Clip Art [11] retrieved foreground ob-

jects of a given class based on handcrafted features such as

camera orientation, lighting, resolution and local context.

More recently, Tan et al. [21] used off-the-shelf deep CNN

features from the context to find suitable foreground persons

particularly for person composition. Zhao et al. [30] used

end-to-end feature learning to adapt to different object cat-

egories. In contrast, our approach has no constraint on what

objects to retrieve and our experiments demonstrate it can

retrieve compatible object candidates of different classes.

Predicting Compatibility. Prior work [31] has demon-

strated it is possible to solve a related problem of predicting

whether a composite and image are compatible. However,

while [31] focuses on low-level compatibility (e.g., color,

lighting, texture), we aim to stay largely agnostic to low-

level properties (since properties such as lighting and color

differences can be corrected in post-processing) and instead

address semantic compatibility. Experiments show the ad-

vantage of our solution over [31] for the UFO search task.

Context-based Reasoning has been used in object recog-

nition and detection [6]. Some works model the interaction

of existing content in the image. For example, early works

[3, 19] incorporated context cues for object recognition and

Bell et al. [5] recently proposed a recurrent neural network

for object detection. Our method more closely aligns with

methods that make predictions about missing content based

on image context. For example, one work proposes solving

object detection based on context cues only [22]. Another

work trains a standalone object-centric context representa-

tion to detect missing objects [20]. While these methods fo-

cus on the binary decision of whether there should be an ob-

ject of a semantic class at a specific location, our approach

addresses a distinct problem of searching for foreground ob-

ject instances that are compatible with the context. More-

over, the compatible foreground objects may be a subset of

a semantic class or come from different classes.

Scene Completion methods [7, 26, 32], like our work, in-

volve inserting foreign content into an image. However,

such methods address a distinct problem from our proposed

UFO search problem. The former assumes the goal is to

find a patch to insert into a scene image. Consequently, it

must find a patch that seamlessly matches every background

element in the scene. In contrast, UFO Search only finds a

compatible object. This distinction provides an advantage

over Scene Completion methods since UFO search meth-

ods can work in a general-purpose pipeline that positions

a foreground object over the majority of the hole, and then

applies any downstream post-processing methods (exempli-

fied in Figure 1) to fill the gaps.

3. Methods

We propose a method for retrieving foreground objects

from a database that are semantically compatible with a

given image at a specified location. Our approach learns

how to represent both the background image and each can-

didate foreground object in a shared search space that sup-

ports efficiently ranking the compatibility of all foreground

objects. The architecture and training scheme for our ap-

proach are summarized in Figure 2 and described below.

3.1. Deep Learning Architecture

We propose a deep neural network that consists of two

encoders which characterize the background image and

foreground objects respectively by projecting them into a

high-level feature space where compatible objects and im-

age are near each other spatially. The approach is inspired

by [30], though our architecture is more straight-forward

and does not require an object label. The input to the fore-

ground encoder is a foreground object on the background of

mean image value, and the input to the background encoder

is the background image with a hole2 (needed for masking

out the original object at that location in the training set) at

the desired object location. The high-level feature outputs

from the foreground objects can be stored in an index so that

the objects can be retrieved given the feature corresponding

to a background image.

Both encoders are derived from the popular VGG-

19 [18] architecture (up to fc6 layer), that takes as input im-

ages of size 224×224 and outputs 4096 dimensional feature

embeddings. For the foreground object encoder, our goal is

to capture the semantics of foreground objects. Since that is

already captured well in the VGG-19 [18] architecture, we

keep the weights that were pretrained for the ILSVRC-2014

competition [17] fixed during training. In contrast, for the

background encoder, we initialize the weights with those

pretrained for the ILSVRC-2014 competition [17] and then

modify them during training. The encodings of the back-

ground image and foreground objects are then converted to

2The hole is filled with the mean image value.
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Figure 2. Architecture and training scheme of UFO search. Given a background image with a hole, we first sample foreground objects

to overlay in the hole. Then the pretrained discriminator takes the overlaid image and identifies compatible and incompatible foreground

objects. We use two encoders to encode the background image and foreground objects respectively. The triplet loss encourages the

compatibility between the background and positive samples to be larger than its compatibility with negative samples.

unit feature vectors with ℓ2 normalization and used to com-

pute compatibility, by measuring their cosine similarity.

3.2. Loss Function

We adopt as our loss function a triplet loss [25] that

takes as input a background image, positive sample, and

negative sample. This function encourages the compati-

bility between a background image and a good foreground

object (i.e., positive sample) to be larger than its compat-

ibility with a bad foreground object (i.e., negative sam-

ple). Formally, given a background image Ib, positive

sample I
p
f , and negative sample Inf , we want to enforce

C(Ib, I
p
f ) > C(Ib, I

n
f ). The triplet loss is a hinge loss

L(Ib, I
p
f , I

n
f ) = max(0, C(Ib, I

n
f )+M −C(Ib, I

p
f )) where

M is a positive margin to encourage a gap between the pos-

itive and negative sample. The training objective is to min-

imize the loss over all the sampled triplets.

3.3. Training Data Generation

We generate a training dataset that consists of triplets

that contain a (1) background image, (2) compatible fore-

ground object (positive), and (3) incompatible foreground

object (negative). Exemplar triplets are shown in Figure 2.

Our key challenge lies in how to generate a sufficient

number of positive samples per background image. That

is because, for each background image, we only have one

known positive sample: the foreground object that orig-

inally was there. Yet, for many scenes, numerous other

foreground objects are plausible. We introduce two mech-

anisms for identifying a diversity of compatible foreground

objects per background image: a discriminator to identify

a noisy set of compatible foreground objects for each back-

ground image and a sampling module to accelerate identi-

fying plausible foreground objects for training the encoder.

Training Data Filtering. We propose a discriminator to

help filter the training data for effective training samples.

We design it to take as input a given background image

with the foreground object overlaid in the hole and output

a prediction of whether they are compatible. Note that this

discriminator is distinct from that employed for our UFO

search encoder (described in Section 3.1). While our UFO

search encoder learns how to represent the foreground ob-

jects and background image de-coupled in a complex, high-

level feature space, the discriminator instead takes them

coupled as input, with the foreground object overlaid on the

background image. Consequently, while our UFO search

encoder returns an efficient representation for search where

objects that are compatible are close and objects that are

not compatible are far away, the discriminator outputs a

“yes”or “no”answer for a single pair of a foreground ob-

ject and background image. We will show in Section 4 that

the discriminator alone is unsuitable for solving our com-

patibility problem (in terms of accuracy and speed) but is

valuable for boosting the performance of our UFO search

encoder by generating noisy yet richer training triplets.

For the discriminator’s architecture, we adapt VGG-

19 [18] by replacing the last fully connected layer to pro-

duce a scalar value that indicates the compatibility score.

To encourage the network to utilize high-level features so

it focuses on semantic compatibility, we initialize with the

weights pretrained for the ILSVRC-2014 competition [17]

and freeze all the convolutional layers. We train all the
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Figure 3. Examples of positive and negative samples used to train

the discriminator for compatibility prediction. The positive sam-

ples (the left column) are created by overlaying the original object

in the hole. The foreground objects in negative samples (the mid-

dle and right column) are randomly sampled from other images.

fully connected layers from scratch using a sigmoid cross-

entropy loss. For training data, we generate compatible

training examples by overlaying the original foreground ob-

ject in the hole, and generate incompatible examples by

selecting a random foreground object from another back-

ground image, resizing the object to fit in the hole, and then

positioning it at the center of the hole. Examples of com-

patible and incompatible samples that we feed to train our

discriminator are shown in Figure 3. Note that in the hole

we overlay the object alone rather than the original patch

containing the object. Otherwise the discriminator will sim-

ply learn to use low-level cues such as boundary continuity

rather than semantics for classification.

We restrict training triplets to only include fore-

ground objects that the discriminator confidently deems are

(in)compatible when training the encoder. A foreground is

deemed compatible with a given background if the discrim-

inator predicts the compatibility score to be higher than a

threshold thigh and incompatible if the score is lower than

a threshold tlow. Despite training with a single ground truth

object per background image, we show in the experiments

that the discriminator can sufficiently rank the compatibil-

ity of diverse foreground objects. The success of training a

classifier to rank has similarly been observed in prior work,

e.g. Zhu. et.al [31] for the task of ranking the realism of

image composites by low-level appearance.

Collecting Candidate Positive Examples Faster. While

the discriminator solves an easier task than our UFO search

method by solving a “yes” or “no” problem for a coupled

input, it does so at the expense of efficiency. That is be-

cause naively applying the pretrained discriminator can re-

quire comparing each background image against almost ev-

ery foreground object in a database before locating a suffi-

cient number of high scoring compatible examples.

To speed up the discriminator’s role in generating train-

ing data, we introduce two heuristics for sampling plausi-

ble foreground objects. First, we retrieve the top KC most

similar background scenes, and put the objects within those

scenes into the sample set. The assumption is that simi-

lar backgrounds are likely to offer (possibly a diversity of)

compatible objects. For example, for a given grass scene,

we can find similar scenes such as a picnic on a lawn. The

sitting persons or folding chairs in the picnic scene are also

likely to be compatible with the grass scene. Second, we

sample the top KG foreground objects that are most similar

to the original object, motivated by the assumption they are

more likely to be compatible with the given context. For ex-

ample, if a dog is running on the grass in the original image,

it is likely that dogs in other scenes will also be compatible.

In a database of over 60,000 objects, we observe a more

than 20x speed up from the two proposed heuristics (from

731 to 32 random samples on average) to find another com-

patible object other than the original object in the hole.

3.4. Implementation

At training time, we employ the Adam solver [10] with

fixed parameters β1 = 0.5 and β2 = 0.999. The initial

learning rate is set to lr = 0.00001 to train the encoder and

lr = 0.00002 to train the discriminator. We set the positive

margin M , which encourages a gap between the positive

and negative sample, to 0.3, with the threshold thigh for

identifying positive samples in compatibility prediction set

to 0.8 and the threshold tlow for identifying negative sam-

ples in compatibility prediction set to 0.3. All the back-

ground and foreground input images are set to a size of

224× 224. We train the discriminator beforehand and then

fix the discriminator when training the encoder. Training

with PyTorch [14] takes 63 hours for 142,300 iterations on

a single NVIDIA GeForce GTX 1080 Ti card.

At test time, we apply the background encoder to retrieve

the most compatible foreground objects for a given back-

ground image with a hole. Compatible objects are found

using nearest neighbor search between features describing

the background image and foreground object. We speed up

nearest neighbor search by using Faiss [9] to build an in-

dex for the evaluation set of foreground objects. After the

speedup, it takes <0.1 seconds to retrieve top 25 compatible

objects from a database of over 10,000 objects.

4. Experiments

We now examine the power of our UFO search approach

in finding compatible foreground objects for a given hole

in a background image. We examine the following ques-

tions: (1) How often do related baselines re-purposed for

UFO search retrieve compatible foreground objects?, (2)

How often does our UFO search method retrieve compat-
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