
Fast-deepKCF Without Boundary Effect

Linyu Zheng, Ming Tang, Yingying Chen, Jinqiao Wang, Hanqing Lu

National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, China

University of Chinese Academy of Sciences, Beijing, China

{linyu.zheng, tangm, yingying.chen, jqwang, luhq}@nlpr.ia.ac.cn

Abstract

In recent years, correlation filter based trackers (CF

trackers) have received much attention because of their top

performance. Most CF trackers, however, suffer from low

frame-per-second (fps) in pursuit of higher localization ac-

curacy by relaxing the boundary effect or exploiting the

high-dimensional deep features. In order to achieve real-

time tracking speed while maintaining high localization ac-

curacy, in this paper, we propose a novel CF tracker, fd-

KCF*, which casts aside the popular acceleration tool, i.e.,

fast Fourier transform, employed by all existing CF track-

ers, and exploits the inherent high-overlap among real (i.e.,

noncyclic) and dense samples to efficiently construct the k-

ernel matrix. Our fdKCF* enjoys the following three ad-

vantages. (i) It is efficiently trained in kernel space and spa-

tial domain without the boundary effect. (ii) Its fps is almost

independent of the number of feature channels. Therefore,

it is almost real-time, i.e., 24 fps on OTB-2015, even though

the high-dimensional deep features are employed. (iii) Its

localization accuracy is state-of-the-art. Extensive exper-

iments on four public benchmarks, OTB-2013, OTB-2015,

VOT2016, and VOT2017, show that the proposed fdKCF*

achieves the state-of-the-art localization performance with

remarkably faster speed than C-COT and ECO.

1. Introduction

Visual object tracking is one of the fundamental prob-

lems in computer vision with many applications. In the

model free tracking problem, the goal is to estimate the s-

tates (e.g., position and size) of the target in a whole image

sequence only with the initial frame [45, 46]. Model free

tracking is very challenging because the tracker has to learn

the robust appearance model from a very limited training

samples to resist extremely challenging interference, such

as occlusions, large appearance changes, illumination vari-

ation, fast motion, and background clutters. In general, the

key problem of model free tracking is how to construct a

tracker which can not only tolerate appearance variation

Base Sample Shift +50 Shift +100Shift ‐50Shift ‐100

real virtual virtualvirtualvirtual
Base Sample Shift +50 Shift +100Shift ‐50Shift ‐100

realrealreal
Learning Region

realrealrealreal real

Learning Region Learning RegionLearning RegionLearning Region
virtual virtual

Figure 1: Comparison of sampling methods in KCF [22] (1st row),

BACF [24] (2nd row), and our fdKCF* (last row). Training sam-

ples of KCF come from the cyclic shift of a base sample (i.e. learn-

ing region), and they are all virtual except for the base one. BACF

obtains its training samples with target size (cyan boxes) by clip-

ping the middle parts of all training samples of KCF, and some

of them are virtual. Different from them, in fdKCF*, training

samples with target size (red boxes) are densely sampled from the

learning region in the traditional sliding window way, and they are

all real. We call our sampling method as real and dense sampling.

of target, but also exclude background interference, while

maintaining the processing speed as fast as possible.

In recent years, correlation filter based trackers (CF

trackers) have received much attention because of their top

performances. Since MOSSE [3], almost all CF trackers

[22, 39, 18, 28, 10, 1, 12, 13, 14, 24, 8, 31] have been rely-

ing on fast Fourier transform (FFT) to accelerate their com-

putations. Unfortunately, while modern CF trackers’ local-

ization accuracies continue to improve, their fps’ become

lower and lower. We believe that the following two reasons

cause this phenomenon. On the one hand, to improve the

robustness of tracking algorithm itself, some representative

CF trackers [12, 24] exploit techniques to relax the bound-

ary effect which is introduced by FFT [3]. These tech-

niques, however, inevitably destroy entire cyclicity of the

training samples, resulting in much slower training speed.

On the other hand, to improve the robustness of features to

4020

Learning Region Search Region

Region size: Sample size:

Figure 2: Illustration of redundant computations in the construc-

tion of linear kernel matrix by the brute-force approach. The col-

or bounding boxes are three pairs of real and dense samples, •
denotes dot product, and the red pentagram and the red dot are

shared C-dimensional feature vectors by the solid and dotted line

samples, respectively. The two samples of identical color are con-

sidered as a pair because the relative position of the red pentagram

in the solid sample is the same as that of the red dot in the dotted

sample. We have to calculate the dot product of the red pentagram

and the red dot three times in this example. In practice, we need

to calculate the above dot product h × w times when the dense

and real samples and the brute-force approach are employed. In

contrast, our fCKM calculates it only once.

appearance variations of targets, deep features which are al-

ways high-dimensional are employed by modern CF track-

ers [30, 14, 8, 11, 37, 5]. Although these trackers benefit

from deep features remarkably, their computational costs

increase significantly. Particularly, C-COT [14] which not

only relaxes the boundary effect but also employs deep fea-

tures can run at only 0.3 fps on GPU. Further, despite lots

of techniques have been employed to accelerate its compu-

tation, ECO [8] can run at only 6 fps. Naturally, it is asked

whether or not we can design a CF tracker which is able to

efficiently relax or even avoid the boundary effect inherent-

ly, i.e., does not employ FFT to accelerate its training, and

efficiently exploit deep features at the same time?

To solve the above problem, in this paper, we propose

a novel CF tracker, fdKCF* which not only has not the

boundary effect inherently, but also can run in real-time

even though deep features are employed. First, we in-

troduce the real and dense sampling method to avoid the

boundary effect radically. As shown in Fig. 1, this sampling

method is based on the traditional sliding window where all

training samples are real, and it is different from the cyclic

shift based sampling method used in existing CF trackers,

such as KCF [22] and BACF [24], where training set con-

tains virtual samples, resulting in the negative boundary ef-

fect. Second, we design a novel algorithm, fCKM, to con-

struct the kernel matrix in spatial domain efficiently even if

the high-dimensional deep features are employed after in-

vestigating the inherent high-overlap among real and dense

samples. Finally, a Gauss-Seidel based iterative method is

employed to efficiently optimize in dual space.

It is observed that there exist vast redundant computa-

tions in the construction of kernel matrix by using the brute-

force approach because of the high-overlap among real and

dense samples. Take the linear kernel as an example. Giv-

en the H × W × C feature maps of learning region and

detection region where C is the number of channels, we

have to calculate the dot product of any two C-dimensional

feature vectors, which come from the two feature maps re-

spectively, K times where K is the number of pairs of sam-

ples which contain the above two feature vectors respec-

tively. Indeed, this dot product need to be calculated only

once. Fig. 2 shows an example. Inspired by this obser-

vation, we propose a novel algorithm, fCKM, which can

construct the linear kernel matrix efficiently by eliminating

redundant calculations, i.e., the dot product of any two C-

dimensional feature vectors is only calculated once, instead

ofK times. fCKM conducts the following two steps to con-

struct the matrix of linear kernel: (i) building the dot prod-

uct value table of any two C-dimensional feature vectors

which come from the input two feature maps respectively;

(ii) obtaining each element in the linear kernel matrix by

looking up the table and summing. This way, the redundant

calculations of dot product of any two C-dimensional fea-

ture vectors can be replaced with looking up table with time

complexity O(1) rather than O(C) in brute-force approach.

Consequently, fCKM enjoys the following two advantages:

(i) It is performed in spatial domain without the boundary

effect. (ii) Its running speed is fast and insensitive to the

number of feature channels. In our experiments, only a few

milliseconds are taken to construct the matrix of linear ker-

nel even though the number of feature channels up to 1024.

Additionally, it can also be employed to construct many ma-

trices of typical non-linear kernels with very little increase

in time-consuming by modifying the first step and adding

non-linear mapping after the second step.

Experiments are performed on four public benchmark-

s: OTB-2013, OTB-2015, VOT2016, and VOT2017. Our

fdKCF* achieves the state-of-the-art localization perfor-

mance, while running at 24 fps. As a fair comparison, when

C-COT [14] and fdKCF* employ deep features of the same

dimensional, run on same GPU, and do not use any other ac-

celeration techniques, the localization accuracy of fdKCF*

is higher than that of C-COT, while the mean fps of fdKCF*

is about 80 times that of C-COT. To the best of our knowl-

edge, our fdKCF* is the first CF tracker which achieves

both high localization accuracy and real-time speed.

2. Related Work

For the first time, KCF [21, 22] establishes the relation-

ship between correlation filters and ridge regression. Com-

pared to MOSSE, KCF is modeled in kernel or dual space

and it can make use of multi-channel features without an

increase in parameters. Besides, another important contri-

bution of KCF is the fast calculation of kernel matrix in

frequency domain. In order to improve the localization per-

formance of KCF, HCF [30] introduces the higher dimen-

sional deep features into KCF, however, the boundary effect

become a bottleneck for its localization performance. Our

4021

fdKCF* is also modeled in kernel or dual space. It is, how-

ever, mainly different from KCF and HCF in two aspects.

First, samples of our fdKCF* are real (i.e., noncyclic) and

dense ones, rather than the cyclic shifts of a real base sam-

ple as in KCF and HCF (See Fig. 1). In other words, there

is no boundary effect inherently in our fdKCF*, whereas

KCF and HCF suffer from it. Therefore, the localization

performance of our fdKCF* exceeds HCF with a large mar-

gin (about 10 percent point on OTB-2013 and OTB-2015).

Second, our fdKCF* is accelerated in the spatial domain by

exploiting the inherent high-overlap among real and dense

samples, rather than in frequency domain as done in KCF

and HCF. It is worth noting that compared to HCF, the track-

ing speed of our fdKCF* is much faster than its (24fps vs.

11fps on GPU) even though the search region of fdKCF* is

larger than HCF (4 vs. 1.8 times target size) and fdKCF*

does not exploit the cyclic samples structure to accelerate.

By exploiting the real and dense samples, LSART [37]

solves for the dual variables of the KCF with linear kernel

through propagating messages forward and backward in a

network. It does not construct the kernel matrix explicitly.

Different from LSART, our fdKCF* constructs the kernel

matrix first, and then solve for the dual variables by an iter-

ative method. The efficiency of our fdKCF* is remarkably

higher than that of LSART for the following two reasons.

First, in order to solve for the dual variables, every update

for them requires to propagate messages forward and back-

ward in the network of LSART, and this is time-consuming.

Whereas in our fdKCF*, we only construct the kernel ma-

trix once by our fCKM, then solve for the dual variables by

an iterative method. Both steps are efficient. Second, only

the first-order convergence method like SGD can be em-

ployed in LSART, while more efficient ones such as Gauss-

Seidel can be used in our fdKCF*. It is worth noting that

LSART can only employ the linear kernel, whereas non-

linear kernels can also be employed in our fdKCF*.

In addition, Siamese networks based trackers [2, 27, 20]

achieved state-of-the-art performance in recent years. They

treat tracking as a similarity learning problem and train their

models by vast offline data. For completeness, we also com-

pare our fdKCF* with typical ones in the experiment.

3. KCF without Boundary Effect

We will start with the kernel ridge regression problem,

and suggest readers referring to [22, 44] for the relation be-

tween the ridge regression and the kernel ridge regression.

Let X ∈ RH×W×C and Z ∈ RH×W×C be the fea-

ture maps of learning region and search region, respec-

tively, where H and W are the height and width of the

feature maps, respectively, C is the number of channels.

All training samples {xi}
N
i=1 where xi ∈ Rh×w×C are

sampled from X, as shown in Fig.3, and all test samples

{zi}
N
i=1 where zi ∈ Rh×w×C are sampled from Z in the

Learning Region
feature map

Feature
Extraction

sample

Figure 3: Sampling in feature map X (green cuboid). Sam-

ples
{
xi | i = 1...W̃ ...N

}
are obtained by using real and dense

sampling method (see Fig. 1) where W̃ = W − w + 1 and

N = (H − h+ 1)× (W − w + 1). See Sec.3 for details.

same way, where h ≤ H and w ≤ W are the height

and width of the feature map of target, respectively, and

N = (H − h+ 1) × (W − w + 1). Further, we define the

kernel matrix KZX as follows:

KZX =



κ (z1,x1) · · · κ (z1,xN)

...
. . .

...

κ (zN ,x1) · · · κ (zN ,xN)


 , (1)

where κ (·, ·) is a kernel. KXX is the Gram matrix with

respect to {xi}
N
i=1 if Z = X. In the rest of this pa-

per, we will use KL
ZX

and KG
ZX

to indicate the linear and

Gaussian kernel matrices with κL (zi,xj) = 〈zi,xj〉 and

κG (zi,xj) = g(zi,xj) as their elements, respectively,

where g(·, ·) is Gaussian function.

According to Eq.(1), the optimization problem of KCF

without the boundary effect (KCF*) can be formulated in

dual space as

min
α

‖y −KXXα‖
2
2 + λαTKXXα, (2)

where y = [y1, y2, ..., yN] is the vector of gaussian labels, λ
is the regularization parameter, and α ∈ RN×1 is the vector

of dual variables. The optimization solution of Problem (2)

can be expressed as

α
∗ = (KXX + λI)

−1
y. (3)

Further, given X and α
∗, the process of detection in Z can

be expressed as

f (Z) = KZXα
∗. (4)

It is clear that in order to calculate α∗ in Eq.(3), we have

to construct KXX with {xi}
N
i=1 first. Constructing KXX,

however, is extremely time-consuming when dense samples
and deep features are employed where N and C are gener-
ally large. For example, when KL

XX
is constructed, its each

element κ(xi,xj) has to be calculated by the formula

κ(xi,xj) = 〈xi,xj〉

=

h−1∑

m=0

w−1∑

n=0

C−1∑

d=0

X⌊i/W̃⌋+m,(i mod W̃)+n,d

·X⌊j/W̃⌋+m,(j mod W̃)+n,d,

(5)

4022

where W̃ = W − w + 1 and Xp,q,d is the element of X

at the p-th row, q-th column and d-th channel. Therefore,

the time complexity of constructing KL
XX

with Eq.(5) is

O
(
N2Chw

)
, and so is KL

ZX
. Suppose H = βh, H = W ,

h = w, and replaceN with (H−h+1)×(W−w+1). Then,

the above complexity can be simplified to O
(
Cβ4h6

)
1.

It is noted that this complexity is extremely high because

h and C often belong to 10 and 103 orders of magnitude,

respectively, when deep features are employed.

4. Fast Calculation of Kernel Matrix (fCKM)

In this section, we first introduce our novel algorithm

fCKM for efficient construction of KZX, then show how it

works with linear kernel and Gaussian kernel as two special

cases. Finally, the analysis of complexities of fCKM and its

comparison with the brute-force approach is presented.

4.1. fCKM for General Kernels

Our fCKM can construct the kernel matrix efficiently

where kernel κ (·, ·) can be expressed as

κ (z,x) = ψ

(
h−1∑

m=0

w−1∑

n=0

C−1∑

d=0

φ (zm,n,d,xm,n,d)

)
, (6)

where ψ (·) and φ (·, ·) are two functions with time com-

plexities O (γ) and O (η), respectively, z ∈ Rh×w×C and

zm,n,d is the element of z at the m-th row, n-th column and

d-th channel. We call such κ(·, ·) as (ψ, φ) kernel.

It can be observed from Fig. 2 and Fig. 3 that most

elements of any sample are also elements of its spatial-

ly adjacent ones for real and dense samples. Such large

shared elements will lead to large redundant computations

in constructing KZX of (ψ, φ) kernel with brute-force ap-

proach, i.e., calculating κ(zi,xj)’s with Eq.(6). This is be-

cause there are K pairs of samples, (z,x)’s, which contain

(Zm,n,∗,Xi,j,∗) and the relative position of Zm,n,∗ in z is

the same as that of Xi,j,∗ in x, where K ∈ [1, h× w] and

Zm,n,∗ is the C-dimensional feature vector at the m-th row

and n-th column of Z, leading to
∑C−1

d=0 φ (Zm,n,d,Xi,j,d)
has to calculateK times. In order to reduce these redundant

computations, we design a novel algorithm fCKM to con-

struct KZX of (ψ, φ) kernel efficiently. Our fCKM consists

of the following three steps.
(1) Building Base Table. The base table T ∈ RHW×HW

of (ψ, φ) kernel is constructed with expression:

T (i, j) =

C−1∑

d=0

φ
(
Z⌊j/W⌋,j mod W,d,X⌊i/W⌋,i mod W,d

)
. (7)

Consequently, T contains
∑C−1

d=0 φ (Zm,n,d,Xi,j,d) for all

(m,n, i, j), and any one is calculated only once. The time

complexity of this step is O
(
ηCβ4h4 + Cβ4h4

)
.

1Here, we use β instead of β−1 for convenience in this paper, and this

is reasonable because β ∈ [4, 5] in general [14, 18, 12, 8, 11, 13].

(2) Constructing Summation Matrix. The summation

matrix S ∈ RN×N is constructed through looking up the

base table T and summing. Specifically,

S (i, j) =

h−1∑

m=0

w−1∑

n=0

T (p, q) , (8)

where

p = (⌊i/W̃ ⌋+m)×W + (i mod W̃) + n,

q = (⌊j/W̃ ⌋+m)×W + (j mod W̃) + n,

W̃ =W − w + 1.

(9)

Consequently, S (i, j) = ψ−1 (κ (zi,xj)) for all (i, j). The

time complexity of this step is O
(
β4h6

)
.

(3) Mapping. KZX ∈ R
N×N of (ψ, φ) kernel can be ob-

tained by mapping S with function ψ(·). Specifically,

KZX (i, j) = ψ (S (i, j)) . (10)

Consequently, KZX (i, j) = κ(zi,xj) for all (i, j). The

time complexity of this step is O
(
γβ4h4

)
.

According to above steps,
∑C−1

d=0 φ (Zm,n,d,Xi,j,d) for

all (m,n, i, j) is calculated only once, rather than K times,

in constructing KZX of (ψ, φ) kernel, resulting in the high

efficiency of our fCKM.

Last, we would like to discuss the key difference be-

tween KII [23] and our fCKM. In short, KII needs to val-

idate whether the contribution function satisfies the neces-

sary and sufficient condition, and it can only accelerate the

filtering of a single filter, rather than a group of highly over-

lapping filters. Whereas, our fCKM focus on accelerating

the filtering of such a group of filters.

4.2. fCKM for Linear Kernel Matrix

(ψ, φ) kernel is linear if ψ (x) = x and φ (x, y) = xy.

Therefore, the linear kernel matrix KL
ZX

can be constructed

efficiently with fCKM. Specifically, according to Sec.4.1,

KL
ZX

can be constructed through the following two steps.

(1) Building the base table TL as follows.

T
L (i, j) =

C−1∑

d=0

Z⌊j/W⌋,j mod W,dX⌊i/W⌋,i mod W,d. (11)

(2) Constructing the summation matrix SL with Eq.(8),

where T is replaced with TL in Eq. 11. Finally, KL
ZX

= SL

because ψ (x) = x.

4.3. fCKM for Gaussian Kernel Matrix

Not only the linear kernel, but also many commonly used

non-linear kernels, such as Gaussian, multi-quadric, and

sigmoid ones, are (ψ, φ) kernel. As the most commonly

used one in CF trackers, Gaussian kernel is used to show

how fCKM works to construct the Gaussian kernel matrix.

4023

(ψ, φ) kernel is Gaussian if ψ (x) = exp
(
−

√
x

σ2

)
and

φ (x, y) = (x− y)
2
. Therefore, the Gaussian kernel matrix

KG
ZX

can be constructed efficiently with fCKM. Specifical-

ly, according to Sec.4.1, KG
ZX

can be constructed through

the following three steps.

(1) Building the base table TG as follows.

TG (i, j) =

C−1∑

d=0

(
Z⌊j/W⌋,j mod W,d −X⌊i/W⌋,i mod W,d

)2
.

(12)

(2) Constructing the summation matrix SG with Eq.(8),

where T is replaced with TG in Eq. 12.

(3) Mapping SG to KG
ZX

with ψ (x) = exp
(
−

√
x

σ2

)
, i.e.,

KG
ZX

(i, j) = exp

(
−

√
SG (i, j)

σ2

)
. (13)

4.4. Complexity Analysis

In this section, we analyze and compare the time and

space complexities of our fCKM against those of the brute-

force approach in detail when the linear kernel is employed.

According to Sec. 4.1, the time complexities of the

brute-force approach with Eq.(6) and our fKCM in con-

structing the kernel matrix KZX of (ψ, φ) kernel are

O(ηCβ4h6+Cβ4h6+γβ4h4) andO(ηCβ4h4+Cβ4h4+
β4h6 + γβ4h4), respectively. Therefore, KL

ZX
can

be constructed in the time complexities O
(
Cβ4h6

)
and

O
(
Cβ4h4 + β4h6

)
by the brute-force approach with E-

q.(5) and our fKCM, respectively, because the time com-

plexity of φ (·, ·) and ψ (·) areO (1) andO (0), respectively,

i.e., η = 1 and γ = 0. Further, their proportional relation is

Cβ4h6

Cβ4h4 + β4h6
=

Ch2

C + h2
=

h2

1 + h2/C
(14)

In practice, when the high-dimensional deep features are

employed, C > h2 ≫ h ≫ 1. Therefore, the time com-

plexities of constructing KL
ZX

by brute-force approach is

about h2 times that of our fKCM.

Fig. 4 shows the effect of our fCKM on the reduction of

computational costs compared to the brute-force approach

with common H = W = 60 and h = w = 15 which

are the case if the cell size (stride) of features is 4 × 4. It

can be concluded from the figure that, when the number of

channels increases, the increment of FLOPs with fCKM is

much slower than that with the brute-force approach, and

the more the number of channels is, the more the accelera-

tion of fCKM is. Therefore, our fCKM can construct KL
ZX

efficiently even though the high-dimensional deep features

are exploited. For example, on a TITAN X GPU, when typ-

icallyH =W = 60 and h = w = 15, the execution time of

the Step (1) only increases 8µs with C increasing 1, and it

0 100 200 300 400 500 600
Number of Feature Channels

0

2

4

6

8

10

12

14

FL
O
Ps

×1011 FLOPs of Linear Kernel

brute-force method
our fCKM

Figure 4: Comparison between the amount of computations of our

fCKM and the brute-force method with Eq.(5) in calculating the

linear kernel matrix K
L
ZX with H = W = 60 and h = w = 15.

always takes 4ms to perform Step (2) whatever C is. There-

fore, when H = W = 60, h = w = 15, and C = 600, the

time-consuming of our fCKM is about 8.8ms, whereas that

of brute-force approach is about 600ms.

On the other hand, fCKM has O
(
H2W 2

)
higher space

complexity than the brute-force approach. This requirement

of extra space is used to store the base table T. However,

it is negligible on the current GPU and RAM. For exam-

ple, fCKM only requires 50MB more than the brute-force

approach does under H =W = 60 and float data type.

5. Fast-deepKCF without Boundary Effect

5.1. Fast Training

In Sec. 3, we have shown how to efficiently construc-

t KXtXt
by our fCKM, where Xt is the X in frame t.

Achieving optimal α∗
t by directly using Eq.(3), however,

is time-consuming, because the time complexity of matrix

inversion is O
(
N3
)
. Even though α

∗
t is achieved through

solving a system of linear equations with Gauss elimination

method, the complexity is stillO(13N
3). In order to achieve

α
∗
t more efficiently, we adopt the iterative approach [12]

based on the Gauss-Seidel. Specifically, we decompose

KXtXt
+ λI into a lower triangular Lt and a strictly upper

triangular Ut, i.e., KXtXt
+ λI = Lt +Ut. Then, α∗

t can

be efficiently solved by the following iterative expressions:

α
∗(j)
t ← α

∗
t−1, j = 0, (15a)

α
∗(j)
t ← Lt \

(
y −Utα

∗(j−1)
t

)
, j > 0, (15b)

where j indicates the number of iterations, and α
∗
t−1 is the

optimal solution at frame t− 1. In practice, 5 iterations are

enough for the satisfactory solution α
∗
t . Note that this it-

erative method is efficient because Eq. (15b) can be solved

efficiently with forward substitution, and the time complex-

ity of each iterations is O(N2).
As a comparison to KCF, it is easy to know that the

time complexities of constructing kernel matrix and solving

linear system are O
(
Cβ2h2 log (βh)

)
and O (N), respec-

tively, in KCF, being significantly lower than those of our

4024

fdKCF*. This is because KCF exploits circulant samples

which cause the negative boundary effect.

5.2. Update

To robustly locating the target object, updating the ap-

pearance model of a tracker is often necessary. Similar to

other CF trackers [18, 38, 22], we update Xt in Sec. 5.1 by

means of the following linear weighting approach, i.e.,

X1 = X̃1,

Xt = (1− δ)Xt−1 + δX̃t, t > 1,
(16)

where X̃t is the actual sampled feature map of learning re-

gion in frame t, and δ is the learning rate.

5.3. Fast Multi­scale Detection

Scale-pyramid based method [28] is employed to locate

the target object and estimate its proper scale simultane-

ously. Specifically, given X, α
∗, and the scale-pyramid{

Zi
}S
i=1

of feature maps of detection regions, where S is

the level of the scale-pyramid, the fast detection of target

object on each scale can be expressed as

f
(
Zi
)
= KZiXα

∗, ∀i. (17)

Note that any (ψ, φ) kernel can be used in Eq.(17).

Particularly, if (ψ, φ) kernel is linear, the optimal scale

as well as the target location can be achieved with a more

efficient approach. That is,

w =

N∑

i=1

α
∗(i)xi, (18a)

f̂
(
Zi
)
= Ẑi ⊙ ŵ∗, ∀i, (18b)

where α
∗(i) is the i-th element of α

∗ and •̂ denotes the

DFT of • in H × W dimension. Before conducting DFT

for •, 0’s are padded to •’s bottom right to make its dimen-

sionality be H ×W if the dimensionality of • is less than

H ×W . Eq.(18) is more efficient than Eq.(17) in the case

of multi-scale detection with linear (ψ, φ) kernel because

Eq.(18a) is executed only once.

6. Experiments

We evaluate our fdKCF* on four public benchmark-

s, OTB-2013 [45], OTB-2015 [46], VOT2016 [26] and

VOT2017 [25], and compare its performance with the state-

of-the-art and representative trackers. All parameters of fd-

KCF* are kept consistent in all experimental comparisons.

6.1. Implementation Details

Platform. Our fCKM is implemented in C++, and the

rest of our fdKCF* is implemented in PyTorch [33]. Exper-

iments are performed on Linux with single TITAN X GPU.

Features. Similar to C-COT [14], our fdKCF* only em-

ploys deep features to show performances of the algorithm

itself. Specifically, we adopt the VGG-M-BN [4] trained on

ImageNet [16] for feature extraction. We first change orig-

inal strides of Conv-2 and Conv-5 from 2 to 1 to improve

the localization accuracy. Then, the output maps of Conv-1

followed by an average pooling layer with kernel size 2× 2
and stride 2× 2 are employed as shallow level features (96
channels), and the output maps of Conv-5 followed by a 2×
bilinear interpolation layer are employed as deep level fea-

tures (512 channels). As a result, both shallow level features

and deep level features are of 4× 4 cell size (stride).

Parameters. We set different learning rates (Sec. 5.2)

for shallow level features and deep level features. Specifi-

cally, δ = δs = 0.01 for shallow ones and δ = δd = 0.005
for deep ones. The regularization parameter λ in Eq. 2 is set

to 0.01. The maximum number of iterations j in Eq. 15 is

set to 5. Similarly to SRDCF [12], we set the image area of

the square sampling region to 42 times the target area, and

it is re-scaled to the area of 2002 if its area is less than 2002,

and to the area of 2402 if its area is greater than 2402.

Scaling. In order to balance the localization accuracy

and tracking speed, we set 5 levels scale-pyramid (Sec. 5.3).

Kernel. We only employ the linear kernel in fdKCF* in

our current experiments. The reasons are (1) most of state-

of-the-art CF trackers, such as BACF [18] and ECO [8],

can only employ the linear kernel, (2) fdKCF* with linear

kernel runs slightly faster than that with Gaussian kernel.

6.2. Evaluation on OTB datasets

In our OTB-2013 and OTB-2015 experiments, we com-

pare our fdKCF* with state-of-the-art CF trackers and non-

CF trackers, respectively. When comparing with CF track-

ers, following the standard benchmark protocols in the

OTB-2015 [46], all trackers are quantitatively evaluated

by five metrics, namely precision plot, success plot, dis-

tance precision (DP), overlap precision (OP), and AUC. In

addition, as pointed out in [32], the definition of DP in

OTB-2015 is defective because it is sensitive to the size

of bounding boxes, and they propose the normalized preci-

sion, Pnorm, to measure the localization accuracy. Based on

their work, we evaluate all trackers with Pnorm@0.2 which

is computed as the percentage of frames in a video where

Pnorm is smaller than 0.2. When comparing with non-CF

trackers, all trackers are quantitatively evaluated by AUC

metric because they all reported AUCs in their original pa-

pers and there is no way to obtain the detailed tracking re-

sults of some of them to evaluate them with other metrics.

Comparion with CF trackers. We divide state-of-the-

art CF trackers into two groups for a thorough comparison.

The first group consists of seven trackers which can run

at real-time speed, i.e. beyond 20 fps. These trackers are

MKCFup [39], BACF [18], ECO-HC [8], LCT [31], Sta-

4025

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e
Pr

ec
is

io
n

Precision Plot on OTB-2013

fdKCF* [0.908]
BACF [0.858]
ECO-HC [0.856]
LCT [0.845]
MKCFup [0.837]
CFNet [0.769]
Staple [0.762]
DSST [0.736]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

O
ve

rla
p

Pr
ec

is
io

n

Success Plot on OTB-2013

fdKCF* [0.705]
BACF [0.669]
ECO-HC [0.657]
MKCFup [0.640]
LCT [0.602]
Staple [0.592]
CFNet [0.592]
DSST [0.564]

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e
Pr

ec
is

io
n

Precision Plot on OTB-2015

fdKCF* [0.891]
ECO-HC [0.845]
BACF [0.819]
Staple [0.770]
CFNet [0.765]
LCT [0.756]
MKCFup [0.742]
DSST [0.689]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

O
ve

rla
p

Pr
ec

is
io

n

Success Plot on OTB-2015

fdKCF* [0.675]
ECO-HC [0.649]
BACF [0.631]
CFNet [0.592]
MKCFup [0.581]
Staple [0.581]
LCT [0.533]
DSST [0.528]

(a) Comparison with real-time CF trackers.

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e
Pr

ec
is

io
n

Precision Plot on OTB-2013

ECO [0.910]
fdKCF* [0.908]
C-COT [0.887]
HCF [0.887]
GPRT [0.867]
SRDCFdecon [0.850]
SRDCF [0.835]
deepSRDCF [0.826]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

O
ve

rla
p

Pr
ec

is
io

n
Success Plot on OTB-2013

ECO [0.711]
fdKCF* [0.705]
C-COT [0.678]
GPRT [0.677]
SRDCFdecon [0.654]
deepSRDCF [0.641]
SRDCF [0.639]
HCF [0.614]

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

D
is

ta
nc

e
Pr

ec
is

io
n

Precision Plot on OTB-2015

ECO [0.897]
fdKCF* [0.891]
C-COT [0.890]
GPRT [0.842]
deepSRDCF [0.837]
HCF [0.837]
SRDCFdecon [0.812]
SRDCF [0.782]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

O
ve

rla
p

Pr
ec

is
io

n

Success Plot on OTB-2015

ECO [0.697]
C-COT [0.679]
fdKCF* [0.675]
GPRT [0.655]
deepSRDCF [0.640]
SRDCFdecon [0.632]
SRDCF [0.607]
HCF [0.573]

(b) Comparison with high localization performance CF trackers.

Figure 5: The mean precision and success plots of our fdKCF* and (a) seven modern real-time CF trackers, (b) seven modern CF trackers

that produce state-of-the-art localization accuracy, on OTB-2013 and OTB-2015, respectively. The mean distance precisions and AUCs are

reported in the legends. fdKCF* outperforms all other real-time CF trackers by large margins.

fdKCF* MKCFup BACF ECO-HC LCT Staple DSST CFNet

mOP-13 0.884 0.784 0.841 0.815 0.739 0.721 0.673 0.742

mOP-15 0.828 0.689 0.776 0.782 0.630 0.691 0.615 0.731

mPN-13 0.846 0.760 0.816 0.772 0.773 0.711 0.649 0.725

mPN-15 0.820 0.684 0.771 0.762 0.691 0.720 0.628 0.728

(a) Comparison with real-time CF trackers.

fdKCF* C-COT ECO GPRT HCF SRDCF decon deep

mOP-13 0.884 0.821 0.871 0.841 0.741 0.785 0.799 0.779

mOP-15 0.828 0.816 0.842 0.791 0.661 0.728 0.759 0.765

mPN-13 0.846 0.782 0.832 0.818 0.783 0.748 0.772 0.740

mPN-15 0.820 0.805 0.819 0.793 0.735 0.713 0.753 0.755

mFPS-15 24 0.3 6 5 11 8 1 <1

(b) Comparison with high localization performance CF trackers.

Table 1: The mean OP (mOP) and mean Pnorm@0.2 (mPN) of

our fdKCF* and (a) seven modern real-time CF trackers, (b) seven

modern CF trackers that produce state-of-the-art localization ac-

curacy, on OTB-2013 and OTB-2015. decon and deep are denote

SRDCFdecon and deepSRDCF, respectively. The best three re-

sults on each line are shown in red, blue and magenta, respectively.

fdKCF* outperforms all other real-time CF trackers by large mar-

gins. In addition, we also report the mean fps’ (mFPS) of trackers

in (b) on OTB-2015, and fdKCF* is visibly faster than them.

ple [1], DSST [9], and CFNet [41]. The second group is

formed by other seven trackers which produce state-of-the-

art localization accuracy but can not run at real-time. These

trackers are ECO [8], C-COT [14], deepSRDCF [11], SRD-

CFdecon [13], SRDCF [12], GPRT [48], and HCF [30].

Fig. 5a and Table 1a show the comparison of our fdKCF*

with the first group of CF trackers. As shown in Fig. 5a,

our fdKCF* obtains the mean DP and AUC of 90.8% and

70.5% on OTB-2013, as well as 89.1% and 67.5% on OTB-

2015, respectively, leading the second best trackers with a

significant gain of 5.0%, 3.6%, 4.6% and 2.6%, respective-

0 5 10 15 20 25 30 35 40 45 50
Center Error Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Di
st

an
ce

 P
re

cis
io

n

Precision Plot on Very Hard Sequences

fdKCF* [0.789]
C-COT [0.751]
ECO [0.717]
HCF [0.676]
deepSRDCF [0.598]
GPRT [0.540]
SRDCFdecon [0.523]
SRDCF [0.442]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Overlap Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rla
p

Pr
ec

isi
on

Success Plot on Very Hard Sequences

fdKCF* [0.495]
C-COT [0.478]
ECO [0.463]
HCF [0.374]
deepSRDCF [0.372]
GPRT [0.358]
SRDCFdecon [0.343]
SRDCF [0.287]

Figure 6: The mean precision and success plots of our fdKCF* and

seven modern CF trackers that produce state-of-the-art localization

accuracy on the very hard sequences [19] of OTB-2015. The mean

distance precisions and AUCs are reported in the legends.

ly. In addition, as shown in Table 1a, our fdKCF* obtains

the mean Pnorm@0.2 and mean OP of 84.6% and 88.4%
on OTB-2013, as well as 82.0% and 82.8% on OTB-2015,

respectively, leading the second best trackers with a sig-

nificant gain of 3.0%, 4.3%, 4.9% and 4.6%, respective-

ly. These results show that our fdKCF* significantly out-

performs all other state-of-the-art real-time CF trackers in

localization performance. We believe that this is because

our efficient fdKCF* not only avoids the boundary effect

inherently, but also utilizes the powerful deep features.

Fig. 5b and Table 1b show the comparison of our fd-

KCF* with the second group of CF trackers. Judging from

the mean DPs and AUCs as shown in Fig. 5b, the local-

ization performance of our fdKCF* is comparable to that

of C-COT and slightly worse than that of ECO. However,

judging from the mean Pnorm@0.2 and mean OP as shown

in Table 1b, the localization performance of our fdKCF* is

competitive with that of ECO and obviously better than that

of C-COT. Besides, as shown in the last line of Table 1b,

the mean fps of our fdKCF* is visibly higher than those of

4026

where AUC-2013 AUC-2015 Real-Time

SINT+ CVPR2016 0.655 0.571 no

SINT++ CVPR2018 0.624 0.574 no

RASNet CVPR2018 0.670 0.642 yes

SASiam CVPR2018 0.677 0.657 yes

SiamRPN CVPR2018 0.658 0.636 yes

DaSiamRPN ECCV2018 0.655 0.658 yes

StruckSiam ECCV2018 0.638 0.621 yes

CREST ICCV2017 0.673 0.623 no

DSLT ECCV2018 0.683 0.660 no

DAT NIPS2018 0.704 0.668 no

PTAV ICCV2017 0.663 0.635 yes

TRACA CVPR2018 0.652 0.603 yes

FlowTrack CVPR2018 0.689 0.655 no

LSART CVPR2018 0.701 0.672 no

VITAL CVPR2018 0.710 0.682 no

fdKCF* ours 0.705 0.675 yes

Table 2: The AUCs of our fdKCF* and other state-of-the-art non-

CF trackers on OTB-2013 and OTB-2015. The best two results are

shown in red and blue, respectively.

all trackers in the second group (including ECO), although

there is not sparse update and feature dimension reduction,

which are employed by ECO to accelerate, in fdKCF*.

We believe that the following three reasons cause the lo-

calization performance of our fdKCF* to be slightly worse

than that of ECO. (1) The clustering algorithm GMM em-

ployed by ECO improves its robust, whereas there is no

similar component in our fdKCF*. (2) The self-adaptive di-

mensionality reduction and weighting different features are

used in ECO, whereas our fdKCF* does not use the similar

components. (3) Both deep features and hand-crafted fea-

tures, i.e., HOG [7] and Color-Names [15], are employed in

ECO, whereas our fdKCF* only employs deep features. In

fact, hand-crafted features can improve the localization per-

formance of trackers on the sequences with easy challenges.

To illustrate this fact, Han, et al. [19] divide the sequences

of OTB-2015 into three sets: easy, hard, and very hard,

according to the localization performance of most state-of-

the-art trackers. It is not hard to find that trackers employed

hand-crafted features always achieve high localization per-

formances on the easy sequences. To further illustrate the

above point, we show the comparison of our fdKCF* with

the second group of CF trackers on the very hard sequences

in Fig. 6. It is seen that the localization performance of

our fdKCF* is obviously better than that of all other CF

trackers (including ECO) on the very hard set. Note that C-

COT, which mainly use deep features, also outperforms oth-

er trackers except fdKCF*. It is concluded that employing

hand-crafted features may not improve but weaken the lo-

calization performance of trackers on very hard sequences.

Comparion with non-CF trackers. We compare

fdKCF* with state-of-the-art non-CF trackers, includ-

ing SINT+ [40], SINT++ [43], RASNet [42], SASi-

am [20], SiamRPN [27], DaSiamRPN [49], StruckSi-

am [47], CREST [35], DSLT [29], DAT [34], PTAV [17],

TRACA [6], FlowTrack [50], LSART [37], and VI-

*

EAO on VOT2016

fdKCF*: 24 fps
C-COT: 0.3 fps

0.347
0.331

EAO on VOT2017
0.303CFWCR: 4 fps 0.286CFCF: 1 fps 0.281ECO: 6 fps 0.267CCOT: 0.3 fps 0.265fdKCF*: 24 fps

*

Figure 7: Expected average overlap on VOT2016 and VOT2017.

Best trackers are closer to the top-right corner.

TAL [36], on OTB-2013 and OTB-2015. Table 2 shows the

results. It is seen that the localization accuracy of our fd-

KCF* outperforms most non-CF trackers, and outperforms

all other real-time ones.

6.3. Evaluation on VOT datasets

We present the evaluation results on VOT2016 [26] and

VOT2017 [25] datasets which contain 60 sequences, re-

spectively. We follow the VOT challenge protocol to com-

pare trackers, where mainly reports the expected average

overlap (EAO) and rank trackers based on it.

Fig. 7 shows the EAO ranking plots where we compare

our fdKCF* against the top-15 CF trackers on VOT2016

and VOT2017, respectively. The performances of these

trackers come from the VOT report. On the whole, the EAO

score of our fdKCF* is competitive to that of C-COT, which

is the winner of VOT2016 challenge, and slightly worse

than that of ECO. However, the tracking speed of our fd-

KCF* is visibly faster than those of C-COT and ECO. These

conclusions are consistent with those obtained on the OTB

datasets. Note that CFWCR and CFCF are improved ver-

sions based on ECO and C-COT, respectively. On the con-

trary, our fdKCF* is a novel tracking framework without

any further improvements and tricks.

7. Conclusions and Future work

A novel CF tracker, fdKCF*, with the state-of-the-art lo-

calization accuracy and real-time speed is proposed in this

paper. fdKCF* achieves the state-of-the-art accuracy be-

cause there is no boundary effect with it and powerful deep

features are also employed. fdKCF* is able to run at real-

time speed because a novel acceleration method, fCKM, is

developed in spatial domain. Through exploiting the inher-

ent high-overlap among real and dense samples, fCKM is

able to construct the kernel matrix efficiently even though

the high-dimensional deep features are employed. Future

work can be found in the supplementary material.

Acknowledgement. This work was supported by National Natural

Science Foundation of China under Grants 61772527, 61806200,

and 61702510.

4027

References

[1] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej

Miksik, and Philip HS Torr. Staple: Complementary learn-

ers for real-time tracking. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1401–1409, 2016.

[2] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016.

[3] David S Bolme, J Ross Beveridge, Bruce A Draper, and

Yui Man Lui. Visual object tracking using adaptive corre-

lation filters. In 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 2544–

2550. IEEE, 2010.

[4] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Return of the devil in the details: Delv-

ing deep into convolutional nets. arXiv preprint arX-

iv:1405.3531, 2014.

[5] Kai Chen and Wenbing Tao. Convolutional regression for

visual tracking. IEEE Transactions on Image Processing,

27(7):3611–3620, 2018.

[6] Jongwon Choi, Hyung Jin Chang, Tobias Fischer, Sangdoo

Yun, Kyuewang Lee, Jiyeoup Jeong, Yiannis Demiris, and

Jin Young Choi. Context-aware deep feature compression for

high-speed visual tracking. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

479–488, 2018.

[7] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In Computer Vision and Pat-

tern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on, volume 1, pages 886–893. IEEE, 2005.

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan,

Michael Felsberg, et al. Eco: Efficient convolution opera-

tors for tracking. In CVPR, volume 1, page 3, 2017.

[9] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael

Felsberg. Accurate scale estimation for robust visual track-

ing. In British Machine Vision Conference, Nottingham,

September 1-5, 2014. BMVA Press, 2014.

[10] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and

Michael Felsberg. Discriminative scale space tracking. IEEE

transactions on pattern analysis and machine intelligence,

39(8):1561–1575, 2017.

[11] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and

Michael Felsberg. Convolutional features for correlation fil-

ter based visual tracking. In Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, pages

58–66, 2015.

[12] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and

Michael Felsberg. Learning spatially regularized correlation

filters for visual tracking. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4310–4318,

2015.

[13] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and

Michael Felsberg. Adaptive decontamination of the training

set: A unified formulation for discriminative visual tracking.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1430–1438, 2016.

[14] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

European Conference on Computer Vision, pages 472–488.

Springer, 2016.

[15] Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg,

and Joost Van de Weijer. Adaptive color attributes for real-

time visual tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1090–

1097, 2014.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[17] Heng Fan and Haibin Ling. Parallel tracking and verifying:

A framework for real-time and high accuracy visual track-

ing. In Proceedings of the IEEE International Conference

on Computer Vision, pages 5486–5494, 2017.

[18] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.

Learning background-aware correlation filters for visual

tracking. In ICCV, pages 1144–1152, 2017.

[19] Bohyung Han, Jack Sim, and Hartwig Adam. Branchout:

Regularization for online ensemble tracking with convolu-

tional neural networks. In Proceedings of IEEE International

Conference on Computer Vision, pages 2217–2224, 2017.

[20] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4834–4843, 2018.

[21] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. Exploiting the circulant structure of tracking-by-

detection with kernels. In European conference on computer

vision, pages 702–715. Springer, 2012.

[22] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. IEEE transactions on pattern analysis and machine in-

telligence, 37(3):583–596, 2014.

[23] Mohamed Hussein, Fatih Porikli, and Larry Davis. Kernel

integral images: A framework for fast non-uniform filtering.

In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2008.

[24] Hamed Kiani Galoogahi, Terence Sim, and Simon Lucey.

Correlation filters with limited boundaries. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4630–4638, 2015.

[25] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg,

Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir, Gus-

tav Hager, Alan Lukezic, Abdelrahman Eldesokey, et al. The

visual object tracking vot2017 challenge results. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1949–1972, 2017.

[26] Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg,

Roman Pflugfelder, Luka Čehovin Zajc, Tomas Vojir, Gustav

Häger, Alan Lukežič, and Gustavo Fernandez. The visual ob-

ject tracking vot2016 challenge results. Springer, Oct 2016.

4028

[27] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–

8980, 2018.

[28] Yang Li and Jianke Zhu. A scale adaptive kernel correlation

filter tracker with feature integration. In ECCV Workshops

(2), pages 254–265, 2014.

[29] Xiankai Lu, Chao Ma, Bingbing Ni, Xiaokang Yang, Ian

Reid, and Ming-Hsuan Yang. Deep regression tracking with

shrinkage loss. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 353–369, 2018.

[30] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual track-

ing. In Proceedings of the IEEE international conference on

computer vision, pages 3074–3082, 2015.

[31] Chao Ma, Xiaokang Yang, Chongyang Zhang, and Ming-

Hsuan Yang. Long-term correlation tracking. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5388–5396, 2015.

[32] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 300–317, 2018.

[33] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory

Chanan. Pytorch: Tensors and dynamic neural networks in

python with strong gpu acceleration, 2017.

[34] Shi Pu, Yibing Song, Chao Ma, Honggang Zhang, and Ming-

Hsuan Yang. Deep attentive tracking via reciprocative learn-

ing. In Advances in Neural Information Processing Systems,

pages 1935–1945, 2018.

[35] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Ryn-

son WH Lau, and Ming-Hsuan Yang. Crest: Convolutional

residual learning for visual tracking. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2555–2564, 2017.

[36] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao

Bao, Wangmeng Zuo, Chunhua Shen, Rynson WH Lau, and

Ming-Hsuan Yang. Vital: Visual tracking via adversarial

learning. In Proceedings of the IEEE Conference on Comput-

er Vision and Pattern Recognition, pages 8990–8999, 2018.

[37] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan

Yang. Learning spatial-aware regressions for visual track-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 8962–8970, 2018.

[38] Ming Tang and Jiayi Feng. Multi-kernel correlation filter for

visual tracking. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3038–3046, 2015.

[39] Ming Tang, Bin Yu, Fan Zhang, and Jinqiao Wang. High-

speed tracking with multi-kernel correlation filters. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4874–4883, 2018.

[40] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1420–1429, 2016.

[41] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In Computer

Vision and Pattern Recognition (CVPR), 2017 IEEE Confer-

ence on, pages 5000–5008. IEEE, 2017.

[42] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen Maybank. Learning attentions: residu-

al attentional siamese network for high performance online

visual tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4854–

4863, 2018.

[43] Xiao Wang, Chenglong Li, Bin Luo, and Jin Tang. Sint++:

robust visual tracking via adversarial positive instance gener-

ation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4864–4873, 2018.

[44] Max Welling. Kernel ridge regression.

[45] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2411–2418, 2013.

[46] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(9):1834–1848, 2015.

[47] Yunhua Zhang, Lijun Wang, Jinqing Qi, Dong Wang,

Mengyang Feng, and Huchuan Lu. Structured siamese net-

work for real-time visual tracking. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 351–

366, 2018.

[48] Linyu Zheng, Ming Tang, and Jinqiao Wang. Learning ro-

bust gaussian process regression for visual tracking. In IJ-

CAI, pages 1219–1225, 2018.

[49] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 101–117, 2018.

[50] Zheng Zhu, Wei Wu, Wei Zou, and Junjie Yan. End-to-

end flow correlation tracking with spatial-temporal attention.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 548–557, 2018.

4029

