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Abstract

Unconstrained video-based face recognition is a chal-

lenging problem due to significant within-video variations

caused by pose, occlusion and blur. To tackle this prob-

lem, an effective idea is to propagate the identity from high-

quality faces to low-quality ones through contextual con-

nections, which are constructed based on context such as

body appearance. However, previous methods have often

propagated erroneous information due to lack of uncer-

tainty modeling of the noisy contextual connections. In this

paper, we propose the Uncertainty-Gated Graph (UGG),

which conducts graph-based identity propagation between

tracklets, which are represented by nodes in a graph. UGG

explicitly models the uncertainty of the contextual connec-

tions by adaptively updating the weights of the edge gates

according to the identity distributions of the nodes during

inference. UGG is a generic graphical model that can be

applied at only inference time or with end-to-end training.

We demonstrate the effectiveness of UGG with state-of-the-

art results in the recently released challenging Cast Search

in Movies and IARPA Janus Surveillance Video Benchmark

dataset.

1. Introduction

Unconstrained video-based face recognition has been an

active research topic for decades in computer vision and

biometrics. In a wide range of its applications, such as

visual surveillance, video content analysis and access con-

trol, the task is to match the subjects in unconstrained probe

videos to pre-enrolled gallery subjects, which are repre-

sented by still face images. Although recent advances of

deep convolutional neural network (DCNN)-based methods

have achieved comparable or superior performance to hu-

man in still-image based face recognition [28, 20, 23, 1, 21,

26, 27, 6, 5], unconstrained video-based face recognition

still remains a challenging problem due to significant facial

∗Currently working in Waymo.
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Figure 1: An example of video-based face recognition problem

consisting of three still face gallery subjects and four samples from

the videos. Orange arrows show positive connections from body

appearance similarity. Black arrows indicate negative connec-

tions constructed from co-occurrence information. Blue arrows

represent the facial similarities to the ground truth galleries. The

thicker the arrows, the stronger the connections. The red cross

indicates an misleading connection. A graph with fixed connec-

tions may propagate erroneous information through these mislead-

ing connections. (The figure is best viewed in color.)

appearance variations caused by pose, motion blur, and oc-

clusion.

To fill the performance gap between face recognition in

still-images and unconstrained videos, one possible solu-

tion is to train a video-specific model with large amount of

training data, which is difficult and costly to collect. An-

other effective idea is to leverage the well-studied image-

based face recognition methods to first identify video faces

with limited variations, then utilize some video contextual

information, such as body appearance and spatial-temporal

correlation between person instances, to propagate the iden-

tity information from high-quality faces to low-quality ones.

For instance, in Figure 1, by utilizing the body appearance,

we may propagate the identity information obtained from

frontal face S4 to the profile face S1, which is very difficult

to recognize individually.

The above idea has been explored using graph-based ap-
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proaches [13, 7, 25]. Graphs are constructed with nodes to

represent one or more frames (tracklets) of person instances

and edges to connect tracklets. However, a major limitation

of these approaches is that their graphs are pre-defined and

the edges are fixed during information propagation. A mis-

leading connection may propagate erroneous information.

As shown in Figure 1, these methods may propagate the

identity information between S2 and S3 based on their sim-

ilar body appearance, which might lead to erroneous prop-

agation.

To address the problem, we propose a graphical-model-

based framework called Uncertainty-Gated Graph (UGG)

to model the uncertainty of connections built using con-

textual information. We formulate UGG as a conditional

random field on the graph with additional gate nodes in-

troduced on the connected graph edges. With a carefully

designed energy function, the identity distribution of track-

lets1 is updated by the information propagated through these

gate nodes during inference. In turn, these gate nodes are

adaptively updated according to the identity distributions of

the connected tracklets. The uncertainty gate nodes consist

of two types of gates: positive gates that control the confi-

dence of the positive connections (encourage the connected

pairs to have the same identity) and negative gates that con-

trol negative ones (discourage pairs to have the same iden-

tity). It is worth noting that negative connections can sig-

nificantly contribute to performance improvements by dis-

couraging similar identity distribution between clearly dis-

tinct subjects, e.g., two people in the same frame2. Ex-

plicitly modeling positive/negative information separately

allows our model to consider different contextual informa-

tion in challenging conditions, and leads to improved uncer-

tainty modeling.

Our approach can be directly applied at inference time,

or plugged onto an end-to-end network architecture for

supervised and semi-supervised training. The proposed

method is evaluated on two challenging datasets, the Cast

Search in Movies (CSM) dataset [13] and the IARPA Janus

Surveillance Video Benchmark (IJB-S) dataset [14] with su-

perior performance compared to existing methods.

The main contributions of this paper are summarized as

follows:

• We propose the Uncertainty-Gated Graph model for

video-based face recognition by explicitly modeling

the uncertainty of connections between tracklets using

uncertainty gates over graph edges. The tracklets and

gates are updated jointly and possible connection er-

rors might be corrected during inference.

• We utilize both positive and negative connections for

information propagation. Despite its effectiveness,

1We follow the same definition of tracklets with [13].
2In Figure 1, the co-occurrence of S3 and S4 in the same frame of the

video is a strong prior to indicate their different identities.

negative connections were often ignored in previous

approaches for unconstrained face recognition.

• The proposed method is efficient and flexible. It can

either be used at inference time without supervision,

or be considered as a trainable module for supervised

and semi-supervised training.

2. Related Works

Deep Learning for Face Recognition: Deep learning

is widely used for face recognition tasks as it has demon-

strated significant performance improvements. Sun et al.

[26, 27] achieved results surpassing human performance on

the LFW dataset [12]. Parkhi et al. [20] achieved impres-

sive results for face verification. Chen et al. [1, 2] reported

very good performance on IJB-A, JANUS CS2, LFW and

YouTubeFaces [32] datasets. Ranjan et al. [21] achieved

good performance on IJB-C[19]. Zheng et al. [33] achieved

good performance on video face datasets including IJB-B

[31] and IJB-S [14]. [5] presents a recent face recognizer

with state-of-the-art performance.

Label Propagation: Label propagation [35] has many

applications in computer vision. Huang et al. [13] pro-

posed an approach for searching person in videos using a

label propagation scheme instead of trivial label diffusion.

Kumar et al. [16] proposed a video-based face recognition

method by selecting key-frames and propagating the labels

on key-frames to other frames. Sheikh et al. [24] used label

propagation to reduce the runtime for semantic segmenta-

tion using random forests. Tripathi et al. [29] introduced a

label propagation-based object detection method.

Conditional Random Field: The Conditional Random

Field (CRF) [17] is a commonly used probabilistic graphi-

cal models in computer vision research. Krähenbühl et al.

[15] is one of the early researchers to use CRF for semantic

segmentation. Chen et al. [3, 4] proposed a DCNN-based

system for semantic segmentation and used a CRF for post-

processing. Zheng et al. [34] further introduced an end-to-

end framework of a deep network with a CRF module for

semantic segmentation. Du et al. [7] used a CRF to solve

the face association problem in unconstrained videos.

Graph Neural Networks: A Graph Neural Network

(GNN) [22, 10] is a neural network combined with graph-

ical models such that messages are passed in the graph to

update the hidden states of the network. Shen et al. [25]

used a GNN for person re-identification problem. Hu et al.

[11] introduced a structured label prediction method based

on a GNN, which allows positive and negative messages to

pass between labels guided by external knowledge. But the

graph edges are fixed during testing. Wang et al. [30] in-

troduced a zero-shot learning method using stacked GNN

modules. Lee et al. [18] proposed another multi-label zero-

shot learning method by message passing in a GNN based

on knowledge graphs.
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Figure 2: Overview of the proposed method. Given still face galleries and probe videos, we first detect all the faces and corresponding

bodies from the videos. Faces are associated into tracklets by a tracker. Face features for galleries and tracklets, and body features for

tracklets are extracted by corresponding networks. Similarities are computed from these flattened features. Facial and body similarities,

together with cannot-link constrains from the detection information are fed into the proposed UGG model. After inference, the output is

used for testing, or generating the loss for end-to-end training.

Most of the graph-based methods mentioned above only

allow positive messages to pass in the graph, and all of them

rely on graphs with fixed edges during testing.

3. Proposed Method

The overview of the method is shown in Figure 2. For

each probe video, faces are detected and associated into

tracklets. Initial facial similarities between gallery images

and probe tracklets are computed by a still face recognizer.

Connections between tracklets are generated based on the

similarity of their facial, body appearances and their spatial-

temporal relationships. Then, we build the UGG where

these tracklets and connections act as nodes and edges. The

connections between tracklets are modeled as uncertainty

gates between nodes. The inference can be efficiently im-

plemented by message passing to optimize the energy func-

tion of the UGG module.

3.1. Problem Formulation

For a video-based face recognition problem, suppose we

have C gallery subjects and a probe video. The faces in

this video are first detected and tracked into N tracklets.

For each tracklet, we compute C similarity scores to gallery

subjects.

Suppose we are given the gallery-to-tracklet similarity

Sgt =
[

s
gt
li

]

∈ R
C×N and the tracklet-to-tracklet similarity

Stt =
[

sttij
]

∈ R
N×N , where s

gt
li is the similarity between

the gallery l and the tracklet i, sttij is the similarity between

tracklet i and j. Furthermore, a cannot-link matrix Ltt =
[

Ltt
ij

]

∈ {0, 1}N×N is given such that

L
tt
ij =

{

1 identities of tracklet i and j are different

0 no constraint
(1)

Here, Sgt provides prior identity information, Stt pro-

vides the positive contextual information between tracklets

and Ltt provides the negative contextual information. By

combining these information, the output gallery-to-tracklet

similarity is computed as

S̃
gt = UGG(Sgt

,S
tt
,L

tt) ∈ R
C×N

(2)

where UGG(·) is a function based on the proposed

Uncertainty-Gated Graph. In the following sections, we in-

troduce the model in detail.

3.2. Uncertainty­Gated Graph

First, given a video with N tracklets detected, a graph

G = (V, E) is built where each node corresponds to

a tracklet. Node i is only connected to its neighbors

N (i). Based on the graph G, we define a random field

X = {X1, . . . , XN} associated to nodes V . Xi ∈ L =
{1, . . . , C} is the label variable of tracklet i. Xi = l means

gallery subject l is assigned to tracklet i. We call these

nodes as sample nodes.

We further add gates nodes to each of the edges in E
attached with a random field Y = {Y p

i→j , Y
n
i→j}. In each

gate node i → j, we place two gate variables, the positive

gate Y
p
i→j ∈ {0, 1} and the negative gate Y n

i→j ∈ {0, 1}, to

control the connections between tracklets i and j.

3.2.1 Energy Function

The energy function of the UGG module is defined as

E(x,y) =
∑

i∈V

ψx
u(xi) +

∑

i∈V,j∈N (i)

[ψp
u(y

p
i→j) + ψn

u(y
n
i→j)

+ ψ
p
t (xi, xj , y

p
i→j) + ψn

t (xi, xj , y
n
i→j)] (3)

The unary potential for tracklet i is defined based on the

identity information Sgt as

ψ
x
u(xi = l) = −Tgt · s

gt

li (4)
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where Tgt is the temperature factor. The penalty will be low

if identity information s
gt
li is strong.

We also define the unary potential for the positive gate

based on relationship information Stt as

ψ
p
u(y

p
i→j = 1) = −Ttt · s

tt
ij (5)

where Ttt is the corresponding temperature factor. Penalty

of an open positive gate at edge i→ j will be low if positive

connection sttij is strong.

The unary potential for the negative gate is defined as

ψ
n
u(y

n
i→j = k) =

{

0 if Ltt
ij = k

+∞ otherwise
(6)

for k ∈ {0, 1}. Therefore, opening of the negative gate at

node i→ j is determined by the negative connection Ltt
ij .

The positive triplet potential is defined as

ψ
p
t (xi, xj , y

p
i→j) =

{

αp if y
p
i→j = 1 and xi 6= xj

0 otherwise
(7)

where αp is the positive penalty. Since y
p
i→j = 1 means an

open positive gate between tracklet i and j, it generates pos-

itive information to nodes i and j if xi and xj take different

labels.

Similarly, the negative triplet potential is defined as

ψ
n
t (xi, xj , y

n
i→j) =

{

αn if yni→j = 1 and xi = xj

0 otherwise
(8)

where αn is the negative penalty. Since yni→j = 1 means

an open negative gate between tracklet i and j, it generate

negative information to nodes i and j if xi and xj have the

same label.

3.3. Model Inference

Directly looking for the label assignment that minimizes

E(x,y) is a combinatorial optimization problem which

is intractable. Instead, similar to [15], we use the mean

field method to approximate the distribution P (X,Y) ∝
exp(−E(X,Y)) by the product of independent marginals

Q(X,Y) =
∏

i

Qi(Xi)
∏

j∈N (i)

Q
p
i→j(Y

p
i→j)Q

n
i→j(Y

n
i→j) (9)

Here Qi(Xi) is the identity distribution of node i,

Q
p
i→j(Y

p
i→j) and Qn

i→j(Y
n
i→j) are the status distributions

of positive and negative gates on edge i→ j respectively.

Let q
(t)
i =

[

Qi(1)
(t) · · · Qi(C)

(t)
]T

be the identity

distribution vector of node i at the t-th iteration. π
p,(t)
i→j =

Q
p,(t)
i→j (1) and π

n,(t)
i→j = Q

n,(t)
i→j (1) be the probability of

opened positive and negative gates on edge i → j respec-

tively. Minimizing the KL-divergence D(Q||P ) between

P (X,Y) and Q(X,Y) yields the following message pass-

ing updates:

1) For sample nodes, we have

q
(0)
i = softmax(TgtS

gt
:,i)

q
(t)
i = softmax(TgtS

gt
:,i + αp

∑

j∈N (i)

π
p,(t−1)
i→j q

(t−1)
j

− αn

∑

j∈N (i)

π
n,(t−1)
i→j q

(t−1)
j ) (10)

where S
gt
:,i is the ith column of Sgt.

2) For gate nodes, we let the marginal distribution of pos-

itive gates
∑

j∈N (i) π
p,(t)
i→j = 1 for normalization purpose.

Then we have

π
p,(0)
i→j =softmax

N (i)
(Ttts

tt
ij)

π
p,(t)
i→j =softmax

N (i)
(Ttts

tt
ij + αpq

(t−1)
i · q

(t−1)
j ) (11)

where softmaxN (i)(·) is the softmax operation in the neigh-

borhood N (i). From (6), we also have

π
n,(t)
i→j = L

tt
ij (12)

for t = 0, . . . ,K. Thus, the marginal probability of a nega-

tive gate is fixed during inference.

From these recursive updating equations we can see that:

1) When updating sample node i, identity information

from qj in N (i) is propagated through positive gate π
p
i→j

and negative gate πn
i→j and collected as positive (αp) and

negative (−αn) message, respectively. These messages to-

gether with the prior identity information S
gt
:,i are combined

to update qi, the identity distribution of node i, in the next

iteration.

2) When updating gate node i → j, the identity similar-

ity between qi and its neighbor qj in N (i) is measured by

pairwise inner product. By combining this similarity with

the initial contextual connection score sttij , the probability of

gate openness π
p
i→j for the positive gate is updated. If qi·qj

is small, π
p
i→j will gradually vanish in iterations, which

avoids misleading connections propagating erroneous infor-

mation. Negative gates based on cannot-links are fixed dur-

ing inference.

We conduct these bidirectional updates jointly so that the

samples nodes receive useful information from their neigh-

bors through reliable connections to gradually refine their

identity distributions, and the misleading connections in the

graph are gradually corrected by these refined identity dis-

tributions in return. Please refer to the Supplementary Ma-

terial for derivation details and illustrations of node update.

After obtaining the approximation Q(X,Y) that mini-

mizes D(Q||P ) in K iterations, we use the identity distri-

bution q
(K)
i as the output similarity scores S̃

gt
:,i from tracklet

i to gallery subjects.

3.4. UGG: Training and Testing Settings

Testing with UGG: For testing, the UGG module can be

directly applied at inference time, where we compute input
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matrices Sgt, Stt and Ltt from the video, setting the hyper-

parameters in the UGG module. Then the module produces

the output similarity S̃gt by recursive forward calculations.

Training with UGG: Similar to RNN, the proposed

UGG module can be considered as a differentiable recur-

rent module and be inserted into any neural networks for

end-to-end training. If video face training data is available,

we can utilize them for training to further improve the per-

formance.

Given tracklets {Ti} from a training video and galleries

{Gl}, we use two DCNN networks Fgt and Ftt with param-

eters θgt and θtt pretrained on still images to generate Sgt

and Stt respectively as
s
gt

li = Fgt(Gl, Ti;θgt), s
tt
ij = Ftt(Ti, Tj ;θtt) (13)

and feed into the UGG module.

After the module generates output similarity S̃gt =
[

s̃1, . . . , s̃N
]

after K iterations, we compute the loss of this

video as

L =
1

N

∑

i∈S

LC(s̃i, z
c
i ) + λ

1

N2

∑

i,j∈S

LP (s
tt
ij , z

b
ij) (14)

Here, LC is a cross-entropy loss on s̃i with ground truth

classification label zci . LP is a pairwise binary cross-

entropy loss on sttij with ground truth binary label zbij . λ

is the weight factor. S is the set of labeled tracklets.

Back-propagation through the whole networks on the

overall loss L is used to learn the DCNN parameters θgt,

θtt in Fgt and Ftt, together with the temperature parame-

ters Tgt, Ttt in the UGG module. Tgt, Ttt are learned in

order to find a good balance between the unary scores and

the messages from the neighbors during updates.

Depending on the different choices of S , the training can

be categorized into three settings:

1. Supervised Setting: S = V , where every training

sample in the graph is labeled. In this setting, we can di-

rectly utilize all the tracklets in the graph for training.

2. Semi-Supervised Setting: ∅ ⊂ S ⊂ V , where

training samples in the graph are only partially labeled.

In this setting, the output of the module still depends on

all the tracklets in the graph through information propaga-

tion. Thus, via back-propagation, the supervision informa-

tion is propagated from labeled tracklets to unlabeled track-

lets through the connections in the UGG module and enable

them to benefit the training.

3. Unsupervised Setting: S = ∅, where no labeled

training data is available. In this setting, we skip the training

part since no supervision is provided.

4. Experiments

In this section, we report experiment results of the pro-

posed method in two challenging video-based person search

and face recognition datasets: the Cast Search in Movies

(CSM) dataset [13] and the IARPA Janus Surveillance

Video Benchmark (IJB-S) dataset [14].

4.1. Datasets

CSM: The CSM dataset is a large-scale person search

dataset comprising a query set containing cast portraits in

still images and a gallery set containing tracklets collected

from movies. The evaluation metrics of the dataset include

mean Average Precision (mAP) and recall of the tracklet

identification (R@k). Two protocols are used in the CSM

dataset. One is IN which only search among tracklets in

a single movie once a time. Another is ACROSS which

search among tracklets in all the movies in the testing set.

Please refer [13] for more details.

IJB-S: The IJB-S dataset is an unconstrained video face

recognition dataset. The dataset is very challenging due to

its low quality surveillance videos. In this paper, we mainly

focus on two protocols related to our topic, the surveillance-

to-single protocol (S2SG) and the surveillance-to-booking

protocol (S2B). Galleries consist of single still image in

S2SG and multiple still images in S2B. Probes are remotely

captured surveillance videos from which all the tracklets are

required. We report the per tracklet average top-K identifi-

cation accuracy and the End-to-End Retrieval Rate (EERR)

metric proposed in [14] for performance evaluation. Please

refer [14] for more details.

4.2. Implementation Details

CSM: For the CSM dataset, we use facial and body fea-

tures provided by [13]. Please refer to the Supplementary

Material for pre-processing details. Using the validation set,

we choose parameters Tgt = 10, Ttt = 15, αp = 5, K = 2,

λ = 0.1 and λf = 0.1 for the IN protocol and Tgt = 20,

Ttt = 30, αp = 15, K = 2, λ = 0.1 and λf = 0.1 for the

ACROSS protocol, in the UGG module for testing.

We also train linear embeddings on the provided features

together with parameters in the UGG module in supervised

settings. The training details are provided in the Supple-

mentary Material.

IJB-S: For the IJB-S dataset, please refer to the Sup-

plementary Material for pre-processing details. We empir-

ically use the hyperparameter configuration of Tgt = 15,

Ttt = 15, αp = 10, αn = 2, K = 4, λ = 0.1 and λf = 0.1
in the UGG module for testing.

To compare with [33], we use the same configurations

for tracklets filtering and evaluation metrics for each con-

figuration: 1) with Filtering: We keep those tracklets with

length greater than or equal to 25 and average detection

score greater than or equal to 0.9. 2) without Filtering.

4.3. Baseline Methods

We conduct experiments on the CSM and IJB-S dataset

with two baseline methods: FACE: facial similarity is di-

rectly used without any refinement. PPCC: The Progressive

Propagation via Competitive Consensus method proposed

in [13] is used for post-processing. For the CSM dataset,
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Methods
IN ACROSS

mAP R@1 R@3 R@5 mAP R@1 R@3 R@5

FACE(avg) 53.33% 76.19% 91.11% 96.34% 42.16% 53.15% 61.12% 64.33%

PPCC(avg)[13] 62.37% 84.31% 94.89% 98.03% 59.58% 63.26% 74.89% 78.88%

PPCC(max)[13] 63.49% 83.44% 94.40% 97.92% 62.27% 62.54% 73.86% 77.44%

UGG-U(avg) 62.81% 85.21% 95.65% 98.30% 63.31% 66.73% 76.09% 79.32%

UGG-U(max) 63.74% 84.93% 95.36% 98.37% 63.42% 65.72% 74.90% 77.88%

UGG-U(favg) 64.36% 84.96% 94.90% 97.98% 64.85% 67.33% 75.38% 78.21%

UGG-ST(favg) 65.12% 86.73% 95.70% 98.34% 67.00% 71.16% 77.82% 80.15%

UGG-T(favg) 65.41% 87.28% 95.87% 98.28% 67.60% 71.51% 78.33% 80.56%

Table 1: Results on CSM dataset. Notice that UGG-U(favg) is the unsupervised, initial setting before training. UGG-ST(favg) is the

semi-supervised training setting with 25% samples labeled. UGG-T(favg) is the supervised training setting.

Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

FACE(favg) 64.86% 70.87% 77.09% 81.53% 86.11% 93.24% 29.62% 32.34% 35.60% 38.36% 41.53% 46.78%

PPCC(favg)[13] 67.31% 73.21% 79.06% 83.12% 87.38% 93.68% 30.57% 33.28% 36.53% 39.10% 42.00% 47.00%

FACE(sub)[33] 69.82% 75.38% 80.54% 84.36% 87.91% 94.34% 32.43% 34.89% 37.74% 40.01% 42.77% 47.60%

UGG-U(favg) 74.20% 77.67% 81.43% 84.54% 87.96% 93.62% 32.70% 35.04% 37.54% 39.79% 42.43% 47.10%

UGG-U(sub) 77.59% 80.46% 83.70% 86.20% 89.23% 94.55% 34.79% 36.88% 39.11% 40.90% 43.37% 47.86%

Table 2: 1:N Search results of IJB-S surveillance-to-single protocol. UGG-U(favg) directly uses the cosine similarities between average-

flattened features. UGG-U(sub) uses the subspace-subspace similarity proposed in [33].

we use the numbers reported in [13]. For the IJB-S dataset,

we implement the method with code provided by the author.

For fair comparisons, following [13], two settings of in-

put similarity are used: avg: similarity is computed by

the average of all frame-wise cosine similarities between

a gallery and a tracklet, or two tracklets. max: similarity

is computed by the maximum of all frame-wise cosine sim-

ilarities between a gallery and a tracklet, or two tracklets.

On IJB-S, we also implement the subspace-based similarity

following [33], denoted as sub.

Two recent works [9] and [8] have also reported results

on the IJB-S dataset. These works built video templates

by matching their detections with ground truth bounding

boxes provided by the dataset. Our method follows [33]

and associates faces across the video frames to build tem-

plates(tracklets) without utilizing any ground truth informa-

tion. Since these two template building procedures are very

different, a direct comparison is not meaningful.

Results of these baselines on two datasets are shown in

Tables 1, 2 and 3 respectively. Average run time of PPCC

is also reported in Table 4, on a machine with 72 Intel Xeon

E5-2697 CPUs, 512GB of memory and two NVIDIA K40

GPUs. We observe that PPCC only achieves marginal im-

provements on the IJB-S dataset. Its speed is also slow dur-

ing inference, especially when large graphs are constructed.

4.4. Evaluation on the Proposed UGG method

On the CSM dataset, depending on the usage of training

data, we evaluate three settings of UGG including: UGG-U:

without training, the UGG module works in unsupervised

setting as post-processing module. UGG-T: with fully-

labeled training data, the UGG module and linear embed-

dings are trained in supervised setting. UGG-ST: with 25%

labeled and 75% unlabeled training data by random selec-

tion in each movie, the UGG module and linear embeddings

and are trained in semi-supervised setting. On the IJB-S

dataset, since the dataset only provide test data, we use the

unsupervised setting and only test UGG-U.

The additional input similarity used for training is the

cosine similarity between flattened features after average

pooling and denoted as favg. Corresponding results are

shown in Tables 1, 2 and 3 respectively, with average run

time tested on the same machine reported in Table 4.

Observations on CSM:

1. UGG vs FACE: All the settings of UGG perform sig-

nificantly better than the raw baseline FACE. UGG-T(favg)

provides state-of-the-art results on almost all the evaluation

metrics with large margins, which demonstrates the effec-

tiveness of the proposed method utilizing contextual con-

nections.

2. UGG vs PPCC [13]: Using the same input similarity

without training, UGG-U performs better than PPCC with

relatively large margin, especially in the ACROSS proto-

col. Since in the ACROSS protocol, queries are searched

among tracklets from all movies, the connections based on

body appearance are not reliable across movies as those in

the IN protocol. Thus by updating the gates between track-

lets during inference, UGG is able to achieve much better

performance than PPCC which is based on a fixed graph.

3. Supervised vs Unsupervised: From UGG-U(favg)

to UGG-T(favg), we observe significant improvements

brought by training. It demonstrates that with labeled data,

the UGG module can be inserted into deep networks for

end-to-end training and achieve further performance im-

provement.

4. Semi-Supervised vs Unsupervised: We observe

considerable improvements from UGG-U(favg) to UGG-

ST(favg). It implies that by reliable information propaga-
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Methods
Top-K Average Accuracy with Filtering EERR metric without Filtering

R@1 R@2 R@5 R@10 R@20 R@50 R@1 R@2 R@5 R@10 R@20 R@50

FACE(favg) 66.48% 71.98% 77.80% 82.25% 86.56% 93.41% 30.38% 32.91% 36.15% 38.77% 41.86% 46.79%

PPCC(favg)[13] 68.96% 74.44% 79.84% 83.75% 87.68% 93.80% 31.37% 33.98% 37.04% 39.49% 42.35% 47.01%

FACE(sub)[33] 69.86% 75.07% 80.36% 84.32% 88.07% 94.33% 32.44% 34.93% 37.80% 40.14% 42.72% 47.58%

UGG-U(favg) 74.79% 78.35% 81.81% 84.85% 88.15% 93.80% 33.29% 35.48% 37.87% 40.02% 42.60% 47.14%

UGG-U(sub) 77.02% 80.08% 83.39% 86.20% 89.29% 94.62% 34.83% 36.81% 39.11% 41.10% 43.38% 47.74%

Table 3: 1:N Search results of IJB-S surveillance-to-booking protocol. UGG-U(favg) directly uses the cosine similarities between average-

flattened features. UGG-U(sub) uses the subspace-subspace similarity proposed in [33].

Methods
CSM IJB-S

IN ACROSS S2SG S2B

PPCC[13] 2.23s 458.56s 571.31s 580.16s

UGG-U 2.60s 41.85s 104.88s 111.35s

Table 4: Average run time on CSM and IJB-S datasets.
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Figure 3: A qualitative example from the CSM dataset. The pos-

itive connection between tracklets i and j is initially strong be-

cause of the similar body appearance. During the inference step

of the proposed method, this connection is weakened because of

the divergent identity distributions between the two tracklets. It

avoids erroneous information propagation through the connection.

In contrast, the connection between tracklets i and k is strength-

ened due to their similar identity distributions.

tion in the graphs, the UGG module can be trained with only

partially-labeled data, and still achieves results comparable

to the supervised setting.

Observations on IJB-S:

1. UGG vs FACE and PPCC [13]: UGG-U performs

better than FACE and PPCC on almost all evaluation met-

rics with relatively large margin, in both protocols, which

again shows the effectiveness of the proposed method.

2. UGG + Better Similarity Metric: UGG-U(sub)

achieves state-of-the-art results by combining subspace-

based similarity and UGG. It shows that the proposed

method can further improve the performance over the im-

provement from the similarity metric.

3. EERR Metric: EERR metric [14] is relatively lower

than identification accuracy, because it penalizes missed

face detections, which is out of the scope of this paper.

Run time: From Table 4, we observe that UGG runs

five times faster than PPCC on most of the protocols, which

shows that UGG is more suitable for testing on large graphs

during inference.

Qualitative Results: To illustrate the effectiveness of

the proposed approach, a qualitative example is also shown

in Figure 3. Tracklets i and j belong to different identi-

ties and tracklets i and k belong to the same identity. The

initialized positive gate probability π
p,(0)
i→j = 0.41 is greater

than π
p,(0)
i→k = 0.15. If the gate is fixed, information will be

erroneously propagated between i and j. Using the pro-

posed method, we can adaptively update the gate based on

the identity information from i and j. Since identity dis-

tribution similarity q
(0)
j · q

(0)
i = 0.05 is very small, the two

tracklets are unlikely to have the same identity. Hence the

positive connection π
p,(1)
i→j = 0.09 is weakened after the up-

date. Similarly, since q
(0)
i · q

(0)
k = 0.64 is large, the positive

connection π
p,(1)
i→k = 0.61 is strengthened correspondingly.

4.5. Ablation Studies

We conduct ablation studies on CSM and IJB-S datasets

to show the effectiveness of key features in the proposed

model. The results are shown in Table 5. We start from the

baseline FACE without any information propagation, then

gradually add key features of the method: PG: add fixed

positive gates to propagate positive information. PGcl:

same as PG except that positive information will not be

propagated when cannot-link exists. NG: add negative gates

to propagate negative information. aG: adaptively update

positive gates in PG or PGcl using the proposed method.

Since detection information is not given in the CSM dataset,

there is no co-occurrence cannot-links available and we do

not use negative gates in this dataset. Thus, the proposed

method UGG-U corresponds to PG+aG on the CSM dataset

and PGcl+NG+aG on the IJB-S dataset.

From Table 5 we observe that: 1) by introducing fixed

positive gates, the performance improves compared to the

baseline results, which indicates that positive information

propagation controlled by body similarity improves the per-

formance. 2) by adding cannot-links to control the positive

gates as well, marginal improvements are obtained. Thus,

the performance improvement is limited if allow only posi-

tive information to propagate. 3) by introducing additional

negative gates using the same cannot-links, the performance

improves significantly, which demonstrates the effective-

ness of allowing negative information to propagate between

tracklets. 4) finally, by adaptively updating the positive
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Configurations
CSM in avg CSM in max IJB-S in favg

IN ACROSS IN ACROSS S2SG S2B

PG PGcl NG aG mAP R@1 mAP R@1 mAP R@1 mAP R@1 A@1 E@1 A@1 E@1

58.72% 76.19% 55.67% 53.15% 61.29% 76.64% 58.20% 54.60% 64.86% 29.62% 66.48% 30.38%

X 61.14% 84.95% 62.00% 66.02% 61.60% 84.79% 62.05% 64.63% 71.21% 30.66% 72.05% 31.37%

X - - - - - - - - 71.26% 30.73% 72.16% 31.54%

X X - - - - - - - - 73.24% 32.35% 73.78% 32.88%

X X 62.81% 85.21% 63.30% 66.73% 63.74% 84.93% 63.42% 65.72% 72.32% 30.92% 73.15% 31.64%

X X - - - - - - - - 72.46% 31.02% 73.28% 31.73%

X X X - - - - - - - - 74.20% 32.70% 74.79% 33.29%

Table 5: Ablation study. In configurations, PG stands for adding positive gates for positive information. PGcl stands for adding positive

gates with extra control from cannot-links. NG stands for adding negative gates for negative information. aG stands for adaptively updating

positive gates. A@1 stands for Average Accuracy with filtering at R@1. E@1 stands for EERR without filtering at R@1.

Configurations IN ACROSS

PGTrain aGTrain UGGTest mAP R@1 R@3 R@5 mAP R@1 R@3 R@5

61.13% 77.86% 91.79% 96.65% 58.34% 56.56% 63.83% 66.34%

X 61.39% 77.99% 91.77% 96.61% 58.94% 57.31% 64.26% 66.88%

X X 61.40% 78.12% 91.85% 96.67% 58.70% 57.64% 64.49% 67.22%

X 64.14% 85.90% 95.42% 98.10% 65.82% 69.45% 76.83% 79.34%

X X 64.58% 86.36% 95.53% 98.27% 66.90% 70.74% 77.83% 80.02%

X X X 64.60% 86.68% 95.56% 98.24% 67.09% 71.31% 77.93% 80.39%

Table 6: Additional study on semi-supervised training on CSM dataset. PGTrain stands for using fixed positive gates during training.

aGTrain stands for adaptively updating the gates during training. UGGTest stands for using UGG model during testing. In all experiments,

only 25% of the training samples are labeled.

gates, we achieve the best performance in all protocols of

both datasets. The result implies the advantages of adap-

tively updated gates.

4.6. Experiments on Different Training Settings

We also perform additional experiments on semi-

supervised training on the CSM dataset with results shown

in Table 6. In the experiment, similar to the UGG-ST set-

ting, we first randomly pick 25% tracklets in each graph as

labeled samples, and the rest 75% as unlabeled. We only

train the linear embedding on face features with fixed UGG

module on these training data.

Suppose after applying the embedding we want to learn,

the similarities between galleries and labeled/unlabeled

tracklets are Sgt =
[

S
gt
l ,S

gt
u

]

. We use three different set-

tings to train the embedding: 1) directly train on the labeled

similarities S
gt
l using cross-entropy loss, without invoking

the UGG module. 2) use the UGG module with positive

gates to process Sgt and train on the output similarity S̃
gt
l

corresponding to the labeled tracklets by cross-entropy loss,

denoted as PGTrain. 3) adaptively update the positive gates

used in PGTrain, denoted as aGTrain. Please refer to the

Supplementary Material for training details.

Two settings are used to test the performance of the em-

bedding: 1) directly test on Sgt from the learned embed-

ding, without using the UGG as post-processing. 2) test on

S̃gt from the learned embedding and with the UGG post-

processing, denoted as UGGTest.

From the results in Table 6, we observe that in the semi-

supervised setting, the embedding trained with the UGG is

more discriminative than the one trained without the mod-

ule. It achieves better performance in both test settings. It

shows that by propagating information between tracklets,

the UGG also leverages the information from those unla-

beled tracklets during training, which is important for semi-

supervised learning. Also, the UGG with adaptive gates

performs better than fixed gates, which demonstrates that

adaptive gates is also helpful during training by propagat-

ing the information more precisely between tracklets.

5. Conclusions and Future Work

In this paper, we proposed a graphical model-based
method for video-based face recognition. The method prop-
agates positive and negative identity information between
tracklets through adaptive connections, which are influ-
enced by both contextual information and identity distribu-
tions between tracklets. The proposed method can be either
used for post-processing, or trained in supervised and semi-
supervised fashions. It achieves state-of-the-art results on
CSM and IJB-S datasets. An interesting future work will
be using attribute information, such as gender, to construct
negative connections and adaptively update negative gates.
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