
Accelerate CNN via Recursive Bayesian Pruning

Yuefu Zhou1,2 Ya Zhang1 � Yanfeng Wang1 Qi Tian3

1Cooperative Medianet Innovation Center, Shanghai Jiao Tong University
2MediaSmart Technology
3Huawei Noah’s Ark Lab

{remicongee, ya zhang, wangyanfeng}@sjtu.edu.cn, tian.qi1@huawei.com

Abstract

Channel Pruning, widely used for accelerating Convo-

lutional Neural Networks, is an NP-hard problem due to

the inter-layer dependency of channel redundancy. Exist-

ing methods generally ignored the above dependency for

computation simplicity. To solve the problem, under the

Bayesian framework, we here propose a layer-wise Recur-

sive Bayesian Pruning method (RBP). A new dropout-based

measurement of redundancy, which facilitate the computa-

tion of posterior assuming inter-layer dependency, is in-

troduced. Specifically, we model the noise across layers

as a Markov chain and target its posterior to reflect the

inter-layer dependency. Considering the closed form so-

lution for posterior is intractable, we derive a sparsity-

inducing Dirac-like prior which regularizes the distribu-

tion of the designed noise to automatically approximate

the posterior. Compared with the existing methods, no ad-

ditional overhead is required when the inter-layer depen-

dency assumed. The redundant channels can be simply

identified by tiny dropout noise and directly pruned layer

by layer. Experiments on popular CNN architectures have

shown that the proposed method outperforms several state-

of-the-arts. Particularly, we achieve up to 5.0×, 2.2× and

1.7× FLOPs reduction with little accuracy loss on the large

scale dataset ILSVRC2012 for VGG16, ResNet50 and Mo-

bileNetV2, respectively.

1. Introduction

Convolutional Neural Networks (CNNs) have recently

achieved great success in computer vision and pattern

recognition. However, this success is often accompanied

by massive computation which makes the model difficult to

deploy on resource-constrained devices. One popular solu-

tion, channel pruning [1, 35, 21], lowers computation cost

by reducing the number of feature maps. The key challenge

in channel pruning is to identify redundant channels. Recent

Bayesian methods transform variational dropout noise [15]

as a principled measurement for redundancy via Bayesian

inference from sparsity-inducing prior [20, 23]. Redundant

channels are considered either being multiplied by a noise

of large variance [20] or with low Signal-to-Noise Ratio and

thus less informative [23]. However, these methods assume

that the channels in different layers are completely indepen-

dent and simultaneously infers the redundancy of all layers,

which leads to a sub-optimal solution. In fact, pruning cer-

tain channels of any layer is likely to change the distribution

of input for the following layer, which may further incite the

change of redundancy to fit new input there. This inter-layer

dependency has been considered in heuristics and proved to

make pruning more efficient [11, 22].

In this paper, we attempt to re-investigate the Bayesian

pruning framework assuming the inter-layer dependency

and propose a layer-wise Recursive Bayesian Pruning

method (RBP). Similar to existing Bayesian methods [23,

20], a Gaussian dropout noise, an indicator of channel re-

dundancy, is multiplied on each channel. To take the inter-

layer dependency into consideration, we model the dropout

noise across layers as a Markov chain. The inter-layer de-

pendency is then reflected by the posterior of dropout noise

given the dropout noise of the previous layer. However, the

closed form solution for the posterior is intractable. We

here derive a sparsity-inducing Dirac-like prior that regular-

izes the distribution of the dropout noise so as to automat-

ically approximate the posterior. Compared to the existing

Bayesian methods, with the Dirac-like prior, RBP requires

no additional overhead when assuming the inter-layer de-

pendency. In addition, the Dirac-like prior is shown to en-

force the values of dropout noise to be close to 0 for re-

dundant channels and close to 1 for important ones, a de-

sired property of pruning. Thus, we only need to conduct

Bayesian inference and prune the channels associated with

tiny dropout noise layer by layer. Additionally, RBP is com-

patible with reparameterization tricks, which are proved to

improve data fitness [15]. Hence as a bonus, the perfor-

mance of CNNs pruned can be recovered fast after a few

epochs of finetuning. In this way, RBP is designed as a

3306

completely data-driven approach, achieving a nice balance

between data fitness and model acceleration.

We evaluate RBP on popular CNN architectures and

benchmark data sets, showing superior performance to sev-

eral state-of-the-arts in terms of acceleration. We achieve

5.0×, 2.2× and 1.7× FLOPs reduction with little accuracy

loss on large scale dataset ILSVRC2012 [4] for VGG16

[29], ResNet50 [9] and MobileNetV2 [28], respectively.

2. Related work

Over-parameterization in deep learning often raises huge

computation cost, which incites the need for compact neural

networks. Pruning is among the most popular solutions in

this field and its main idea is removing redundant weights

from the original networks. First introduced in [17, 8], mea-

surement for redundancy is based on Hessian of the objec-

tive function. [7, 6] later propose to regard small-magnitude

weights as less informative and should be pruned. How-

ever, these methods are unstructured and retain the format

of weight matrix, thus the acceleration effect is limited un-

less Compressed Sparse Column (CSC) adopted.

Given that, recent trend is pruning whole channels or

neurons. [35] proposes group sparsity regularization on

weights. [11] combines l1-norm regularization and recon-

struction error. [22] prunes less informative channels layer

by layer. [12] extends to select more general structures as

residual blocks. Both [11, 22] also consider the influence

for redundancy when the input is changed by pruning the

previous layer. Particularly, they attempt to suppress this

change via minimize a regression loss. By contrast, we pro-

pose to infer this change and guide it towards higher sparsity

in each layer.

In line with these heuristics, under Bayesian framework,

variational dropout [15] is adopted to infer the redundancy.

[20] estimates redundancy from horseshoe prior. [23] pro-

poses log-normal prior for regularization. Although the pro-

posed method also adopts variational dropout for approxi-

mate inference over redundancy, we attempt to tackle the

inter-layer dependency and the existing Bayesian methods

solely suppose the channels are all independent in networks.

Alternative solutions for compact networks include: 1)

Quantization [27, 2, 36] reduces bit number of weights

stored. 2) Low-rank approximation [5, 30, 37] decomposes

weight matrix by two stacked smaller ones. 3) Architecture

learning [38] directly searches compact designs.

3. Recursive Bayesian Pruning

In this section, we provide a comprehensive introduc-

tion for the proposed Recursive Bayesian Pruning (RBP)

method. Fig. 1 provides an illustration of RBP.

We first introduce the notation used in the rest of the pa-

per as follows. x and y represent the data and label sampled

⊙ 𝜃𝑙

⊙ መ𝜃𝑙

filter 𝑊𝑙−1
of 𝑙 − 1 th layer

input 𝑥𝑙
of 𝑙th layer

filter 𝑊𝑙
of 𝑙th layer

dropout

noise

Prune by thresholding

(a) Process of pruning.

𝜃𝑙𝜃𝑙−1 𝜃𝑙+1…… ……𝜃1 𝜃𝐿
(b) CNN redundancy modeling.

Figure 1. Illustration for the proposed method. The pruning is

conducted in layer-wise. a) For lth layer, we design a vector of

dropout noise θl scaled on channels to indicate redundancy. The

small noise will be assigned as 0 after estimation done, so that

its associated channels and filters are pruned (dotted in red). b)

While estimating redundancy, given the inter-layer dependency,

we model the dropout noise as a Markov chain, thus pruning strat-

egy depends on p(θl|θl−1).

from the dataset D, respectively. xl is the input to lth layer

and W l is the filter weight of lth layer. g(.) is the activation

function. The output of lth layer is

xl+1 = W l ∗ g(xl), (1)

where ∗ is convolution, and bias is omitted for clarity.

3.1. Redundancy estimation

To indicate redundant channels in xl, one intuitive choice

is scaling a dropout noise sampled from Bernoulli B(1 −
r) [32] with dropout rate r (i.e. the probability of being

dropped). Given the difficulty of training r under Bayesian

framework, we adopt its Gaussian approximation N (1 −
r, r(1− r)), which is actually the Lyapunov’s Central Limit

[34]. Let xl contain C channels, then the Eqn. 1 can be

rewritten as

xl+1 = W l ∗
(

g(xl)⊙ θl
)

,

θlc ∼q N
(

1− rlc, r
l
c(1− rlc)

)

,
(2)

where θl =
(

θl1, ..., θ
l
C

)

, rlc ∈ [0, 1] and ⊙ is element-wise

product on channels. In this case, for channels that are prob-

ably redundant, i.e. with dropout rate close to 1, they will

be almost pruned since the noise scaling on them is near

0. Alternative choices such as log-normal distribution [23]

3307

for the dropout noise is much more complicated than the

designed one, but lack an intuitive explanation for redun-

dancy.

To estimate the redundancy with both data fitness and

acceleration considered, we maximize the variational lower

bound w.r.t. W = {W l} and rlcs:

L = logP(y|x, rl,W)−DKL

(

q(θl) || p(θl)
)

, (3)

where the first term is log-likelihood, the second term is the

Kullback-Leibler (KL) divergence from the estimator q to

the sparsity-inducing prior p. This training process is equiv-

alent to conduct approximate Bayesian inference on θl, and

for W , we leave it as the optimum for the log-likelihood.

3.2. Posterior of redundancy

Before choosing a sparsity-inducing prior p, we return to

the core problem: the posterior of redundancy. Recall the

observation that pruning channels of one layer may change

the input of the following layer, which takes the risk of ru-

ining data fitness. Thus it is preferred to continue prun-

ing and retraining for adaptive weights when knowing how

many channels are pruned in the previous layer. In our

case, θl indicates redundancy, hence the posterior of redun-

dancy is formed as p(θl|θl−1) for lth layer. Directly solving

its closed form is difficult, because generally, we can only

write the equation below

q(θl) =

∫

p
(

θl|θl−1
)

q(θl−1)dθl−1. (4)

While seeking for an efficient approximation, we note that

once θl−1 approaches Dirac distribution, the solution is im-

mediate:

q(θl) ≈
∫

p
(

θl|θl−1
)

δ(θl−1)dθl−1

= p
(

θl|θl−1 = E
[

θl−1
])

.

(5)

This approximation is valid when the Gaussian noise θl−1

has the dropout rate close to 0 or 1. This is intuitively true,

because for a highly compact CNN, the channels left are

supposed to be important and thus should have tiny prob-

ability of being dropped (i.e. rl−1 ≈ 0), and for those

pruned, once the accuracy is acceptable, there is no reason

to keep them (i.e. rl−1 ≈ 1). The experiments verify this

conjecture, as seen in dropout noise analysis of Section 4.5.

Given that, we simply choose a Dirac-like priorN (0, ǫ2)
as the sparsity-inducing prior, where ǫ is very tiny. Then the

KL-divergence in Eqn. 3 can be developed as

DKL

(

q(θl) || p(θl)
)

=

C
∑

c=1

DKL

(

q(θlc) || p(θlc)
)

=
C
∑

c=1

−1

2
log

rlc(1− rlc)

ǫ2
+

1− rlc
2ǫ2

− 1

2
.

(6)

Here we adopt mean field theory [26] to ease the compu-

tation, which supposes the independence among channels

within each layer.

Since maximizing the variational lower bound (Eqn. 3)

partially minimizes DKL (Eqn. 6), the sparsity will be in-

duced by pushing dropout rates to 1. In fact, let the gradient

of DKL w.r.t. rlc be zero, i.e. ∂DKL/∂r
l
c = 0 , its opti-

mum lies at

rlc
∗

=
1− 4ǫ2 +

√
1 + 16ǫ4

2
≈ 1− 2ǫ2. (7)

3.3. Data­driven pruning

To conduct pruning with data fitness considered, we

adopt reparameterization tricks [15] by sampling the

dropout noise as

θlc = 1− rlc +
√

rlc(1− rlc) · N (0, 1), (8)

which will be scaled on the corresponding channels when

forwarding. In this way, the dropout rates join the optimiza-

tion of the log-likelihood (in Eqn. 3) and can be simply up-

dated via gradient-based strategies. Since the log-likelihood

indicates how well the networks fit data, the proposed prun-

ing method is data-driven.

In this paper, we adopt mini-batch update strategy for

training each layer. We summarize that on lth layer, the

objective function to maximize for each batch is

L = LD −DKL

(

q(θl) || p(θl)
)

, (9)

where

LD =
|D|
|B|

∑

(x,y)∈B

logP
(

y|x,W, rl
)

, (10)

with B a mini-batch. At the convergence of this objective,

rl is near 0 or 1 and thus θl approximately follow Dirac

distribution. According to the deduction of section 3.2, this

property will lead to q(θl+1) ≈ p
(

θl+1|θl = E[θl]
)

, which

incites us to conduct Bayesian inference on θl+1 with θl

fixed as its expectation. Furthermore, given E[θl] = 1 −
rl is already near 0 or 1, we are free to let large rlcs be

1 by thresholding without influencing much the output of

this layer. An immediate benefit is that the channels and

associated filters of the lth and (l + 1)th layer are directly

pruned. To avoid additional cost for storing parameters, we

scale the dropout rates on filters

rlc ←1, if rlc > T

W l
c ←W l

c ⊙ (1− rlc),
(11)

where T is threshold value and W l
c is the column for cth

input channel. Note that θl can be discarded since then.

3308

𝑁1 × 1 × 1
𝑁2 × 3 × 3
𝑁3 × 1 × 1

𝑁1 × 1 × 1
𝑁2 × 3 × 3
𝑁3 × 1 × 1

𝜃𝑙−1
𝜃𝑙

Figure 2. Illustration for pruning residual blocks. The dropout

noise is only scaled on the input channels of the last two layers,

and thus prunes the filters of the first two layers (in red). N1 and

N2 are the number of filters.

3.4. Scale to ResNet

The proposed method can also be applied on residual

networks [9]. As seen in Fig. 2, we scale dropout noise on

the input of the last two stacked convolutional layers, thus

only prune the filters of the first two layers. This pruning

strategy is also adopted in [22, 19], because the output of

the last layer is supposed to have the same channel numbers

as the input of its residual block so that the sum operation

can be valid.

4. Experiment

In this section, we validate the effectiveness of the pro-

posed method RBP. The CNN architectures to prune in-

clude VGG16 [29] and ResNet50 [9]. We mainly report

floating operations (FLOPs) to indicate acceleration effect.

Inference-time and storage saving on GPU is measured for

practical speed-up results. Compression rate (CR) is also

revealed as another criterion for pruning. To have an insight

on pruning result, we provide number of channels left.

4.1. Implementation

Given the layer-wise pattern adopted, the condition for

moving to the next layer is important. One may choose the

moment that the dropout rates are barely updated. In this

paper, we observe that the number of epochs required for

the convergence is almost the same for all the layers in one

architecture. Thus, we simply set one “trigger epoch” as the

number of epochs for training each layer. This value may

vary from dataset or architectures, which will be specified

later. There are two hyper-parameters left to be determined,

threshold for pruning T and variance for prior ǫ2. For the

former, since the dropout rates are close to 0 or 1, any value

in [0.1, 0.9] works and does not differ much the results. In

this paper, we adopt T = 0.5. For the later, a dropout

rate above 0.95 almost prunes the corresponding channel,

Algorithm 1 RBP for the whole network.

Input: Dataset D, L-layer CNN, trigger epoch E
Output: CNN pruned in channel level

1: while l ≤ L do

2: e = 0, rl = 0.01, T = 0.5;

3: for e in range(E) do

4: for batch B in D do

5: sample θl (Eqn. 8);

6: scale θl on input channels (Eqn. 1);

7: compute objective L (Eqn. 9);

8: update weight W and rl;
9: end for

10: end for

11: rl ← 1 if rl > T and scale on W l (Eqn. 11);

12: end while

hence it is expected that 1 − 2ǫ2 = 0.95 (Eqn. 7) and thus

ǫ2 = 0.025. A smaller ǫ2 can be tried for a higher dropout

rate for redundant channels. We adopt Adam [14] as opti-

mizer for RBP and SGD [33] for finetuning 30 epochs after

pruning. Learning rate is always 1e− 4 during training and

degraded by 0.95 every 2 epochs from 3e − 4 during fine-

tuning. For stability of stochastic methods [31], we adopt

pretrained models. On CIFAR10, we pretrain the models

for 100 epochs. On ILSVRC2012, we adopt the pretrained

models of ThiNet [22]. More details can be referred in Al-

gorithm 1.

4.2. VGG16 on CIFAR10

We first prune VGG16 network on CIFAR10 [16], which

contains 50, 000 32× 32 images in training set and 10, 000
in test set. The model performance on CIFAR10 is qualified

by the accuracy of classifying 10-class images. Considering

that VGG16 is originally proposed for large scale dataset,

the redundancy is very obvious, especially for the top three

fully-connected (fc) layers (in 4096 dimension). Thus, we

cut one fc layer and reduce the dimension of the rest to 512.

To show that RBP can also be applied on fc-layers, we con-

duct pruning for the whole network, i.e. 13 convolutional

layers and 2 fc-layers. The trigger epoch for each layer is

set as 10 and the batch size is always 64.

We also duplicate BC [20] and SBP [23] for comparison.

These two methods also adopt dropout noise and conduct

Bayesian inference for pruning based on different sparsity-

inducing prior. BC proposes horeshoe prior in hierarchi-

cal form and SBP does log-normal prior. However, both

of them ignore the inter-layer dependency and prune all the

channels at the same time.

As seen in Table 1, compared with the baseline model,

RBP achieves 3.5× FLOPs reduction with only 0.6% error

increased. SBP and BC control the error in the same level

with RBP, but the acceleration effect is rather modest. In

3309

Method Architecture CR FLOPs Err.

Baseline 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 1.0× 1.0× 8.4
SBP [23] (impl.) 47-50-91-115-227-160-50-72-51-12-34-39-20-20-272 17.0× 3.2× 9.0

BC [20] 51-62-125-128-228-129-38-13-9-6-5-6-6-6-20 18.6× 2.6× 9.0
RBC 43-62-120-120-182-113-40-12-20-11-6-9-10-10-22 25.7× 3.1× 9.5
IBP 45-63-122-123-246-199-82-31-20-17-14-14-31-21-21 13.3× 2.3× 8.3
RBP 50-63-123-108-104-57-23-14-9-8-6-7-11-11-12 39.1× 3.5× 9.0

Table 1. Comparison of pruning VGG16 on CIFAR10. Convolutional layers are in bold. “impl.” denotes our implementation.

terms of compression rate, RBP exceeds SBP and BC by

over 2 times.

To have an insight on pruning results, we report the chan-

nels left, as seen in Table 1. One may wonder that the su-

perior effectiveness of RBP to BC and SBP stems from the

layer-wise greedy strategy adopted, hence we implement,

for ablation study, 1) IBP, pruning all layers independently

at the same time with the proposed objective (Eqn. 9), 2)

RBC, applying BC layer by layer. Comparing BC and RBP,

we note that both BC and RBP prune conv5 (last three

convolutional layers) to very few channels (∼ 10). How-

ever, RBP is able to prune more conv1-conv4, where lies

about 90% FLOPs.

By adopting layer-wise strategy, RBC improves dramat-

ically the compression rate and FLOPs reduction, but with

more error increased. We suppose that in the theory of BC,

the redundancy estimator and prior are neither designed for

inter-layer dependency. Although pruning layer by layer,

the distribution of BC’s dropout noise can not fit the poste-

rior of redundancy and thus may prune more in each layer

but misunderstand the distribution of input.

Another interesting observation is that applying RBP for

all the layers at the same time lets the pruning result ap-

proach BC. For instance, there is less difference between

IBP and BC in conv2, i.e. 246 v.s. 228 and 199 v.s. 129.

We ascribe the performance loss to the absence of layer-

wise strategy. Pruning layer by layer in data-driven way

can “inform” the following layers that data fitness can be

retained with less filters. In this case, both BC and IBP

keep most channels in conv1 and conv2 but still fail to re-

duce redundancy in the following layers. By contrast, RBP

prunes to 104/256 and 57/256 channels in conv3.

4.3. VGG16 on ILSVRC

We now evaluate the performance of RBP for VGG16

on ILSVRC2012 [4]. ILSVRC2012 is a large-scale image

classification dataset, which contains 1, 000 classes, more

than 1.2 million images in training set and 5, 0000 in vali-

dation set. As input of VGG16, we sample 128 images as a

batch and adopt data augmentation for each one when train-

ing: 1) resize to 256× 256 and crop randomly a 224× 224
part, 2) adopt random horizontal flip, 3) normalize with

mean value and standard deviation pre-defined. During test,

we almost apply the same data augmentation, except that a

224 × 224 part is extracted in the center. For VGG16 in

this section, we return to the original architecture, i.e. 13
convolutional layers and 3 4096-d fc layers.

In terms of pruning strategy, we do not prune the whole

network this time. Instead, the first 10 convolutional layers

(conv1-conv4) are to be pruned. This strategy is com-

monly adopted for VGG16 on ILSVRC, because as men-

tioned before, more than 90% FLOPs is distributed on these

layers. Given that, we apply RBP on the first 10 layers dur-

ing 30 epochs and the trigger epoch is thus 3. And since we

do not prune the fc layers, which contains most parameters,

we focus on the FLOPs reduction.

We compare the results with DDS [12], ThiNet [22], CP

[11] and AMC [10]. Similar with us, DDS also adopts a

scale value to indicate redundancy, while the regularization

is heuristic. ThiNet and CP also consider the influence for

redundancy when the input is changed by pruning the previ-

ous layer. AMC applies reinforcement learning for network

compression policies.

As shown in Table 2, RBP reduces FLOPs by 5× and

still achieves competitive accuracy. Compared with CP,

RBP does not only achieve lower FLOPs but also provides

1.4% more accurate classification result. Compared with

DDS, improvement on accuracy is marginal, but that on

FLOPs reduction is significant. CP outperforms ThiNet

on FLOPs reduction but with 2% top-1 error increased.

The gap mainly stems from the factitious pruning settings

of CP, while ThiNet simply prunes half channels for each

layer. We suppose that both these strategies are not ef-

fective enough. For CP, manually setting the remaining

channel ratios introduces hyper-parameters and may need

additional cost for tuning. Although this helps CP progres-

sively prunes networks, the accuracy loss is also obvious be-

cause the hyper-parameters’ setting is not data-driven. For

ThiNet, pruning uniformly all the layers ignores the possi-

bility that redundancy varies from depth. In fact, it has been

widely known that deeper layers extract higher level seman-

tic information, thus different functionality may require dif-

ferent numbers of filters for data fitness. By contrast, AMC

shows a close performance to RBP without manual setting

as CP or Thinet. However, the cost for reinforcement learn-

ing adopted in AMC is much higher and can not be ignored.

3310

Method FLOPs Top-1 Err. Top-5 Err.

Baseline 1.0× 27.5 9.2
DDS [12] 4.0× 31.5 11.8

ThiNet [22] 3.2× 30.2 10.5
CP [11] 4.4× 32.2 11.9

AMC [10] 5.0× 30.9 −
RBP 5.0× 30.8 10.9

Table 2. Comparison results of VGG16 on ILSVRC2012. Top-k

Err. denotes the classification error for the first k predictions.

Layer #Remained/#Original Percent FLOPs

224× 224
conv1 1 16/64 25% 1.1×
conv1 2 39/64 60% 1.2×

112× 112
conv2 1 45/128 35% 1.3×
conv2 2 81/128 63% 1.4×

56× 56
conv3 1 65/256 25% 1.6×
conv3 2 68/256 26% 2.0×
conv3 3 116/256 45% 2.2×

28× 28
conv4 1 132/512 26% 2.9×
conv4 2 135/512 26% 4.3×
conv4 3 257/512 50% 5.0×

Total 954/2688 35% 5.0×

Table 3. Remaining channels of VGG16 on ILSVRC2012. FLOPs

reduction is reported in form of accumulation. Resolution of input

channels is over each conv block.

We also report the number of remaining channels for

conv1-conv4 in Table 3. Totally, we prune around two-

thirds of channels. In channel level, one interesting obser-

vation is that the last layer of every conv block is pruned to

around half channels, while the rest are reduced to around

one quarter. Why is it harder to prune the former? We at-

tribute it to the sensitivity raised by resolution reduction. In

fact, the last layer of each block is stacked by a pooling layer

to reduce size of feature maps. For instance, the feature

maps generated by conv2 2 are sampled from 112 × 112
to 56 × 56. Thus, to maintain enough information, more

channels may be required by the following block. This

gives us a clue that pruning all the layers with the same re-

maining ratio, such as in ThiNet, is unwise, which may take

the risk of pruning too much for sensitive layers or leav-

ing much redundancy for others. Additionally, the FLOPs

reduction accumulated in Table 3 may provide useful sug-

gestions for pruning strategy. Note that FLOPs is reduced

most in conv4 block. Especially on conv4 2 layer, the

speed-up ratio grows from 2.9× to 4.3×. We suppose that

there exits most redundancy in this block.

4.4. ResNet50 on ILSVRC

We now accelerate ResNet50 on ILSVRC2012.

ResNet50 is a very deep CNN in the residual network

family. It contains 16 residual blocks [9], where around

50 convolutional layers are stacked. Although the depth

of ResNet50 is greater than VGG16, many filters of the

former are of size 1 × 1 and hence already saves much

FLOPs, i.e. 4.1 billion v.s. 31.0 billion. However, reported

in PyTorch model zoo [25], ResNet50 outperforms VGG16

by around 3% top-1 accuracy on ILSVRC2012. Given

that, we suppose that ResNet50 is already a much more

compact architecture than VGG16 and pruning should be

more cautious.

In this section, we always follow the strategy proposed

in Section 3.4, i.e. only prune the filters of the first two

convolutional layers of each residual block. Furthermore,

considering the following factors, we improve RBP to be

more adaptive to residual network family:

1) Although we choose to only prune the filters of the first

two convolutional layers of each residual block, there

still exists 32 layers, which will be exhausting if the

trigger epoch is large. Given that, we assume that the

dependency across blocks is relatively weak and can

be ignored. This is intuitively reasonable, because be-

tween two adjacent blocks, the layers to be pruned are

separated by another convolutional layer and divided

into two groups. Therefore, we are free to prune the

first layers of all the blocks at the same time, and then

move on all the second layers.

2) It has been found that the residual networks are very

sensitive at the blocks with down-sampling layers and

not robust to pruning [18]. In ResNet50, there are 4
residual blocks containing down-sampling layers. We

propose to omit these blocks for better data fitness.

We name the variant RBP combined with the above two

points ResNet-adaptive RBP (RRBP). The trigger epoch is

respectively 3 and 7 for RBP and RRBP. Both sample 256
images as a batch with the same data augmentation as for

VGG16.

The pruning results are shown in Table 4. For ThiNet,

we cite ThiNet-50 which prunes 50% channels. And for

DDS, we cite DDS(32) and DDS(26), where DDS respec-

tively prunes ResNet50 to 32 and 26 residual blocks. We

also report the performance of RBP, which simply conducts

layer-wise pruning on ResNet50. It can be found that both

RBP and RRBP achieve FLOPs reduction over 2×, while

DDS and CP are rather conservative. In terms of classi-

fication accuracy, DDS(32) provides the lowest top-1 and

top-5 error, however, the speed-up ratio is also the lowest.

By contrast, DDS(26) prunes ResNet50 more progressively

and outperforms DDS(32). Even so, RBP and RRBP show

3311

Method FLOPs Top-1 Err. Top-5 Err.

Baseline 1.0× 23.9 7.1
DDS(32) [12] 1.4× 25.8 8.1
DDS(26) [12] 1.7× 28.2 9.2

CP [11] 1.5× 27.7 9.2
ThiNet-50 [22] 2.3× 29.0 10.0

RBP 2.3× 28.5 9.8
RRBP 2.2× 27.0 9.0

Table 4. Comparison results of ResNet50 on ILSVRC2012. Top-k

Err. denotes the classification error for the first k predictions.

Stage #Remained/#Original Percent FLOPs

res2 20/256 9% 1.2×
res3 67/1024 7% 1.6×
res4 2408/3072 78% 1.8×
res5 1105/3072 36% 2.3×
Total 3600/7424 48% 2.3×

Table 5. RBP result. Remaining channels of ResNet50 on

ILSVRC2012. FLOPs reduction is reported in form of accumu-

lation. The #Remained and #Original only count the channels in

the first two convolutional layers of each residual block. Stage

groups residual blocks between two down-sampling layers.

significant superiority to DDS(26). In fact, the former re-

duces almost 1×more FLOPs but keep competitive classifi-

cation accuracy, i.e. RBP holds only 0.3% more top-1 error

and RRBP even provides 1.2% less. Given this point, we

conclude that RBP and RRBP are more effective on resid-

ual networks than DDS. Compared with ThiNet-50, RBP

and RRBP achieve the same level of FLOPs reduction with

competitive classification accuracy. Particularly, RRBP is

even 2.0% and 1.0% better on Top-1 and Top-5 accuracy,

respectively. Between RBP and RRBP, the later shows al-

most the same acceleration effect but with higher classifica-

tion accuracy, which validates our idea that RRBP is more

adaptive to residual networks.

Table 5 shows the remaining channels in each block

when applying RBP. Totally, we prune more than half of

channels. In stage level, over 90% channels are pruned in

res1 and res2, yielding most FLOPs reduction contri-

bution. With a close look at res2 2, we find that only

1 filter is remained in the first two convolutional layers,

which almost removes this residual block. Note that DDS

is proposed to prune a more general structure rather than

channels, such as residual blocks. In this case, RBP simu-

lates block selection by pruning most channels there, which

shows a similar generality with DDS. However, most chan-

nels of res4 are kept, while DDS(32) prunes two residual

blocks. This is mainly because simply adopting layer-wise

strategy on ResNet50 may over-prune the first several resid-

ual blocks and thus requires the more filters in the following

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Remained Original

Figure 3. RRBP result. Columns for comparison between the

number of remaining channels and original ones in each layer.

Model Time Storage Top-5 Err.

VGG-RBP 2.6× 3.6× +1.7
ResNet50-RBP 1.4× 1.5× +2.7

ResNet50-RRBP 1.3× 1.4× +1.8

Table 6. GPU acceleration for VGG and ResNet50 on ILSVRC.

layers to ensure data fitness. Furthermore, RBP also pro-

gressively prunes the sensitive blocks with down-sampling

layers, which explains why the classification error is higher.

Fig. 3 shows the channels remained after pruning by

RRBP. It can be easily found that compared with RBP,

RRBP prunes channels more uniformly and almost reduces

the redundancy of each layer to a very low level. The only

exceptions are the convolutional layer in the last residual

block (23 and 24 in Fig. 3). We suppose that although this

block contains no down-sampling layers, it is stacked by a

pooling layer that reduces the resolution from 7×7 to 1×1.

Despite the convenience for the following fc layer, it makes

the last residual block more sensitive for channel pruning.

This observation is consistent with the result of VGG16,

where the layers before pooling retains more channels. For

totality, RRBP removes 4, 000 channels, which is even bet-

ter than RBP (3824 channels removed). Note that the prun-

ing field of RRBP is smaller than RBP, because 4 residual

blocks with down-sampling layers are ignored, however, it

still shows superior performance for identifying redundant

channels. The robustness of RRBP to residual networks is

thus an immediate conclusion.

4.5. Further Analysis

Acceleration performance on GPU. For ILSVRC2012,

We evaluate the acceleration performance on GPU

(GeForce GTX 1080 Ti). All the models are run under

Caffe [13] with CUDA8 [24] and cuDNN5 [3]. The infer-

ence time is averaged from 50 runs of batch size 32. As

shown in Table 6, the proposed method achieves promising

acceleration and lower storage with little accuracy drop on

3312

0.0 0.5 1.00

15

30

Fr
eq

ue
nc

y
(%

)

0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

(a) Dropout rates of VGG16.

0

10

20

30

40

Fr
eq

ue
nc

y
(%

)

0

10

20

30

40

Fr
eq

ue
nc

y
(%

)

0.0 0.5 1.0
0

10

20

30

40

Fr
eq

ue
nc

y
(%

)

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(b) Dropout rates of ResNet50.

Figure 4. Histogram of dropout rates in each layer of VGG16 and ResNet50 (RRBP). Each sub-figure represents distribution of dropout

rates in one specific convolutional layer.

Method FLOPs Top-1 Err. Top-5 Err.

Baseline 1.0× 28.1 9.7
AMC [10] 1.4× 29.2 -

RBP-4× 1.4× 29.2 10.1
RBP 1.7× 30.3 10.9

Table 7. Comparison results of MobileNetV2 on ILSVRC2012.

RBP-4× means in each inverted residual block, we stop pruning

when the expansion rate is reduced lower than 4×.

VGG16 and ResNet50, respectively.

Distribution of dropout rates. Remind that in Section 3.2,

the dropout rates rl are supposed to be near 0 or 1 after

optimization of Eqn. 9 done. This hypothesis is the pre-

condition for the designed dropout noise to approach Dirac

distribution. In this section, we provide experimental proofs

that this hypothesis is generally valid. As shown in Fig.

4, almost all of the dropout rates are distributed near 0 or

1. Note that in the last block of ResNet50, some dropout

rates does not approach 0 or 1, which is consistent with the

proposition that this layer is sensitive to pruning (Section

4.4).

Lightweight Model. Besides VGG16 and ResNets, which

are known to be redundant, the proposed method gen-

eralizes well on MobileNetV2 [28], a recently proposed

lightweight model. As shown in Table 4.5, RBP reduces

10% more FLOPs than AMC with only 1.1% error in-

creased. To show the performance on similar FLOPs level,

we adopt pruning protocol RBP-4×, i.e. in each inverted

residual block, we stop pruning when the expansion rate is

reduced lower than 4× (6× originally). The Top-1 accuracy

is as high as AMC.

5. Conclusion

In this paper, we extend the existing Bayesian pruning

methods by embedding inter-layer dependency. By propos-

ing RBP, the redundant channels are identified efficiently

and directly pruned layer by layer. Given the data-driven

pattern adopted, a nice balance between data fitness and

model acceleration is found. The experiments on popu-

lar CNN architectures validate the effectiveness of the pro-

posed method, also showing superior performance to sev-

eral state-of-the-arts.

Acknowledgements

This work is supported by The High Technol-

ogy Research and Development Program of China

(2015AA015801), NSFC (61521062), and STCSM

(18DZ2270700).

3313

References

[1] Jose M. Alvarez and Mathieu Salzmann. Learning the num-

ber of neurons in deep networks. In NIPS, 2016. 1

[2] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-

berger, and Yixin Chen. Compressing neural networks with

the hashing trick. In ICML, 2015. 2

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,

Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan

Shelhamer. cudnn: Efficient primitives for deep learning.

CoRR, abs/1410.0759, 2014. 7

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009. 2, 5

[5] Emily L. Denton, Wojciech Zaremba, Joan Bruna, Yann Le-

Cun, and Rob Fergus. Exploiting linear structure within con-

volutional networks for efficient evaluation. In NIPS, 2014.

2

[6] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2016. 2

[7] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

works. In NIPS, 2015. 2

[8] Babak Hassibi and David G. Stork. Second order derivatives

for network pruning: Optimal brain surgeon. In NIPS, 1992.

2

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016. 2, 4, 6

[10] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In ECCV, 2018. 5, 6, 8

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. 2017 IEEE In-

ternational Conference on Computer Vision (ICCV), pages

1398–1406, 2017. 1, 2, 5, 6, 7

[12] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. In ECCV, 2018. 2,

5, 6, 7

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross B. Girshick, Sergio Guadar-

rama, and Trevor Darrell. Caffe: Convolutional architecture

for fast feature embedding. In ACM Multimedia, 2014. 7

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2015. 4

[15] Diederik P. Kingma, Tim Salimans, and Max Welling. Vari-

ational dropout and the local reparameterization trick. Com-

puter Science, 2015. 1, 2, 3

[16] Alex Krizhevsky. Learning multiple layers of features from

tiny images. 2009. 4

[17] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal

brain damage. In NIPS, 1989. 2

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. CoRR,

abs/1608.08710, 2017. 6

[19] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue

Huang, and Baochang Zhang. Accelerating convolutional

networks via global & dynamic filter pruning. In IJCAI,

2018. 4

[20] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian

compression for deep learning. In NIPS, 2017. 1, 2, 4, 5

[21] Christos Louizos, Max Welling, and Diederik P. Kingma.

Learning sparse neural networks through l0 regularization.

CoRR, abs/1712.01312, 2017. 1

[22] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-

ter level pruning method for deep neural network compres-

sion. 2017 IEEE International Conference on Computer Vi-

sion (ICCV), pages 5068–5076, 2017. 1, 2, 4, 5, 6, 7

[23] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and

Dmitry Vetrov. Structured bayesian pruning via log-normal

multiplicative noise. In NIPS, 2017. 1, 2, 4, 5

[24] John Nickolls, Ian Buck, Michael Garland, and Kevin

Skadron. Scalable parallel programming with cuda. 2008

IEEE Hot Chips 20 Symposium (HCS), pages 1–2, 2008. 7

[25] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017. 6

[26] Carsten Peterson and James R. Anderson. A mean field the-

ory learning algorithm for neural networks. Complex Sys-

tems, 1, 1987. 3

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In ECCV, 2016. 2

[28] Mark B. Sandler, Andrew G. Howard, Menglong Zhu, An-

drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-

verted residuals and linear bottlenecks. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 2, 8

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2015. 2, 4

[30] Vikas Sindhwani, Tara N. Sainath, and Sanjiv Kumar. Struc-

tured transforms for small-footprint deep learning. In NIPS,

2015. 2

[31] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,

Søren Kaae Sønderby, and Ole Winther. Ladder variational

autoencoders. In NIPS, 2016. 4

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple

way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15:1929–1958, 2014. 2

[33] Ilya Sutskever, James Martens, George Dahl, and Geoffrey

Hinton. On the importance of initialization and momentum

in deep learning. In ICML, 2013. 4

[34] Sida Wang and Christopher Manning. Fast dropout training.

In ICML, 2013. 2

[35] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In NIPS, 2016. 1, 2

3314

[36] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and

Jian Cheng. Quantized convolutional neural networks for

mobile devices. 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 4820–4828, 2016. 2

[37] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.

Accelerating very deep convolutional networks for classifi-

cation and detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38:1943–1955, 2016. 2

[38] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. CoRR, abs/1611.01578, 2017. 2

3315

