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Abstract

Person re-identification (Re-ID) has undergone a rapid

development with the blooming of deep neural network.

Most methods are very easily affected by target misalign-

ment and background clutter in the training process. In

this paper, we propose a simple yet effective feedforward

attention network to address the two mentioned problems,

in which a novel consistent attention regularizer and an im-

proved triplet loss are designed to learn foreground atten-

tive features for person Re-ID. Specifically, the consistent

attention regularizer aims to keep the deduced foreground

masks similar from the low-level, mid-level and high-level

feature maps. As a result, the network will focus on the

foreground regions at the lower layers, which is benefit to

learn discriminative features from the foreground regions at

the higher layers. Last but not least, the improved triplet

loss is introduced to enhance the feature learning capa-

bility, which can jointly minimize the intra-class distance

and maximize the inter-class distance in each triplet unit.

Experimental results on the Market1501, DukeMTMC-reID

and CUHK03 datasets have shown that our method outper-

forms most of the state-of-the-art approaches.

1. Introduction

Person re-identification (Re-ID) is a critical technology

in video surveillance, which aims to associate the same

pedestrian across the non-overlapping camera views. With

the blooming of convolutional neural network, the current

deep feature learning based methods [5, 8, 53, 61] have

significantly outperformed a variety of traditional feature

learning based approaches [33, 43]. In practice, it is crit-

ical to learn a discriminative feature representation in solv-

ing the person Re-ID problem. However, the learned fea-

tures are very easily degenerated by target misalignment

and background clutter, because most of the deep feature
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Figure 1. Motivation of our consistent attention regularizer, which

aims to drive the network focus on foreground regions at the lower

layers. Therefore the network will learn a discriminative feature

representation to enhance the useful signals from point A and sup-

press the noise signals from point B, at the higher layers. From the

final features learned in (a) and (b), we can find that the consistent

attention regularizer is critical to associate two samples with target

misalignment and background clutter.

learning based methods usually try to learn discriminative

features from the whole input images.

As a data-driven approach, the deep feature learning

based methods [22, 46, 50] can autonomously focus most

of their attentions on the foreground regions of input im-

ages. However, the networks are very easily misguided if

we haven’t an explicit regularizer to drive its attention in

the feature learning process [58]. To solve this problem,

two mainstream approaches have been widely studied in the

past few years. The first line of methods are based on the

part-based networks [5, 38, 62], in which they try to learn

discriminative features from the predefined body parts. The

second line of methods are based on the foreground atten-

tions [20, 29, 34, 39, 54, 59], in which person masks are

used to drive the attention in a supervised manner or atten-

tion mechanisms are applied to deduce the attention in an

unsupervised manner. In general, it is much easier to learn

a discriminative feature representation with the annotated

person masks, because it can help the network to precisely

focus on the foreground regions at the lower layers.
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Many off-the-shelf methods [9, 57] have been widely

used to generate the foreground masks for person Re-ID,

however the resulting person masks are usually in poor

quality due to the low resolution of input images. As a re-

sult, there is a high risk that the foreground attention will be

misguided at the lower layers [34]. In order to alleviate this

problem, it is better to incorporate the discriminative feature

learning and foreground attention deducing in an end-to-end

network, because they can benefit from each other in the

training process. As shown in Figure 1, it becomes an im-

portant issue that how to deduce the foreground attentions

at the lower layers, so as to learn the foreground attentive

features at the higher layers and suppress the noise signals

caused by target misalignment and background clutter.

In this paper, we design a simple yet effective atten-

tion network to learn a discriminative feature representation

from the foreground regions for person Re-ID. Our method

is inspired by the phenomenon [58] that the high-level fea-

ture maps usually contain much more semantic information

than the low-level feature maps. Therefore, it will be much

easier to deduce the high-quality foreground masks from

the high-level feature maps rather than from the low-level

feature maps. Specifically, we first design a novel feed-

forward attention network which can learn the foreground

masks from the low-level, mid-level and high-level feature

maps, respectively. Then, a novel consistent attention reg-

ularizer is designed to transmit the foreground information

from the high-level to mid-level and low-level feature maps.

In this manner, the high-quality foreground masks learned

from the high-level feature maps can be further used to help

the lower layers focus on the foreground regions. Finally,

an improved triplet loss is introduced to enhance the feature

learning capability, which can jointly minimize the intra-

class distance and maximize the inter-class distance in each

triplet unit. Our network is trained in an end-to-end manner,

which can effectively learn discriminative features to match

images of the same person in a large camera system.

The main contributions of our paper can be highlighted

as follows: 1) A novel feedforward attention network is de-

signed to learn foreground masks from the low-level, mid-

level and high-level feature maps, respectively. 2) A novel

consistent attention regularizer is put forward to keep the

deduced foreground masks similar in the training process,

which is benefit to drive the network to focus on fore-

ground regions at the lower layers. 3) A novel triplet loss

is built to supervise feature learning by jointly minimiz-

ing the intra-class distance and maximizing the inter-class

distance in each triplet unit. We conduct extensive experi-

ments on the Market1501 [56], DukeMTMC-reID [27] and

CUHK03 [54] datasets, which have shown significant im-

provements by our method as compared with the state-of-

the-art approaches.

2. Related Work

Our method aims to learn a discriminative feature rep-

resentation through the consistent attention regularization,

therefore we review two lines of related works in terms of

deep feature learning and deep attention learning.

Deep feature learning. A robust feature representa-

tion is very critical to solve the person Re-ID problem,

and the deep feature learning based methods mainly fo-

cus on learning a discriminative feature representation from

input images. For this purpose, different loss functions

have been developed, such as the triplet loss [8], quadru-

plet loss [5], center loss [47], and softmax loss [16], to

guide the feature learning process. Meanwhile, a large num-

ber of well-known networks have been designed to extract

features from the input images, including the ResNet [10],

DenseNet [13], MobileNet [28] and ShuffleNet [23]. In ad-

dition, different part strategies [5, 17, 38, 60] have been

widely used to enhance the feature representation capabil-

ity of backbone networks. In recent years, the Generative

Adversarial Networks (GAN) [7, 45, 58] have been exten-

sively studied to augment the training data for person Re-

ID, which is an effective way to enhance the generalization

ability of leaned features. Despite learning features from the

single images, another line of methods [3, 24, 49, 63] have

tried to learn the temporal-spatial features from video clips.

Due to the strong representation capability of deep neu-

ral network, the deep feature learning based methods have

achieved the state-of-the-art performance on the benchmark

datasets for person Re-ID.

Deep attention learning. The deep attention learning

has been extensively studied in the computer vision com-

munity, which can effectively improve the algorithm’s per-

formance by addressing the useful information [40]. In gen-

eral, the deep attention learning based methods can be di-

vided into the supervised and unsupervised lines. In the

former ones, the labeled ground truth is needed to super-

vise the learning process. For example, the foreground

masks [15, 34, 39] have been widely used to guide the net-

works to focus their attentions on the body regions, so as

to learn discriminative features for person Re-ID. Besides,

the predefined regions [12, 55] are usually used to drive the

network to learn fine features from the local regions, which

have been extensively studied in solving the fine-grained

image classification problem. In the later ones, the self-

attention mechanisms or heuristic knowledge are usually

used to guide the attention learning. For instance, several

works [20, 54] have designed different attention modules to

guide the networks to put their attentions on the discrimina-

tive body regions. The deep residual attention learning [41]

has been successfully applied in image classification. In ad-

dition, the temporal-spatial clues [25, 35] have been widely

used to supervise the attention learning in video recognition

and classification.
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Figure 2. Illustration of our feedforward attention network, which works as follows: The foreground masks are firstly learned from the

low-level, mid-level and high-level feature maps, respectively. Then, the consistent attention regularizer is applied to keep the deduced

foreground masks similar, so as to drive the network focus on foreground regions at the lower layers. Finally, the improved triplet loss and

softmax loss are jointly used to learn discriminative features in a multi-task learning framework.

3. Our method

Given a set of training samples X = {Xi,Yi}
N
i=1, in

which Xi indicates the ith input image and Yi represents

the corresponding label, our method tries to learn a discrim-

inative feature representation from the foregound regions of

input images. The structure of our feedforward attention

network is illustrated in Figure 2, in which a novel consis-

tent attention regularizer and an improved triplet loss are

designed to learn discriminative features for person Re-ID.

Without loss of generality, we choose the ResNet50 [10] as

backbone. In the following paragraphs, we will explain our

method in detail.

3.1. Network Structure

Our feedforward attention network aims to learn dis-

criminative features from the foreground regions, therefore

two requirements need to be satisfied in the network design.

Firstly, the backbone network should be powerful enough,

so as to extract discriminative features at the output layer. In

our network structure, we choose the ResNet50 as our back-

bone, which is mainly consisted of a convolutional layer, a

max pooling layer and four residual blocks. In particular,

one Global Average Pooling (GAP) [21] layer and a Fully-

Connected (FC) layer are used to obtain a 2048 dimensional

feature vector. Besides, one Batch Normalization (BN) [14]

layer is deployed between the GAP and FC layers. Sec-

ondly, an attention module should be designed to deduce the

foreground masks from feature maps. For this purpose, we

take heat map to represent the foreground mask and use the

resulting foreground mask to filter the corresponding fea-

ture maps in the training process. As shown in Figure 3,

our attention module takes the feature maps Tk as input

and outputs the deduced foreground mask Hk, which can

be modeled as follows:

Hk = Mask(Tk;Θk), (1)

Figure 3. Illustration of our attention module. For simplicity, we

suppose the input feature maps Tk have Lk feature maps, then we

fuse them in a gradual way: L1

k =
1

2
Lk and L

2

k =
1

2
L
1

k. Besides,

three dilated convolutional layers with different dilation ratios are

used to deduce the foreground mask from a local to global view.

where Θk represents the parameters of our kth attention

module. In our design, we have the following considera-

tions: 1) At first, we take two convolutional layers to reduce

the number of feature maps to 1/4 of its own, so as to sum-

marize them in a gradual way. Then, another convolutional

layer with a kernel in size of 1 × 1 is applied to further get

the heat map. At last, a sigmoid function is used to normal-

ize the heat map in [0, 1]. 2) The multi-scale information

has been applied to deduce the foreground masks from a

local to global view. As the same in [17], three different re-

ceptive fields, namely 7, 5 and 3, have been used to extract

the context information by using different dilation ratios in

the dilated convolutional layers.

Once the attention module is designed, we embed it in

the ResNet50 and use the resulting heat map to filter the

output feature maps of each residual block as follows:

Ta
k(x, y, c) = Tb

k(x, y, c)×Hk(x, y), (2)

where Hk(x, y) denotes the deduced attention response at

the coordinate (x, y), Ta
k(x, y, c) and Tb

k(x, y, c) represent

the output and input responses at the coordinate (x, y) from

the cth feature map, respectively. As shown in Figure 2,

our feedforward attention network works as follows: 1) In

the forward propagation, the backbone network first extracts
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Figure 4. Differences between the two triplet losses in gradient

back-propagation. In particular, our triplet loss introduces one

point c
j
i on the line between xi and xj to model all the pairwise

relationships in each triplet unit, so as to consistently minimize the

intra-class distance in the training process.

the discriminative features from input images, then the at-

tention module deduces the foreground mask from the cor-

responding feature maps, and finally the generated feature

maps are further filtered by the resulting foreground masks

with the element-wise product. 2) The parameters of back-

bone network and attention modules are jointly optimized

in the backward propagation, therefore our feedforward at-

tention network will focus most of its own attentions on the

foreground regions in the next iteration.

3.2. Objective Function

The objective function is consisted of two loss terms and

one regularizer, which can be formulated as follows:

L(W,Θ) = L1(X;W) +αL2(X;W) +L3(H;Θ), (3)

where L1(·) represents the softmax loss, L2(·) indicates the

improved triplet loss, L3(·) denotes the consistent attention

regularizer, and α is a constant weight. In the training pro-

cess, the two loss terms aim to learn a discriminative feature

representation from the raw input images, and the consistent

attention regularizer tries to keep these foreground masks

similar, which are deduced from the low-level, mid-level

and high-level feature maps, respectively.

Because of its powerful capability, the softmax loss

has been widely used in training the deep neural network.

Therefore, we introduce it to supervise the feature learning

process, which can be formulated as follows:

L1(X;W) =
1

N

∑N

i=1
− log(

exp(pT
Yi
xi)∑

g exp(p
T
g xi)

), (4)

where pg denotes the gth column of the learned classifier,

and xi represents the feature vector learned by our feedfor-

ward attention network for input image Xi.

In order to apply the improved triplet loss to learn the

discriminative features from input images, we first orga-

nize the training samples into a set of triplet units, S =
{(Xi,Xj ,Xk)}, in which (Xi,Xj) represents a positive pair

with Yi = Yj , and (Xi,Xk) indicates a negative pair with

Yi �= Yk. In each triplet unit, we solve a ranking problem

by using the improved triplet loss:

T=[m+ d(xi, c
j
i ) + d(xj , c

j
i )− d(xk, c

j
i )]+, (5)

where d(z1, z2) = ‖z1 − z2‖
2
2 denotes the squired distance

in feature space, m represents the margin parameter, and

c
j
i = ηxi + (1 − η)xj indicates one point lied on the line

between xi and xj
1. As a result, xi and xj will move

towards c
j
i , and the intra-class distance can be consistently

minimized in the training process.

Discussion. To the best of our knowledge, a series of

triplet losses have been designed in the past few years. The

basic triplet loss [8] is defined as follows:

T1 = [m+ d(xi,xj)− d(xj ,xk)]+. (D1)

Besides, some researchers have focused on how to improve

the gradient back-propagation in their modifications. For

example, the dual triplet loss [52] is defined as follows:

T2=[m+ d(xi,xj)−
1

2
[d(xi,xk) + d(xj,xk)]]+, (D2)

and the symmetric triplet loss [62] is defined as follows:

T3=[m+ d(xi,xj)− [ud(xi,xk) + vd(xj,xk)]]+. (D3)

Firstly, we compare the gradient back-propagation between

our triplet loss and the basic one, as shown in Figure 4, and

the differences come from two aspects: 1) The basic triplet

loss only considers one positive pair (Xi,Xj) and one neg-

ative pair (Xi,Xk), which neglects another negative pair

(Xj ,Xk) in their formulation. Our triplet loss introduces

the center point c
j
i of positive pair to help model all the

pairwise relationships in each triplet unit. 2) Because of

the resulting advantages in gradient back-propagation, our

triplet loss can continuously minimize the intra-class dis-

tance, while the basic triplet loss is hard to achieve this goal

in the training process.

Secondly, we conclude the relationships of these triplet

losses as follows: 1) We can find that T2(xi,xj ,xk) =
1
2 [T1(xi,xj ,xk) + T1(xj ,xi,xk)], which indicates that it

is important to model all the pairwise relationships in each

triplet unit. 2) The symmetric loss is a generalized version

of the dual triplet loss, in which it designs a novel algorithm

to update u and v in the training process. 3) Our triplet loss

doesn’t need to use any additional algorithm to achieve a

more robust performance than the symmetric triplet loss.

Now, we extend our triplet loss to the whole triplet units,

which can be formulated as follows:

L2(X;W) =
1

|S|

∑
(Xi,Xj ,Xk)∈S

T(xi,xj ,xk), (6)

where |S| indicates the number of triplet units in S.

1In order to keep our triplet loss outperforms the basic one, we need to

set η ∈ (0, 1), and we choose η = 0.5 in all the experiments. If η = 1,

the basic triplet loss will become a special case of our method.
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Figure 5. Illustration of the deduced heat maps from the low-level,

mid-level and high-level feature maps, respectively. In particular,

(a) shows the learned heat maps without applying the consistent

attention regularizer, and (b) shows the learned heat maps by using

our consistent attention regularizer.

Finally, we introduce the consistent attention regularizer

to keep all the deduced foreground masks similar in the

training process, which is defined as follows:

L3(H;Θ) =
β

K

K∑

k=1

‖Hk+1 − Ĥk‖
2
F +

̟

K+1

K+1∑

k=1

‖Hk‖1,

(7)

where K + 1 denotes the number of heat maps, and β,̟
are two constant weights. Besides, Ĥk is in the same size

with Hk+1, which is obtained by a max-pooling of Hk

with stride 2. Because there are four residual blocks in the

ResNet50, we set K = 3 in all the experiments. Our consis-

tent attention regularizer is consisted of two terms, i.e., the

consistence term and sparsity term, in which: 1) The consis-

tence term aims to keep these heat maps similar, which are

learned from the low-level, mid-level and high-level feature

maps, respectively. As a result, the high-quality foreground

masks learned from the high-level feature maps can be used

to help the network focus on foreground regions at the lower

layers. 2) The sparsity term tends to do feature selection,

which is benefit to remove some false positive responses in

background. We compare two different sets of heat maps in

Figure 5, from which we can see that the heat maps learned

by using our consistent attention regularizer are much better

than these without using this regularizer .

3.3. Optimization

We optimize the deep parameters W, Θ by using the

Stochastic Gradient Descent (SGD) algorithm. For simplic-

ity, we take Ω = [W,Θ] as a whole and compute the partial

derivate of Eq. (3) as follows:

∂L(Ω)

∂Ω
=

∂L1(X;W)

∂W
+α

∂L2(X;W)

∂W
+

∂L3(H;Θ)

∂Θ
,

(8)

where ∂L1(X;W)/∂W can be easily computed by us-

ing the off-the-shelf algorithm, and ∂L2(X;W)/∂W and

∂L3(H;Θ)/∂Θ are derived in the following paragraphs.

Algorithm 1 Consistent attention gradient descent.

Input: The training data X, learning rate τ , maximum

iteration number Q, weight parameters α, β and ̟, and

margin parameter m.

Output: The network parameters Ω = [W,Θ].
repeat

repeat

1) Compute ∂L1

∂W
using the off-the-shelf algorithm;

2) Compute ∂L2

∂W
according to Eq. (9);

3) Compute ∂L3

∂Θ
according to Eq. (11);

4) Update the gradients ∂L
∂Ω

according to Eq. (8);

until Traverse all the triplet inputs {(xi,xj ,xk)} in

each min-batch;

2. Update Ω(q+1) = Ω(q) − τq
∂L

∂Ω(q) and q ← q + 1.

until q > Q

We denote r = m + d(xi, c
j
i ) + d(xj , c

j
i ) − d(xk, c

j
i ),

then the partial derivate of our triplet loss can be formulated

as follows:

∂L2(X;W)

∂W
=

⎧
⎨
⎩

1
|S|

∑
(xi,xj ,xk)∈S

∂P(xi,xj ,xk)
∂W

, if r > 0,

0 , else.
,(9)

in which ∂P(xi,xj ,xk)/∂W is computed as follows:

∂P(xi,xj ,xk)

∂W
= 2(xi − c

j
i ) ·

∂xi − ∂cji
∂W

+2(xj − c
j
i ) ·

∂xj − ∂cji
∂W

−2(xk − c
j
i ) ·

∂xk − ∂cji
∂W

. (10)

The partial derivate of our consistent attention regular-

izer is computed as follows:

∂L3(H;Θ)

∂Θ
=

β

K

K∑

k=1

�c(Hk+1,Ĥk)+
̟

K+1

K+1∑

k=1

�s(Hk), (11)

where �c(Hk+1,Ĥk) and �s(Hk) are computed as follows:

�c(Hk+1,Ĥk) = 2(Hk+1−Ĥk) ·
∂Hk+1−∂Ĥk

∂Θ
, (12)

�s(Hk) = sign(Hk) ·
∂Hk

∂Θ
, (13)

where sign(·) denotes the sign function, in which sign(z) =
1 if z > 0, and otherwise sign(z) = −1.

Because our method needs to back-propagate gradients

to learn a discriminative feature representation by using our

consistent attention regularizer, we name it as the consistent

attention gradient descent algorithm. Algorithm 1 shows the

overall implementation of our training process.
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Index Network Losses

Market1501 DukeMTMC-reID CUHK03

Single-Query Multi-Query Single-Query Labeled Detected

Top 1 mAP Top 1 mAP Top 1 mAP Top 1 Top 5 Top 1 Top 5

1 ResNet. S 87.5 72.8 91.2 79.4 78.3 62.1 72.1 91.2 66.5 88.4

2 ResNet. BT 87.0 72.4 91.3 79.5 77.6 61.8 73.2 92.2 68.1 89.6

3 ResNet. S+BT 89.1 75.0 92.4 81.0 79.7 64.9 76.8 93.8 74.8 93.0

4 ResNet. IT 89.7 75.8 92.9 81.4 79.2 64.5 77.1 94.2 74.1 92.9

5 ResNet. S+IT 93.4 79.2 94.2 82.5 82.1 68.4 82.4 96.6 78.4 94.5

6 ResNet.(AM) S 87.8 73.0 91.6 79.8 78.9 63.6 74.1 92.8 70.9 90.9

7 ResNet.(AM) BT 87.1 72.5 91.2 79.5 78.1 62.0 76.5 93.6 72.9 91.8

8 ResNet.(AM) S+BT 89.4 75.4 92.5 81.1 81.2 68.1 81.1 95.8 77.8 94.3

9 ResNet.(AM) IT 90.2 76.6 93.3 82.0 79.8 65.2 81.3 96.1 78.1 94.4

10 ResNet.(AM) S+IT 93.9 79.5 94.6 82.9 82.6 69.1 88.4 97.8 85.5 96.6

11 ResNet.(AM) S+CA 89.3 75.4 92.7 81.2 81.6 68.4 78.5 94.6 75.1 93.2

12 ResNet.(AM) BT+CA 88.9 74.9 92.7 80.9 80.9 67.9 80.1 95.4 76.9 93.8

13 ResNet.(AM) S+BT+CA 92.1 78.6 93.8 82.5 83.5 70.4 86.6 97.2 82.4 96.0

14 ResNet.(AM) IT+CA 93.3 79.2 95.2 83.7 83.1 70.2 89.1 98.1 87.1 97.3

15 ResNet.(AM) S+IT+CA 96.1 84.7 98.2 87.3 86.3 73.1 96.9 99.6 93.2 99.2

Table 1. Matching rates(%) of different variants of our method on the three benchmark datasets, in which 1) AM: Attention Module; 2) S:

Softmax Loss; 3) BT: Basic Triplet Loss; 4) IT: Improved Triplet Loss; 5) CA: Consistent Attention Regularizer.

4. Experiments

4.1. Settings

Datasets. We conduct experiments on three large-scale

datasets, i.e., the Market1501 [56], DukeMTMC-reID [27]

and CUHK03 [18]. The Market1501 dataset contains

32,668 images, including 12,936 training samples from 751

identities, and 19,732 testing samples from 750 identities,

respectively. The DukeMTMC-reID dataset is consisted

of 1,812 identities captured from 8 different cameras, in

which 16,522 images from 702 identities are used as train-

ing samples, 2,228 images of another 702 identities are

used as queries, and the remaining 17,661 noisy images are

also used for the gallery set. The CUHK03 dataset con-

tains 13,164 images of 1,467 identities, in which samples

of 1,367 identities are randomly chosen for training, and

the samples of remaining identities are used for testing.

Implementation. In our implementation, we first resize

the input images into 256×128, then followed by a random

cropping and flipping for data augmentation. The batch size

is 32, the learning rate is τ = 0.01 and decayed by 0.1 at

every 10 epochs. The weight parameters are set as α = β =
0.1 and ̟ = 0.01, and the margin parameter is chosen as

m = 1.0. Once the the network is trained, we simply use

it to extract features from the testing images and formulate

the person Re-ID as a nearest neighbor search problem.

4.2. Ablation Study

Variants. To evaluate how much our method improves

the final results, we design 15 experiments on each dataset,

as shown in Table 1, which can well support the following

conclusions: 1) The multi-task learning framework is more

effective than the single-task learning framework in learn-

ing discriminative features; 2) The improved triplet loss is

superior than the basic triplet loss in supervising the feature

learning; 3) The attention subnetwork can slightly improve

Methods
Labeled Detected

Top 1 Top 5 Top 1 Top 5

LDNS [51] (CVPR2016) 62.6 90.5 54.7 84.8

PDC [36] (ICCV2017) 88.7 98.6 78.3 94.8

DLPA [54] (ICCV2017) 85.1 97.6 – –

SVDNet [37] (ICCV2017) – – 81.8 95.2

DCAF [17] (CVPR2017) 74.2 94.3 68.0 91.0

SSM [1] (CVPR2017) 76.6 94.6 72.7 92.4

DPFL [6] (CVPR2017) 86.7 82.8 82.0 78.1

JLML [19](IJCAI2017) 83.2 98.0 80.6 96.9

PRGP [39] (CVPR2018) 91.7 98.2 – –

DGRW [30] (CVPR2018) 94.9 98.7 – –

BraidNet [44] (CVPR2018) 88.2 98.7 85.9 98.5

AACN [48] (CVPR2018) 91.4 98.9 89.5 97.7

GCSL [4] (CVPR2018) 90.2 98.5 88.8 97.2

SGGNN [31] (ECCV2018) 95.3 99.1 – –

PN-GAN [26] (ECCV2018) 79.8 96.2 – –

Our Method 96.9 99.6 93.2 99.2

Table 2. The matching rates(%) comparison with the state-of-the-

art methods on the CUHK03 dataset, in which ‘–’ means they do

not report the corresponding results.

the network’s representation capability; 4) The consistent

attention regularizer can guide the attention subnetwork to

better explore the foreground regions of input images. As a

result, we incorporate our three contributions in a multi-task

learning framework to learn a discriminative feature repre-

sentation for person Re-ID. In the next paragraph, we will

explain the above conclusions in detail.

For clarity, we try to check the above conclusions based

on the performances on the Market1501 dataset using the

single-query evaluation. To evaluate how much the multi-

task learning framework outperforms the single-task learn-

ing framework, we can compare the experimental results as

listed in indexes 1, 2 and 3; indexes 1, 4 and 5; indexes

6, 7 and 8; indexes 6, 9 and 10; indexes 11, 12 and 13;

and indexes 11, 14 and 15, from which we can find that the

multi-task learning framework can significantly improve the

person Re-ID result in all the six situations. Take the exper-

imental results in indexes 1, 2 and 3 for an example, the
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Figure 6. Influences of different parameter settings to the final matching rates. Specifically, we compare the Top 1 and mAP performances

of our method on the Market1501 dataset using the single-query evaluation, in which the detailed influences of α, β, ̟ and m are illustrated

in (a) to (d), respectively.

Methods
Single-query Multi-query

Top 1 mAP Top 1 mAP

LDNS [51] (CVPR2016) 61.0 35.6 71.6 46.0

PDC [36] (ICCV2017) 84.1 63.4 – –

SVDNet [37] (ICCV2017) 82.3 62.1 – –

DLPA [54] (ICCV2017) 81.0 63.4 – –

DPFL [6] (CVPR2017) 88.6 72.6 92.3 80.7

PRGP [39] (CVPR2018) 81.2 – – –

MLFN [2] (CVPR2018) 90.0 74.3 92.3 82.4

HA-CAN [20] (CVPR2018) 91.2 75.7 93.8 82.8

DGRW [30] (CVPR2018) 92.7 82.5 – –

DuATM [32] (CVPR2018) 91.4 76.6 – –

MGCAN [34] (CVPR2018) 83.8 74.3 – –

BraidNet [44] (CVPR2018) 83.7 69.5 – –

AACN [48] (CVPR2018) 85.9 66.9 76.8 59.3

GCSL [4] (CVPR2018) 93.5 81.6 – –

PCB [38] (ECCV2018) 93.8 81.6 – –

SGGNN [31] (ECCV2018) 92.3 82.8 – –

PN-GAN [26] (ECCV2018) 89.4 72.6 92.9 80.2

MGN [42] (ACM MM2018) 95.7 86.9 96.9 90.7

Our Method 96.1 84.7 98.2 87.3

Table 3. The matching rates(%) comparison with the state-of-the-

art methods on the Market1501 dataset, in which ‘–’ means they

do not report the corresponding results.

Methods Top 1 Top 5 Top10 mAP

SVDNet [37] (ICCV2017) 75.9 86.4 89.5 56.3

DLPA [54] (ICCV2017) 81.0 63.4 – –

GAN [58] (ICCV2017) 67.7 – – 47.1

DPFL [6] (CVPR2017) 79.2 – – 60.6

MLFN [2] (CVPR2018) 81.0 – – 62.8

HA-CAN [20] (CVPR2018) 80.5 – – 60.8

DGRW [30] (CVPR2018) 80.7 88.5 90.8 66.4

DuATM [32] (CVPR2018) 81.8 90.2 – 64.6

BraidNet [44] (CVPR2018) 76.4 – – 59.5

AACN [48] (CVPR2018) 76.8 – – 59.3

GCSL [4] (CVPR2018) 84.9 – – 69.5

PCB [38] (ECCV2018) 83.3 90.5 92.5 69.2

SGGNN [31] (ECCV2018) 81.1 88.4 91.2 68.2

PN-GAN [26] (ECCV2018) 73.6 – 88.8 53.2

MGN [42] (ACM MM2018) 88.7 - - 78.4

Our Method 86.3 92.3 95.2 73.1

Table 4. The matching rates(%) comparison with the state-of-the-

art methods on the DukeMTMC-reID dataset, in which ‘–’ means

they do not report the corresponding results.

S+T outperforms S and T by 1.6% and 2.1% in Top 1, and

2.2% and 2.6% in mAP, respectively. For the improvements

by our triplet loss, we compare the results between indexes

2 and 4; between indexes 3 and 5; between indexes 7 and

9; between indexes 8 and 10; between 11 and 14; and be-

tween 13 and 15, respectively. The results explain that the

improved triplet loss is superior than the basic triplet loss

in learning discriminative features. For instance, the re-

sults obtained by our triplet loss outperform that achieved

by the basic triplet loss by 3.1% in Top 1 and 4.1% in mAP,

when we compare the performances between indexes 7 and

9. From the results listed in Block 1 (as shown in indexes

1 to 5) and Block 2 (as shown in indexes 5 to 10), we can

see that the improvements by the attention subnetwork is

insignificant, because it is hard to directly deduce attention

from the low-level feature maps. Specifically, the improve-

ments are only 0.3%, 0.1%, 0.3%, 0.5% and 0.5% in Top

1, and 0.2%, 0.1%, 0.4%, 0.8% and 0.3% in mAP, when

we compare the corresponding results between Block 1 and

Block 2, respectively. When the consistent attention regu-

larizer is used to help deduce attention, the results can be

significantly improved. Specifically, the improvements are

1.5%, 1.8%, 2.7%, 3.1% and 2.2% in Top 1, and 2.4%,

2.4%, 3.2%, 2.6% and 5.2% in mAP, when we compare

the corresponding results between Block 2 and Block 3 (as

shown in indexes 11 to 15), respectively.

Parameters. As in most of the deep learning methods,

the performance of our method is also highly dependent on

the weight parameters α, β and ̟, and the margin parame-

ter m. In order to clarify this influence, we design four sets

of experiments to evaluate how the parameter setting effects

the final person Re-ID performance. Specifically, we only

change one parameter and keep the others fixed in each set

of experiments, so as to evaluate how the varying parameter

effects the final performance. For simplicity, we conduct

the experiments on the Market1501 datasets and evaluate

the results using the single-query evaluation. The results

are shown in Figure 6, from which we find that: 1) The ex-

perimental results are robust to α, β and m, in which a large

variation range is allowed to maintain the final person Re-ID

performance in a relatively high level. 2) The experimental

results are slight sensitive to ̟, because the sparsity is hard

to control in the training process. If ̟ is large, some of the

useful information may be filtered out, therefore the person

Re-ID performance will be seriously affected. If ̟ is small,

the ability of feature selection will be weaken, which is also

not benefit to further improve the final performance. Taking

the two situations into account, we prefer to choose a small

̟ in our experiments.
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Figure 7. Visualization of the averaged heat maps on the CUHK03, Market1501 and DukeMTMC-reID datasets. From the results we can

see that the network can focus on foreground regions at the lower layers by using the consistent attention regularizer.

Losses
CUHK03 Market1501 DukeMTMC

Top 1 Top 5 Top 1 mAP Top 1 mAP

BT 88.6 97.2 92.1 78.6 83.5 70.4

DT 90.3 98.2 93.5 79.8 84.2 70.9

ST 92.8 98.6 94.2 80.3 85.0 71.5

Our Triplet 96.9 99.6 96.1 84.7 86.3 73.1

Table 5. Results of four different triplet losses on three benchmark

datasets, in which ‘BT’ denotes the basic triplet loss, ‘DT’ means

the dual triplet loss and ‘ST’ indicates the symmetric triplet loss.

Visualization. Our consistent attention regularizer can

effectively keep these foreground masks similar, which are

deduced from the low-level, mid-level and high-level fea-

ture maps, respectively. As a result, our network will focus

its attention on foreground regions at the lower layers. We

visualize the averaged heat maps on the three datasets, as

shown in Figure 7, from which we can find that most of

the network’s attention has been focused on the foreground

regions across the lower to higher layers. Therefore, the re-

sulting features will be very robust to target misalignment

and background clutter.

4.3. Comparison Results

Firstly, we compare our method with many state-of-

the-art competitors on the CUHK03, Market1501 and

DukeMTMC-reID datasets, as shown in Table 2 to Table 4.

From the result we can see that: 1) Our method has achieved

the best result on the CUHK03 dataset, in which it outper-

forms the previous best performed SGGNN [31] by 1.6% in

Top 1; 2) Our method performs closely to MGN [42] on the

Market1501 and DukeMTMC-reID datasets, in which our

method is better in Top 1 and the MGN is better in mAP. The

reason comes from two aspects: 1) Our network is much

lighter, while the MGN needs to take three part branch net-

works to extract features; 2) Our triplet loss doesn’t use any

hard mimining strategy, while the MGN further applies the

batchhard triplet loss [11] improve the final results. From

this point of view, our method can achieve a competitive

result in a very simple yet effective way.

Secondly, we compare the performances of four different

triplet losses, as shown in Table 5, on the three datasets.

From the results we can conclude that: 1) The dual triplet

loss outperforms the basic triplet loss, and the symmetric

triplet loss outperforms the dual triplet loss on all the three

datasets, which indicate that it is an effective way to revise

the gradient back-propagation in minimizing the intra-class

distances. 2) Our triplet loss outperforms the symmetric

triplet loss on all the three datasets, because it doesn’t need

to introduce any additional algorithm to help update weights

in the training process.

5. Conclusion

In this paper, we propose a simple yet effective feed-

forward attention network to learn discriminative features

from the foreground regions for person Re-ID. Specifically,

a novel consistent attention regularizer is designed to drive

the foreground masks similar, which are deduced from the

low-level, mid-level and high-level feature maps, respec-

tively. As a result, the network will focus on the foreground

regions at the lower layers, and the network can effectively

deal with the target misalignment and background clutter

at the higher layers. Besides, a novel triplet loss is intro-

duced to enhance the feature learning capability, which can

jointly minimize the intra-class distance and maximize the

inter-class distance in each triplet unit. Extensive experi-

mental results on the Market1501, DukeMTMC-reID and

CUHK03 datasets have shown that our method outperforms

most of the state-of-the-art approaches.
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