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Figure 1: Top row: result of [2]. [2] takes an RGB-D image as input and predicts: (b) reflectance, (c) shading, (d) normal,

(e) lighting. Bottom row: result of our method. It takes an RGB image as input and predicts: (g) reflectance, (h) shading,

(i) normal and (j) lighting. The red boxes show that our algorithm correctly attributes cast shadows and highlights to shading

while [2] incorrectly attributes them to reflectance. Our lighting (j) captures local lighting variation better than (e) from [2].

Abstract

Traditional intrinsic image decomposition focuses on de-

composing images into reflectance and shading, leaving

surfaces normals and lighting entangled in shading. In

this work, we propose a Global-Local Spherical Harmon-

ics (GLoSH) lighting model to improve the lighting compo-

nent, and jointly predict reflectance and surface normals.

The global SH models the holistic lighting while local SH

account for the spatial variation of lighting. Also, a novel

non-negative lighting constraint is proposed to encourage

the estimated SH to be physically meaningful. To seam-

lessly reflect the GLoSH model, we design a coarse-to-fine

network structure. The coarse network predicts global SH,

reflectance and normals, and the fine network predicts their

local residuals. Lacking labels for reflectance and lighting,

we apply synthetic data for model pre-training and fine-tune

the model with real data in a self-supervised way. Com-

pared to the state-of-the-art methods only targeting normals

or reflectance and shading, our method recovers all compo-

nents and achieves consistently better results on three real

∗Hao Zhou is currently at Amazon AWS.

datasets, IIW, SAW and NYUv2.

1. Introduction

Understanding the physical world that produces an im-

age is a core problem in computer vision. [4] first proposed

to estimate the intrinsic scene characteristics from images,

including range, orientation, reflectance and incident light-

ing. This is a notoriously difficult inverse problem as it is

highly under-constrained. Moreover, we lack models of the

physical components of the problem, such as lighting, that

are both accurate and easy to use. Early works start with

investigating the reflectance, shape and illumination of a

single object [1, 3], as the lighting for a single object is

easier to model, for instance, by using a single set of low

dimensional Spherical Harmonics [5, 31]. The lighting of

a natural scene, however, is much more complicated due to

its spatial variation caused by shadow, inter-reflection and

the presence of light sources in the scene. As a result, most

works that address scenes have lumped normal and light-

ing together as shading, and try to recover that, known as

intrinsic image decomposition.
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In this paper, we propose a new representation of light-

ing for scenes, which allows us to disentangle lighting and

surface normals, while also recovering reflectance. One

way to model lighting is Spherical Harmonics (SH) [5, 31],

which approximates the lighting with 9 low frequency com-

ponents. While this works well for modeling the lighting of

small objects, such as faces [5, 42, 33], such a global light-

ing cannot capture the spatially varying lighting in a com-

plex scene, as shown in Figure 2 (e). Allowing independent

lighting in each pixel, however, creates too many degrees of

freedom and would allow lighting variation alone to explain

the image.

To overcome the problem, we propose a Global-Local

Spherical Harmonics (GLoSH) lighting model. Our global

SH represents the holistic lighting of the entire scene. On

top of it, the local SH, produced by the sum of global SH

and local residual SH, account for the spatial variation of the

lighting. An L2 regularization on the local residual SH lim-

its the effects of over-parameterization. Figure 2 (c) shows

our GLoSH and Figure 2 (f) shows the reconstructed shad-

ing, which is much closer to ground truth than only using

global SH.

Spherical Harmonics with arbitrary coefficients would

represent lighting in a physically unrealistic way, if the

lighting is negative in some directions. Nevertheless, en-

forcing non-negative SH lighting is not trivial. Existing

methods either introduce many more parameters to con-

strain non-negative lighting [5] or require solving a semi-

definite programming problem [36], which is difficult to di-

rectly incorporate with deep networks. In this work, we

propose to sample the intensity of the lighting uniformly

distributed on a sphere generated from the predicted SH. A

non-negative loss is then defined on the sampled lighting.

Our non-negative constraint is only applied to global SH,

because practically the local residual SH regularized by L2

are not likely to change the sign of the lighting.

We apply a CNN to achieve an end-to-end coarse-to-fine

solution. Training deep CNNs requires huge amounts of

data and ground truth labels, and labeling images for re-

flectance and lighting is extremely difficult. Intrinsic Im-

ages in the Wild (IIW) [7] labels the relative darkness of

the reflectance from pairs of pixels. Shading Annotations

in the Wild (SAW) [22] labels constant shading regions,

shadow boundaries and depth/normal discontinuities. How-

ever, these datasets only provide sparse labels and a limited

number of images. Inspired by recent success of synthetic

data on computer vision applications, we propose to use the

synthesized SUNCG dataset [37], in which ground truth re-

flectance, normal and shading can be easily determined, to

pre-train the models. The pre-trained model is then further

trained with real data in a self-supervised way.

To sum up, we propose a GLoSH lighting model, and

apply a coarse-to-fine CNN structure to predict GLoSH

(a) synthetic image (b) global SH (c) GLoSH

(d) GT shading (e) shading w.r.t. (b) (f) shading w.r.t. (c)

Figure 2: Visualization of global SH modeling (b) and its

reconstructed shading (e), comparing to our GLoSH (c)

and its reconstructed shading (f). With GLoSH, clearly our

method generates the shading much closer to ground truth.

together with reflectance and normal. The synthetic data

pre-training and self-supervised training with real data

lead to state-of-the-art performance across three real scene

datasets, IIW, SAW and NYUv2. The contributions of our

work are as the following.

• We propose a GLoSH lighting model with global and lo-

cal SH, and a novel non-negative constraint to estimate

physically realistic lighting.

• To the best of our knowledge, under a single RGB image

setting, we are the first to apply CNNs to jointly estimate

reflectance, normal and lighting.

• We propose a coarse-to-fine network that is compatible

with our proposed global-local lighting model.

• Our method achieves the best results on IIW reflectance,

the second best on SAW shading, and strongly compet-

itive performance on NYUv2 normal. Notice that the

state-of-the-art methods only focus on one or two com-

ponents, while our method jointly estimates reflectance,

normal and lighting.

2. Related Work

Intrinsic Image Characteristics. We categorize the litera-

ture into two main streams: single object based and natural

scene based methods. Researchers have long been study-

ing the estimation of intrinsic image characteristics for a

single object. For example, shape from shading [39, 11]

focuses on recovering the shape assuming illumination and

reflectance are known. Photometric stereo [38] estimates

geometry from multiple images assuming known lighting.

Recent progress in photometric stereo [1] can estimate ge-

ometry and lighting up to a bas-relief transformation [6].

[15, 35, 25] proposed to decompose a single object image

into its reflectance and shading. [3] and [18] proposed to

jointly estimate reflectance, shape and lighting from a sin-
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Figure 3: Our coarse-to-fine network structure. The coarse net predicts the first level reflectance, lighting and surface normal,

of which the latter two further form the shading. The fine net takes the previous stacked output as input and predicts the

residual of reflectance, lighting and surface normal. The final reflectance, lighting and normal are recovered by adding the

predicted residual with the first level results.

gle object image.

Estimating a natural scene is more difficult due to more

complicated geometry and lighting. Recent studies [32, 12]

show the capability of accurately estimating the scene ge-

ometry thanks to large scale training data and the success of

deep learning. Some advanced methods [9, 19, 2, 34, 7, 8]

proposed optimization based approaches to decompose an

image into reflectance and shading, where [9, 19, 2] require

depth to be known. Most recent work [43, 29, 26, 27, 10,

20, 44, 24, 23, 13] applies deep Convolutional Neural Net-

works (CNN) on this task and achieve impressive perfor-

mance. [23] proposed to render realistic synthetic data and

then use it to train the deep models and adapt to the real

dataset. Our work follows a similar idea. However, we not

only estimate reflectance and shading, but also further de-

compose the shading into normal and lighting.

Barron and Malik [2] first proposed to estimate re-

flectance, depth/normal and lighting with RGB-D images.

They model the lighting at each pixel as a linear combina-

tion of eight sets of Spherical Harmonics. In contrast, we

jointly estimate reflectance, surface normals and lighting

from a single RGB image without depth, which is a much

harder problem. Moreover, we propose our Global-Local

SH (GloSH) with a coarse-to-fine neural network to repre-

sent the lighting for each pixel, which accounts for not only

the holistic lighting but also the local lighting variations.

Non-negative Spherical Harmonics. While using Spher-

ical Harmonics lighting, one challenge is how to enforce

lighting to be non-negative. [5] proposed to represent light-

ing using a non-negative linear combination of delta func-

tions to solve this problem. One drawback of this method is

that to have an accurate representation, a lot of delta func-

tions are needed. [36] proved that the Toeplitz matrix of a

non-negative SH is positive semi-definite. They proposed

to solve a semi-definite programming (SDP) problem to en-

force non-negative lighting. However, the SDP constraint

is not obviously tractable to incorporate with deep training.

In contrast, we formulate a non-negative lighting loss by

sampling hundreds of points on a predicted lighting sphere,

which is computationally efficient and fits into the network

training smoothly.

3. Reflectance, Normal and Shading from a

Single RGB Image

Intrinsic image decomposition assumes an image I to be

the product of reflectance R and shading S, i.e. I = R⊙S,

where ⊙ represents an element-wise product. Most research

studies focus on decomposing an image I into R and S,

where geometry and lighting remain entangled in shading.

In our work, we propose to further decompose shading S

into surface normal (i.e. geometry) N and lighting L. As-

suming S = Ψ(N,L), an image I can be represented as

I = R⊙Ψ(N,L), (1)

Ψ is a rendering function. Our target is to estimate R, N

and L given a single image I.

3.1. GLoSH Lighting Modeling

While a single, global set of low-dimensional SH have

been used to represent lighting of objects, this would be un-

able to capture the complex lighting conditions of a scene.

On the other hand, estimating SH for each pixel easily falls

into over-parameterization. We propose a neural network

based Global-Local Spherical Harmonics (GLoSH) model,

where global SH serves as the low frequency approximation

of the lighting, and local residual SH accounts for spatial

variation. A coarse-to-fine neural structure is designed to

exactly execute the global and local lighting modeling.

3.1.1 Global and local Spherical Harmonics

Following [5, 31], we propose to use SH up to the second

order, resulting in a 9 dimensional SH for each color chan-

nel. Denote the global SH as Lc ∈ R
9. Lc is predicted

from our coarse level network

As revealed in Figure 2, based only on the global SH Lc,

the shading is far from satisfactory, lacking much spatial

variation. To better model the spatial variation of the light-

ing, we predict local residual SH for each pixel in a fine
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level network. Our local SH is then formulated as global

SH with the local residual SH:

Lf = Lc + δLf , (2)

where δLf represent the local residual SH predicted by a

fine scale network.

3.1.2 Non-negative Constraints on SH

Physically realistic lighting requires non-negative SH light-

ing, which previous work [3, 2] does not properly consider.

To enforce the non-negative SH lighting, we propose a sim-

ple yet effective constraint on SH. According to [5], given a

SH coefficient Lc, the lighting intensity at a direction (θ, φ)
is a function of Lc, i.e., fL(Lc, θ, φ). A non-negative light-

ing means fL(Lc, θ, φ) ≥ 0, ∀0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Based on this, we uniformly sample the value of the func-

tion fL on a unit sphere and constrain all the sampled values

to be non-negative. The non-negative loss function is thus

defined as

LLc =
1

K

K
∑

i=1

min(0, fL(Lc, θi, φi))
2, (3)

K = 6414 is the number of directions sampled from the

sphere. We apply this non-negative constraint to global SH.

We further apply the L2 regularization over the local resid-

ual SH:

LLf = ‖δLf‖
2
2. (4)

This regularization penalizes their L2 norm, encouraging

the local lighting to not vary too much from the global light-

ing.

Our experiments demonstrate that Equation 3 and Equa-

tion 4 almost always result in the non-negative lighting for

local SH.

3.2. Coarse­to­fine Network Structure

To exactly match the proposed GLoSH lighting model-

ing, we design a coarse-to-fine network structure shown in

Figure 3. The coarse network is defined as an hourglass

network [30]. It takes an image x ∈ R
64×64×3 as input and

predicts reflectance Rc ∈ R
64×64×3, normal Nc ∈ R

64×64,

and global SH Lc ∈ R
9. Shading Sc ∈ R

64×64×3 can be

constructed by a simple rendering function.

Sc = Ψ(Nc,Lc) (5)

The fine scale network is designed with fully convolu-

tional structures. It takes x ∈ R
128×128×3, upsampled

Rc ∈ R
128×128×3,Nc ∈ R

128×128,Sc ∈ R
128×128×3 as

input and predicts residual maps. The recovered local re-

flectance, normal and local SH are:

Rf = Rc +Φ
Rf

f (Rc,Nc,Lc),

Nf = Nc +Φ
Nf

f (Rc,Nc,Lc), (6)

Lf = Lc +Φ
Lf

f (Rc,Nc,Lc),

where, Φ
Rf

f , Φ
Nf

f and Φ
Lf

f represent the fine level network

for reflectance, normal and lighting respectively. The fine

scale shading is calculated by Sf = Ψ(Nf ,Lf ). The fine

scale network structure can be recurrently applied to a finer

scale. Our full model is defined to have three scales, which

can predict reflectance, normal and lighting with resolution

256 × 256. Please refer to the supplementary materials for

more detail.

3.3. Supervision on Training

It is difficult to obtain dense accurate ground truth anno-

tation for reflectance, normal and lighting. We thus leverage

the rendered synthetic data for the supervised pre-training.

The pre-trained network is then fine-tuned using sparsely

annotated real data (IIW [7], SAW [22] and NYUv2 [28]) in

a self-supervised way, i.e., applying the pre-trained model

to provide pseudo ground truth labels for fine-tuning.

3.3.1 Reflectance

In the pre-training stage, we directly apply the ground truth

reflectance to guide the training in a fully supervised way,

where L1 loss is applied as shown in Equation 7.

LR1 = ‖R−R
∗‖1 + ‖∇R−∇R

∗‖1. (7)

R is the predicted reflectance and R
∗ is the correspond-

ing ground truth. Moreover, similar to [23], we add super-

vision to the gradient of the reflectance to encourage the

predicted reflectance to be piece-wise smooth.

For real data, there is no dense annotation for either re-

flectance, normal or lighting. Instead, IIW [7] provides

sparse ordinal reflectance judgments. Given a pair of re-

flectances R1 and R2, the label indicates whether R1 is

darker than (lighter than or equal to) R2 (demoted as J = 1,

J = −1 and J = 0 respectively) with a confidence score w.

We use the WHDR hinge loss proposed in [29] as the loss

for reflectance in real images:

LR(R1,R2, J) = (8)

w



























max
(

0, R1

R2

− 1

1+δ+ξ

)

if J = 1

max

(

0,

{

1

1+δ−ξ
− R1

R2

R1

R2

− (1 + δ − ξ)

)

if J = 0

max
(

0, (1 + δ + ξ)− R1

R2

)

if J = −1

We set δ = 0.12 and ξ = 0.08 during training as in

[29]. Notice that the above loss is not symmetric, i.e.,

LRi
(R1,R2, J) 6= LR(R2,R1,−J). We thus adapt the

above loss and define the modified WHDR loss as:

LR2 = LR(R1,R2, J) + LR(R2,R1,−J) (9)
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3.3.2 Normal

The ground truth normal for synthetic data and part of the

real data (NYUv2) are available. For those data in which

ground truth normals are available, we define the loss as

LN = −N
T
N

∗ + ‖∇N−∇N
∗‖1 (10)

Similar to reflectance regularization in Equation 7, we fur-

ther apply the first order derivative smoothness term to en-

courage the normal to be piece-wise continuous.

3.3.3 Shading

There is no supervision for lighting. The non-negative con-

straint and the L2 regularization are all unsupervised losses.

Applying rendering to generate shading S = Ψ(N,L) from

normal and lighting, we use the supervision on shading and

normal discussed in Sec. 3.3.2 to indirectly supervise the

lighting. The supervised signal for shading is similar to that

of reflectance:

LS1 = ‖S− S
∗‖1 + ‖∇S−∇S

∗‖1 (11)

where S and S
∗ are predicted shading and its ground truth.

For real images, SAW [22] provides annotation for

smooth shading regions and shadow boundaries. We thus

apply the same loss as in [23] for the shading:

LS2 = λcsLconstant−shading + Lshadow (12)

where λcs = 10 and Lconstant−shading and Lshadow are

the loss for constant shading region and shadow boundary

defined in [23].

4. Implementation Details

Pre-training on Synthetic Data: We first train our net-

work using the SUNCG dataset with synthesized ground

truth normal, reflectance, and shading. The loss to train our

network on synthetic data is

Ls = λsRLR1 + λsSLS1 + λsNLN + λLcLLc + λLfLLf

(13)

where LR1, LS1, LN , LLc and LLf are losses for re-

flectance, shading, normal, global and local residual light-

ing defined above, and λsR, λsS , λsN , λLc and λLf are

their corresponding weights. We set λsR = λsS = λsN =
λLc = 1 and λLf = 0.2. Our coarse-to-fine network is

trained step by step using the Adam [21] optimizer with ini-

tial learning rate 0.001 and weight decay 0.

Fine-tuning on Real Data: Due to the lack of annotation

from real datasets, we use the rendered SUNCG dataset as

supervision, with the loss denoted as Lcg
r . In addition, we

apply our network trained on synthetic data to predict re-

flectance, shading and normal of real images and use the re-

sults as pseudo supervision (self-supervision), with the loss

denoted as Lss
r .

Lcg
r = λ

cg
sRLR1 + λ

cg
sSLS1 + λ

cg
sNLN + λ

cg
LcLLc + λ

cg
LfLLf ,

Lss
r = λss

rRLR1 + λss
rSLS1 + λss

rNLN + λss
LcLLc + λss

LfLLf

(14)

where we set λ
cg
sR = λ

cg
sS = λ

cg
Lc = λ

cg
Lf = 1, λ

cg
sN = 10,

λss
rS = λss

rN = 5, λss
Lf = λss

Lc = 1 and λss
rR = 0.1. Our loss

defined on the annotation and ground truth of IIW, SAW and

NYUv2 is:

Lo
r = λo

rRLR2 + λo
rSLS2 + λo

rNLN (15)

where λo
Lc = λo

rN = 10, λo
rS = 1. Inspired by [7], we in-

troduce the L2 regularization to achieve a reasonable color

for reflectance.

Lc
r = ‖

R

1

3

∑

c R
c
−

I

1

3

∑

c I
c
‖1 (16)

where R and I are predicted reflectance and input image,

and R
c and I

c, c ∈ {R,G,B} denote the color channel of

R and I. Importantly, a reconstruction loss is further in-

troduced to guarantee that the predicted reflectance, normal

and lighting preserve the input’s characteristics.

Lrc
r = ‖Ii −Ri ⊙ Si‖2 (17)

The overall loss that we apply to fine-tune our network on

real images is:

Lr = Lcg
r + Lss

r + Lo
r + Lc

r + λrc
r Lrc

r (18)

where λrc
r = 0.1. The coarse-to-fine network is fine-tuned

scale by scale. The Adam optimizer with learning rate

0.0005 and weight decay 0.00001 is used for fine-tuning.

5. Experiments

In this section, we introduce the synthetic dataset that we

create for pre-training and the public real datasets. Then we

compare to Barron and Malik [2], who first proposed to pre-

dict reflectance, normal and lighting from an RGB-D image.

Further, we compare to the state-of-the-art intrinsic image

decomposition methods to indicate the overall advantage of

our method. An ablation study is then carried out to demon-

strate the contribution of each of our proposed modules.

5.1. Datasets

Synthetic Dataset: we make use of the SUNCG dataset

[40] to generate synthetic data. It contains 568, 793 im-

ages rendered using Mitsuba [17] and their corresponding

ground truth surface normals, depths, semantic labels and

object boundaries. Since our task also requires ground truth

reflectance and shading, we re-render 58, 949 images of

SUNCG using the multi-channel renderer of Mitsuba. We

further split the images into a training set of 51, 507 images

and a validation set of 7, 442 images. Instead of directly

rendering images, we render shading by setting all the ma-

terials to diffuse and the reflectance to be 1. Then the image
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(a) (b) (c) (d)

Figure 4: (a) synthetic images, (b) shading images, (c) and

(d) are lighting predicted by training the network without

and with non-negative constraint respectively.

Table 1: SH lighting Evaluation on SUNCG synthetic data.

[2] GLoSH SUNCG GLoSH SUNCG + real

MSE 0.098 0.038 0.032

is I = R ⊙ S. Rendering in this way has two main advan-

tages: (1) The generated images strictly follow the assump-

tion of intrinsic image decomposition. (2) The pixel value

of ground truth shading has bounded range which makes

data preparation easier. Though the rendered images do not

contain non-diffuse effects of the material, our experiments

show that this does not degrade the performance.

Public Real Datasets: we use IIW [7], SAW [22] and

NYUv2 [28] as real data for training and testing. More

specifically, SAW is a combination of IIW and NYUv2

(3761 images from IIW and 381 images from NYUv2 with

ground truth normals). The real dataset we use is the same

as [23] in addition to ground truth normals from NYUv2.

We strictly follow the train/val/test splitting strategy of [23].

5.2. Spherical Harmonics Lighting Evaluation

Quantitative comparison to [2]. We compare to [2] as they

also propose a lighting model to jointly predict reflectance,

normal and lighting of a natural scene. Notice that [2] uses

RGB-D images, which simplifies the problem.

Lighting for real data is hard to obtain. We instead eval-

uate the shading from the SUNCG synthetic data by fix-

ing the surface normal from ground truth, at which we can

indirectly evaluate the SH lighting. We calculate the per-

pixel Mean squared error (MSE) of the reconstructed shad-

ing w.r.t. ground truth shading and show the results in Ta-

ble 1. Our method shows a significant advantage over [2]

and the real data self-supervision provides a further per-

formance boost. We also evaluate the shading of [2] on

NYUv2 dataset using the AP challenge metric proposed by

[23]. They achieve 90.38% shading accuracy, while under

the same setup, our method achieves 95.43%. We believe

all these results show that the proposed method can predict

Table 2: Surface normal evaluation on NYUv2. Average

(Avg.) and Median (Med.) show the average and median

angular error, smaller values are the better. 11.25◦, 22.5◦

and 30◦ shows the percentage of normals with angular error

smaller than 11.25◦, 22.5◦ and 30◦, higher values are the

better.

Method Avg. (◦)↓ Med. (◦)↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑
[40] 27.90 21.29 26.76 52.21 63.75

Ours 28.63 21.05 27.68 52.42 62.87

much more accurate lighting than [2].

Qualitative comparison to [2]. Figure 5 compares their vi-

sual results with ours. The red rectangles in reflectance and

shading images show that [2] mistakenly decomposes cast

shadow into reflectance instead of shading. We believe the

limited number of SH basis in their method prevents them

from modeling the spatial variation of the lighting well, re-

sulting in a lack of ability to model cast shadow.

Non-negative lighting: [36] proved that a SH represents

non-negative lighting if its Toeplitz matrix is positive semi-

definite. We use their proposed method to evaluate the ef-

fectiveness of our non-negative constraint. We train our

coarse scale network with and without the proposed non-

negative constraint, i.e., Equation (3), and then test on the

validation set of our synthetic SUNCG data. Without the

proposed non-negative constraint, the percentage of global

SH that represents negative lighting is 13.39%. It dras-

tically decreases to 1.09% with this constraint. Figure 4

visualizes the predicted lighting with and without the non-

negative constraint. After fine-tuning on real data, the

global SH that represents negative lighting is reduced to

0% and there is only one image that contains negative lo-

cal lighting.

5.3. Intrinsic Image Decomposition

Model trained on synthetic data. We evaluate our network

trained using synthetic data on IIW, SAW and NYUv2. For

reflectance on IIW, we use the WHDR metric proposed in

[7], which computes the weighted error of the predicted re-

flectance with human annotation. The challenge average

precision (AP) proposed by [23] is used to evaluate the pre-

dicted shading. It computes the average precision of clas-

sification for constant shading regions and shadow bound-

aries. Table 3 (a) compares our trained network with [23] on

IIW and SAW dataset. It shows that our proposed method

are closely comparable to [23] on IIW and much better than

[23] on SAW when trained on SUNCG dataset.

[23] claimed that the dataset they provided (denoted as

CGI) has a smaller domain gap with real data compared

with SUNCG. For a sanity check, we train our coarse

network using CGI and achieve WHDR 37.98, while the

WHDR of our coarse network trained on SUNCG is 28.20.
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(a) image (b) reflectance [2] (c) our reflectance (d) shading [2] (e) our shading

(f) ground truth normal (g) normal [2] (h) our normal (i) lighting [2] (j) our lighting

Figure 5: Comparison with [2]. Red rectangle shows that our method can correct decompose cast shadows into shading while

[2] cannot. Due to space limits, please refer to supplementary materials for more results.

image reflectance of [13] reflectance of [23] our reflectance our normal

shading of [13] shading of [23] our shading our global SH our local SH

Figure 6: Comparison with state-of-the-art intrinsic image decomposition methods. Note that although [23] achieves the

best AP score on shading, the generated shading image is of very low contrast. The red rectangle shows the shading of [13]

suffers seriously from the reflectance bleeding problem. Due to space limits, please refer to supplementary materials for more

results.

We do not see the advantage of using CGI data for training

and thus we train our network using SUNCG dataset.

Model fine-tuned on real data. Table 3 (b) compares

our method with some start-of-the-art methods on IIW and

SAW. Our method achieves the best performance on IIW

and second best on SAW.

[13] demonstrated that by incorporating the guided filter

into the training of their network, they can achieve a WHDR

of 14.5% which is the state-of-the-art result. By applying

a guided filter to our model as suggested by [29], we can

achieve 14.6%; which is closely comparable to this result.

However, the challenge AP for the shading of [13] on IIW

dataset 1 is 85.77%. Under the same setting, we achieve

1Images are provided by the authors.

97.08%, a more than 10% improvement.

Besides reflectance and shading, Table 2 shows that the

normal predicted by our model achieves strongly compet-

itive results with [40], when trained on SUNCG synthetic

data and evaluated on NYUv2. We further fine-tuned the

models with limited real data (381 images with surface nor-

mal ground truth), and achieved 25.57◦ average angular er-

ror, close to [40] 21.74◦.

Visual comparison. We visualize the shading predicted by

[13] in Figure 6 (c). It shows that the shading images of [13]

still retain the effect of reflectance. Although [23] achieves

the best performance on SAW, Figure 6 (e) shows that their

predicted shading images are of low contrast. That is, the

quality of the shading image is low. Across the compared
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Table 3: Reflectance evaluation on IIW and shading evalua-

tion on SAW. For WHDR, lower value (↓) is better, for AP,

higher value is better(↑).

IIW SAW

Method Dataset WHDR (%)↓ AP (%)↑

a
Li [23] SUNCG 26.1 87.09

Proposed SUNCG 26.8 92.40

b

Grosse [16] - 26.9 85.26

Garces [14] - 24.8 92.39

Zhao [41] - 23.8 89.72

Bi [8] - 17.7 -

Bell [7] - 20.6 92.18

Zhou [43] IIW 19.9 86.34

[29] IIW 19.5 89.94

Fan [13] IIW 15.4 -

Li [23] CGI + real 15.5 96.57

proposed SUNCG + real 15.2 95.01

Table 4: Ablation study on loss, without synthetic SUNCG

data, and the coarse-to-fine scales, evaluated on IIW re-

flectance, SAW shading and NYUv2 surface normal.

IIW SAW NYUv2

Method WHDR (%) ↓ AP (%) ↑ Mean Error (◦) ↓
w/o SUNCG 17.82 88.52 35.14

w/o Lss
r 15.50 95.79 25.93

w/o LR2 15.34 91.89 25.96

scale1 18.70 90.35 26.68

scale1+scale2 16.62 94.98 25.59

full 15.20 95.01 25.57

methods, our method achieves relatively better visual qual-

ity on both reflectance and shading.

To conclude, our GLoSH achieves consistently better re-

sults compared to state-of-the-art methods trained on both

synthetic data and fine-tuned on real data, across the tasks

of estimating reflectance, normal, shading and lighting. We

believe this also indicates the effectiveness of the proposed

coarse-to-fine network structure.

5.4. Ablation Study

Without synthetic data. Synthetic data is very important

for the proposed method. Table 4 “w/o SUNCG” shows

the WHDR on IIW, average precision (AP) on SAW and

mean error on the NYUv2 data set when training our net-

work only using real data. It is clear that without synthetic

data, the performance of our network on reflectance, shad-

ing and normal shows a significant gap relative to the “full”

model. This is because training a network that performs rea-

sonably well requires a huge amount of data. The sparsity

of the annotation for reflectance and shading, and the small

amount of real images makes the training intractable.

Without pseudo supervision. Table 4 “w/o Lss
r ” shows

that on IIW and NYUv2, performance degrades relative to

the “full” model, except for the AP on the SAW dataset.

This shows that the self-supervision helps to provide rough

guidance for the real unlabeled data on reflectance and nor-

mal. The degradation for shading is probably due to the

large domain gap between the lighting of synthetic data and

real data. However, when compared with shading of [23] in

in Figure 6, we see even with weak supervision, our model

can still predict more reasonable shading.

Contribution of multiple scales. We clearly see in Ta-

ble 4 that “scale1+scale2” outperforms “scale1”, and our

“full” model further outperforms “scale1+scale2”. It sug-

gests that further adding a finer scale module indeed helps

the local lighting modeling and boosts the overall perfor-

mance. Worth noting that there is gradually saturation

by further adding finer modules as the improvement gap

from “scale1+scale2” to “full” is smaller than “scale1” to

“scale1+scale2”. In practice, we define our full model to

have three scales, a coarse net with two cascaded finer nets,

which strikes a good balance between accuracy and model

complexity.

Without symmetric loss. The WHDR hinge loss proposed

by [29] (Equation 8) is not symmetric. This leads to unequal

loss when the same points are used in a different order. By

adapting the WHDR to our proposed symmetric one (Equa-

tion 9), we observe improvement on IIW by 0.14%.

Model complexity: We calculate the model parameters of

CGI [23] and our full model. There are 68, 572, 482 float-

ing numbers in CGI and only 14, 665, 594 in our model,

which is much smaller than CGI. Among the state-of-the-

art CNN based methods, our method achieves consistently

better performance with a smaller model size.

6. Conclusions

In this paper, we propose to estimate reflectance, nor-

mal and lighting from a single image, which is a very hard

problem that has not been well addressed. A global and

local SH model is proposed to model the lighting of a nat-

ural scene which accounts for both holistic lighting and the

spatial variation of the lighting. A novel non-negative con-

straint is proposed to force the SH lighting to be physically

meaningful. A synthetic data set is applied as augmenta-

tion for real data. Extensive experiments on SAW, IIW, and

NYUv2 dataset demonstrate the effectiveness of our pro-

posed method.
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