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Abstract

As an instance-level recognition problem, person re-

identification (ReID) relies on discriminative features,

which not only capture different spatial scales but also

encapsulate an arbitrary combination of multiple scales.

We callse features of both homogeneous and heteroge-

neous scales omni-scale features. In this paper, a novel

deep ReID CNN is designed, termed Omni-Scale Net-

work (OSNet), for omni-scale feature learning. This is

achieved by designing a residual block composed of mul-

tiple convolutional feature streams, each detecting fea-

tures at a certain scale. Importantly, a novel unified ag-

gregation gate is introduced to dynamically fuse multi-

scale features with input-dependent channel-wise weights.

To efficiently learn spatial-channel correlations and avoid

overfitting, the building block uses both pointwise and

depthwise convolutions. By stacking such blocks layer-

by-layer, our OSNet is extremely lightweight and can be

trained from scratch on existing ReID benchmarks. De-

spite its small model size, our OSNet achieves state-of-

the-art performance on six person-ReID datasets. Code

and models are available at: https://github.com/

KaiyangZhou/deep-person-reid.

1. Introduction

Person re-identification (ReID), a fundamental task in

distributed multi-camera surveillance, aims to match people

appearing in different non-overlapping camera views. As an

instance-level recognition problem, person ReID faces two

major challenges as illustrated in Fig. 1. First, the intra-

class (instance/identity) variations are typically big due to

the changes of camera viewing conditions. For instance,

both people in Figs. 1(a) and (b) carry a backpack; the view

change across cameras (frontal to back) brings large appear-

ance changes in the backpack area, making matching the

same person difficult. Second, there are also small inter-

∗Work done as an intern at Samsung AI Center, Cambridge.
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Figure 1. Person ReID is a hard problem, as exemplified by the

four triplets of images above. Each sub-figure shows, from left to

right, the query image, a true match and an impostor/false match.

class variations – people in public space often wear similar

clothes; from a distance as typically in surveillance videos,

they can look incredibly similar (see the impostors for all

four people in Fig. 1).

To overcome these two challenges, key to ReID is to

learn discriminative features. We argue that such features

need to be of omni-scales, defined as a combination of vari-

able homogeneous scales and heterogeneous scales, each of

which is composed of a mixture of multiple scales. The

need for omni-scale features is evident from Fig. 1. To

match people and distinguish them from impostors, fea-

tures corresponding both small local regions (e.g. shoes,

glasses), and global whole body regions are important. For

example, given the query image in Fig. 1(a) (left), look-

ing at the global-scale features (e.g. young man, a white-T-

shirt + grey-shorts combo) would narrow down the search

to the true match (middle) and an impostor (right). Now

the local-scale features come into play – the shoe region

gives away the fact that the person on the right is an impos-

tor (trainers vs. sandals). However, for more challenging

cases, even features of variable homogeneous scales would

not be enough. More complicated and richer features that

span multiple scales are required. For instance, to eliminate

the impostor in Fig. 1(d) (right), one needs features that rep-

resent a white T-shirt with a specific logo in the front. Note

13702



that the logo is not distinctive on its own – without the white

T-shirt as context, it can be confused with many other pat-

terns. Similarly, the white T-shirt is everywhere in summer

(e.g. Fig. 1(a)). It is the unique combination, captured by

heterogeneous features spanning both small (logo size) and

medium (upper body size) scales, that makes the features

most effective.

Nevertheless, none of the existing ReID models ad-

dresses omni-scale feature learning. In recent years, deep

convolutional neural networks (CNNs) have been widely

used in person ReID to learn discriminative features [2,

26, 28, 38, 43, 57, 58, 69]. However, most of the CNNs

adopted, such as ResNet [12], were originally designed for

object category-level recognition tasks that are fundamen-

tally different from the instance-level recognition task in

ReID. For the latter, omni-scale features are more impor-

tant, as explained earlier. A few attempts at learning multi-

scale features also exist [30, 2]. Yet, none has the ability

to learn features of both homogeneous and heterogeneous

scales.

In this paper, we present OSNet, a novel CNN archi-

tecture designed for learning omni-scale feature represen-

tations1. The underpinning building block consists of mul-

tiple convolutional feature streams with different receptive

fields (see Fig. 2). The feature scale that each stream fo-

cuses on is determined by exponent, a new dimension fac-

tor that is linearly increased across streams to ensure that

various scales are captured in each block. Critically, the re-

sulting multi-scale feature maps are dynamically fused by

channel-wise weights that are generated by a unified aggre-

gation gate (AG). The AG is a sub-network sharing param-

eters across all streams with a number of desirable proper-

ties for effective model training. With the trainable AG, the

generated channel-wise weights become input-dependent,

hence the dynamic scale fusion. This novel AG design

allows the network to learn omni-scale feature representa-

tions: depending on the specific input image, the gate could

focus on a single scale by assigning a dominant weight to a

particular stream or scale; alternatively, it can pick and mix

and thus produce heterogeneous scales.

Apart from enabling omni-scale feature learning, an-

other key design principle adopted in OSNet is to design

a lightweight network. This brings a couple of benefits: (1)

ReID datasets are often of moderate sizes due to the difficul-

ties in collecting across-camera matched person images. A

lightweight network with a small number of model param-

eters is thus less prone to overfitting. (2) In a large-scale

surveillance application (e.g. city-wide surveillance using

thousands of cameras), the most practical way for ReID is

to perform feature extraction at the camera end. Instead

of sending the raw videos to a central server, only features

need to be sent. For on-device processing, small ReID net-

1We use scale and receptive field interchangeably.
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Figure 2. A schematic of the proposed building block for OSNet.

R: Receptive field size.

works are clearly preferred. To this end, in our building

block, we factorise standard convolutions with pointwise

and depthwise convolutions [15, 34]. The contributions

of this work are thus both the concept of omni-scale feature

learning and an effective and efficient implementation of it

in OSNet. The end result is a lightweight ReID model that

is about one order of magnitude smaller than the popular

ResNet50-based ones, but performs better: OSNet achieves

state-of-the-art performance on six person ReID datasets,

beating much larger existing networks, often by a clear mar-

gin. We also demonstrate the effectiveness of OSNet on

object category recognition tasks, namely CIFAR [20] and

ImageNet [6], and a multi-label person attribute recognition

task. The results suggest that omni-scale feature learning is

useful beyond instance recognition and can be considered

for a broad range of visual recognition tasks.

2. Related Work

Deep ReID Architectures Most existing deep ReID

CNNs [24, 1, 48, 37, 11, 41, 51] borrow architectures de-

signed for generic object categorisation problems, such as

ImageNet 1K object classification. Recently, some architec-

tural modifications are introduced to reflect the fact that im-

ages in ReID datasets contain instances of only one object

category (i.e., person) that mostly stand upright. To exploit

the upright body pose, [43, 63, 8, 50] add auxiliary super-

vision signals to features pooled horizontally from the last

convolutional feature maps. [38, 39, 26] devise attention

mechanisms to focus feature learning on the foreground per-

son regions. In [66, 40, 57, 42, 47, 65], body part-specific

CNNs are learned by means of off-the-shelf pose detectors.

In [25, 22, 67], CNNs are branched to learn representa-

tions of global and local image regions. In [59, 2, 28, 52],

multi-level features extracted at different layers are com-

bined. However, none of these ReID networks learns multi-

scale features explicitly at each layer of the networks as in

our OSNet – they typically rely on an external pose model
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and/or hand-pick specific layers for multi-scale learning.

Moreover, heterogeneous-scale features computed from a

mixture of different scales are not considered.

Multi-Scale and Multi-Stream Deep Feature Learning

As far as we know, the concept of omni-scale deep feature

learning has never been introduced before. Nonetheless, the

importance of multi-scale feature learning has been recog-

nised recently and the multi-stream building block design

has also been adopted. Compared to a number of ReID net-

works with multi-stream building blocks [2, 30], OSNet is

significantly different. Specifically the layer design in [2]

is based on ResNeXt [56], where each stream learns fea-

tures at the same scale, while our streams in each block

have different scales. Different to [2], the network in [30]

is built on Inception [44, 45], where multiple streams were

originally designed for low computational cost with hand-

crafted mixture of convolution and pooling layers. In con-

trast, our building block uses a scale-controlling factor to

diversify the spatial scales to be captured. Moreover, [30]

fuses multi-stream features with learnable but fixed-once-

learned streamwise weights only at the final block. Whereas

we fuse multi-scale features within each building block

using dynamic (input-dependent) channel-wise weights to

learn combinations of multi-scale patterns. Therefore, only

our OSNet is capable of learning omni-scale features with

each feature channel potentially capturing discriminative

features of either a single scale or a weighted mixture of

multiple scales. Our experiments (see Sec. 4.1) show that

OSNet significantly outperforms the models in [2, 30].

Lightweight Network Designs With embedded AI be-

coming topical, lightweight CNN design has attracted in-

creasing attention. SqueezeNet [19] compresses feature

dimensions using 1 × 1 convolutions. IGCNet [62],

ResNeXt [56] and CondenseNet [17] leverage group con-

volutions. Xception [5] and MobileNet series [15, 34] are

based on depthwise separable convolutions. Dense 1 × 1
convolutions are grouped with channel shuffling in Shuf-

fleNet [64]. In terms of lightweight design, our OSNet is

similar to MobileNet by employing factorised convolutions,

with some modifications that empirically work better for

omni-scale feature learning.

3. Omni-Scale Feature Learning

In this section, we present OSNet, which specialises in

learning omni-scale feature representations for the person

ReID task. We start with the factorised convolutional layer

and then introduce the omni-scale residual block and the

unified aggregation gate.

3.1. Depthwise Separable Convolutions

To reduce the number of parameters, we adopt the depth-

wise separable convolutions [15, 5]. The basic idea is

to divide a convolution layer ReLU(w ∗ x) with kernel

BatchNorm

ReLU

Conv 3x3

BatchNorm

ReLU

Conv 1x1

DW Conv 3x3

(a) (b)

Figure 3. (a) Standard 3×3 convolution. (b) Lite 3×3 convolution.

DW: Depth-Wise.

w ∈ R
k×k×c×c

′

into two separate layers ReLU((v◦u)∗x)
with depthwise kernel u ∈ R

k×k×1×c
′

and pointwise ker-

nel v ∈ R
1×1×c×c

′

, where ∗ denotes convolution, k the ker-

nel size, c the input channel width and c′ the output channel

width. Given an input tensor x ∈ R
h×w×c of height h and

width w, the computational cost is reduced from h·w·k2·c·c′

to h · w · (k2 + c) · c′, and the number of parameters from

k2 · c · c′ to (k2 + c) · c′. In our implementation, we use

ReLU((u◦v)∗x) (pointwise → depthwise instead of depth-

wise → pointwise), which turns out to be more effective for

omni-scale feature learning2. We call such layer Lite 3 × 3
hereafter. The implementation is shown in Fig. 3.

3.2. Omni­Scale Residual Block

The building block in our architecture is the residual

bottleneck [12], equipped with the Lite 3 × 3 layer (see

Fig. 4(a)). Given an input x, this bottleneck aims to learn a

residual x̃ with a mapping function F , i.e.

y = x+ x̃, s.t. x̃ = F (x), (1)

where F represents a Lite 3 × 3 layer that learns single-

scale features (scale = 3). Note that here the 1 × 1 layers

are ignored in notation as they are used to manipulate fea-

ture dimension and do not contribute to the aggregation of

spatial information [12, 56].

Multi-Scale Feature Learning To achieve multi-scale

feature learning, we extend the residual function F by in-

troducing a new dimension, exponent t, which represents

the scale of the feature. For F t, with t > 1, we stack t

Lite 3× 3 layers, and this results in a receptive field of size

(2t + 1) × (2t + 1). Then, the residual to be learned, x̃, is

the sum of incremental scales of representations up to T :

x̃ =
T∑

t=1

F t(x), s.t. T > 1. (2)

When T = 1, Eq. 2 reduces to Eq. 1 (see Fig. 4(a)). In

this paper, our bottleneck is set with T = 4 (i.e. the largest

receptive field is 9× 9) as shown in Fig. 4(b). The shortcut

connection allows features at smaller scales learned in the

current layer to be preserved effectively in the next layers,

thus enabling the final features to capture a whole range of

spatial scales.

2The subtle difference between the two orders is when the channel

width is increased: pointwise → depthwise increases the channel width

before spatial aggregation.
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Figure 4. (a) Baseline bottleneck. (b) Proposed bottleneck. AG:

Aggregation Gate. The first/last 1 × 1 layers are used to re-

duce/restore feature dimension.

Unified Aggregation Gate So far, each stream can give

us features of a specific scale, i.e., they are scale homoge-

neous. To learn omni-scale features, we propose to combine

the outputs of different streams in a dynamic way, i.e., dif-

ferent weights are assigned to different scales according to

the input image, rather than being fixed after training. More

specifically, the dynamic scale-fusion is achieved by a novel

aggregation gate (AG), which is a learnable neural network.

Let xt denote F t(x), the omni-scale residual x̃ is ob-

tained by

x̃ =

T∑

t=1

G(xt)⊙ x
t, s.t. x

t , F t(x), (3)

where G(xt) is a vector with length spanning the entire

channel dimension of x
t and ⊙ denotes the Hadamard

product. G is implemented as a mini-network composed

of a non-parametric global average pooling layer [27] and

a multi-layer perceptron (MLP) with one ReLU-activated

hidden layer, followed by the sigmoid activation. To reduce

parameter overhead, we follow [55, 16] to reduce the hid-

den dimension of the MLP with a reduction ratio, which is

set to 16.

It is worth pointing out that, in contrast to using a single

scalar-output function that provides a coarse scale-fusion,

we choose to use channel-wise weights, i.e., the output of

the AG network G(xt) is a vector rather a scalar for the t-

th stream. This design results in a more fine-grained fusion

that tunes each feature channel. In addition, the weights are

dynamically computed by being conditioned on the input

data. This is crucial for ReID as the test images contain

people of different identities from those in training; thus

an adaptive/input-dependent feature-scale fusion strategy is

more desirable.

Note that in our architecture, the AG is shared for all fea-

ture streams in the same omni-scale residual block (dashed

box in Fig. 4(b)). This is similar in spirit to the convolution

stage output OSNet

conv1
128×64, 64 7×7 conv, stride 2

64×32, 64 3×3 max pool, stride 2

conv2 64×32, 256 bottleneck × 2

transition
64×32, 256 1×1 conv

32×16, 256 2×2 average pool, stride 2

conv3 32×16, 384 bottleneck × 2

transition
32×16, 384 1×1 conv

16×8, 384 2×2 average pool, stride 2

conv4 16×8, 512 bottleneck × 2

conv5 16×8, 512 1×1 conv

gap 1×1, 512 global average pool

fc 1×1, 512 fc

# params 2.2M

Mult-Adds 978.9M

Table 1. Architecture of OSNet with input image size 256× 128.

filter parameter sharing in CNNs, resulting in a number of

advantages. First, the number of parameters is independent

of T (number of streams), thus the model becomes more

scalable. Second, unifying AG (sharing the same AG mod-

ule across streams) has a nice property while performing

backpropagation. Concretely, suppose the network is su-

pervised by a loss function L which is differentiable and the

gradient ∂L

∂x̃
can be computed; the gradient w.r.t G, based on

Eq. 3, is

∂L

∂G
=

∂L

∂x̃

∂x̃

∂G
=

∂L

∂x̃
(

T∑

t=1

x
t). (4)

The second term in Eq. 4 indicates that the supervision

signals from all streams are gathered together to guide the

learning of G. This desirable property disappears when

each stream has its own gate.

3.3. Network Architecture

OSNet is constructed by simply stacking the proposed

lightweight bottleneck layer-by-layer without any effort to

customise the blocks at different depths (stages) of the

network. The detailed network architecture is shown in

Table 1. For comparison, the same network architecture

with standard convolutions has 6.9 million parameters and

3,384.9 million mult-add operations, which are 3× larger

than our OSNet with the Lite 3×3 convolution layer design.

The standard OSNet in Table 1 can be easily scaled up or

down in practice, to balance model size, computational cost

and performance. To this end, we use a width multiplier3

and an image resolution multiplier, following [15, 34, 64].

Relation to Prior Architectures In terms of multi-

stream design, OSNet is related to Inception [44] and

ResNeXt [56], but has crucial differences in several as-

pects. First, the multi-stream design in OSNet strictly fol-

lows the scale-incremental principle dictated by the expo-

nent (Eq. 2). Specifically, different streams have differ-

ent receptive fields but are built with the same Lite 3 × 3

3Width multiplier with magnitude smaller than 1 works on all layers in

OSNet except the last FC layer whose feature dimension is fixed to 512.
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Dataset # IDs (T-Q-G) # images (T-Q-G)

Market1501 751-750-751 12936-3368-15913

CUHK03 767-700-700 7365-1400-5332

Duke 702-702-1110 16522-2228-17661

MSMT17 1041-3060-3060 30248-11659-82161

VIPeR 316-316-316 632-632-632

GRID 125-125-900 250-125-900

Table 2. Dataset statistics. T: Train. Q: Query. G: Gallery.

layers (Fig. 4(b)). Such a design is more effective at

capturing a wide range of scales. In contrast, Inception

was originally designed to have low computational costs

by sharing computations with multiple streams. Therefore

its structure, which includes mixed operations of convo-

lution and pooling, was handcrafted. ResNeXt has multi-

ple equal-scale streams thus learning representations at the

same scale. Second, Inception/ResNeXt aggregates fea-

tures by concatenation/addition while OSNet uses a uni-

fied AG (Eq. 3), which facilitates the learning of combi-

nations of multi-scale features. Critically, it means that the

fusion is dynamic and adaptive to each individual input im-

age. Therefore, OSNet’s architecture is fundamentally dif-

ferent from that of Inception/ResNeXt in nature. Third, OS-

Net uses factorised convolutions and thus the building block

and subsequently the whole network is lightweight. Com-

pared with SENet [16], OSNet is conceptually different.

Concretely, SENet aims to re-calibrate the feature chan-

nels by re-scaling the activation values for a single stream,

whereas OSNet is designed to selectively fuse multiple fea-

ture streams of different receptive field sizes in order to

learn omni-scale features.

4. Experiments

4.1. Evaluation on Person Re­Identification

Datasets and Settings We conduct experiments on six

widely used person ReID datasets: Market1501 [68],

CUHK03 [24], DukeMTMC-reID (Duke) [33, 70],

MSMT17 [53], VIPeR [10] and GRID [29]. Detailed

dataset statistics are provided in Table 2. The first four are

considered as ‘big’ datasets even though their sizes (around

30K training images for the largest MSMT17) are fairly

moderate; while VIPeR and GRID are generally too small

to train without using those big datasets for pre-training. For

CUHK03, we use the 767/700 split [71] with the detected

images. For VIPeR and GRID, we first train a single OS-

Net from scratch using training images from Market1501,

CUHK03, Duke and MSMT17 (Mix4), and then perform

fine-tuning. Following [25], the results on VIPeR and GRID

are averaged over 10 random splits. Such a fine-tuning strat-

egy has been commonly adopted by other deep learning ap-

proaches [28, 54, 66, 25, 67]. Cumulative matching char-

acteristics (CMC) Rank-1 accuracy and mAP are used as

evaluation metrics.

Implementation Details A classification layer (linear FC

+ softmax) is mounted on the top of OSNet. Training fol-

lows the standard classification paradigm where each per-

son identity is regarded as a unique class. Similar to [26, 2],

cross entropy loss with label smoothing [45] is used for

supervision. For fair comparison against existing mod-

els, we implement two versions of OSNet. One is trained

from scratch and the other is fine-tuned from ImageNet pre-

trained weights. Person matching is based on the ℓ2 dis-

tance of 512-D feature vectors extracted from the last FC

layer (see Table 1). Batch size and weight decay are set to

64 and 5e-4 respectively. For training from scratch, SGD is

used to train the network for 350 epochs. The learning rate

starts from 0.065 and is decayed by 0.1 at 150, 225 and 300

epochs. For fine-tuning, we train the network with AMS-

Grad [32] and initial learning rate of 0.0015 for 150 epochs.

The learning rate is decayed by 0.1 every 60 epochs. During

the first 10 epochs, the ImageNet pre-trained base network

is frozen and only the randomly initialised classifier is open

for training. Images are resized to 256 × 128. Data aug-

mentation includes random flip and random erasing [72].

Results on Big Datasets From Table 3, we have the

following observations. (1) OSNet achieves state-of-the-

art performance on all datasets, outperforming most pub-

lished methods by a clear margin. It is evident from Ta-

ble 3 that the performance on ReID benchmarks, especially

Market1501 and Duke, has been saturated lately. Therefore,

the improvements obtained by OSNet are significant. Cru-

cially, the improvements are achieved with much smaller

model size – most existing state-of-the-art ReID models em-

ploy a ResNet50 backbone, which has more than 24 mil-

lion parameters (considering their extra customised mod-

ules), while our OSNet has only 2.2 million parameters.

This verifies the effectiveness of omni-scale feature learn-

ing for ReID achieved by an extremely compact network.

As OSNet is orthogonal to some methods, such as the im-

age generation based DGNet [69], they can be potentially

combined to further boost the ReID performance. (2) OS-

Net yields strong performance with or without ImageNet

pre-training. Among the very few existing lightweight

ReID models that can be trained from scratch (HAN and

BraidNet), OSNet exhibits huge advantages. At R1, OS-

Net beats HAN/BraidNet by 2.4%/9.9% on Market1501

and 4.2%/8.3% on Duke. The margins at mAP are even

larger. In addition, general-purpose lightweight CNNs are

also compared without ImageNet pre-training. Table 3

shows that OSNet surpasses the popular MobileNetV2 and

ShuffleNet by large margins on all datasets. Note that

all three networks have similar model sizes. These re-

sults thus demonstrate the versatility of our OSNet: It

enables effective feature tuning from generic object cate-

gorisation tasks and offers robustness against model over-

fitting when trained from scratch on datasets of moderate

sizes. (3) Compared with ReID models that deploy a multi-
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Method Publication Backbone
Market1501 CUHK03 Duke MSMT17

R1 mAP R1 mAP R1 mAP R1 mAP

ShuffleNet†‡ [64] CVPR’18 ShuffleNet 84.8 65.0 38.4 37.2 71.6 49.9 41.5 19.9

MobileNetV2†‡ [34] CVPR’18 MobileNetV2 87.0 69.5 46.5 46.0 75.2 55.8 50.9 27.0

BraidNet† [51] CVPR’18 BraidNet 83.7 69.5 - - 76.4 59.5 - -

HAN† [26] CVPR’18 Inception 91.2 75.7 41.7 38.6 80.5 63.8 - -

OSNet† (ours) ICCV’19 OSNet 93.6 81.0 57.1 54.2 84.7 68.6 71.0 43.3

DaRe [52] CVPR’18 DenseNet 89.0 76.0 63.3 59.0 80.2 64.5 - -

PNGAN [31] ECCV’18 ResNet 89.4 72.6 - - 73.6 53.2 - -

KPM [37] CVPR’18 ResNet 90.1 75.3 - - 80.3 63.2 - -

MLFN [2] CVPR’18 ResNeXt 90.0 74.3 52.8 47.8 81.0 62.8 - -

FDGAN [9] NeurIPS’18 ResNet 90.5 77.7 - - 80.0 64.5 - -

DuATM [38] CVPR’18 DenseNet 91.4 76.6 - - 81.8 64.6 - -

Bilinear [42] ECCV’18 Inception 91.7 79.6 - - 84.4 69.3 - -

G2G [35] CVPR’18 ResNet 92.7 82.5 - - 80.7 66.4 - -

DeepCRF [3] CVPR’18 ResNet 93.5 81.6 - - 84.9 69.5 - -

PCB [43] ECCV’18 ResNet 93.8 81.6 63.7 57.5 83.3 69.2 68.2 40.4

SGGNN [36] ECCV’18 ResNet 92.3 82.8 - - 81.1 68.2 - -

Mancs [49] ECCV’18 ResNet 93.1 82.3 65.5 60.5 84.9 71.8 - -

AANet [46] CVPR’19 ResNet 93.9 83.4 - - 87.7 74.3 - -

CAMA [58] CVPR’19 ResNet 94.7 84.5 66.6 64.2 85.8 72.9 - -

IANet [14] CVPR’19 ResNet 94.4 83.1 - - 87.1 73.4 75.5 46.8

DGNet [69] CVPR’19 ResNet 94.8 86.0 - - 86.6 74.8 77.2 52.3

OSNet (ours) ICCV’19 OSNet 94.8 84.9 72.3 67.8 88.6 73.5 78.7 52.9

Table 3. Results (%) on big ReID datasets. It is clear that OSNet achieves state-of-the-art performance on all datasets, surpassing most

published methods by a clear margin. It is noteworthy that OSNet has only 2.2 million parameters, which are far less than the current

best-performing ResNet-based methods. -: not available. †: model trained from scratch. ‡: reproduced by us. (Best and second best results

in red and blue respectively)

scale/multi-stream architecture, namely those with a Incep-

tion or ResNeXt backbone [26, 40, 4, 54, 2, 38], OSNet is

clearly superior. As analysed in Sec. 3, this is attributed to

the unique ability of OSNet to learn heterogeneous-scale

features by combining multiple homogeneous-scale fea-

tures with the dynamic AG.

Results on Small Datasets VIPeR and GRID are very

challenging datasets for deep ReID approaches because

they have only hundreds of training images - training on

the large ReID datasets and fine-tuning on them is thus nec-

essary. Table 4 compares OSNet with six state-of-the-art

deep ReID methods. On VIPeR, it can be observed that

OSNet outperforms the alternatives by a significant margin

– more than 11.4% at R1. GRID is much more challenging

than VIPeR because it has only 125 training identities (250

images) and extra distractors. Further, it was captured by

real (operational) analogue CCTV cameras installed in busy

public spaces. JLML [25] is currently the best published

method on GRID. It is noted that OSNet is marginally bet-

ter than JLML on GRID. Overall, the strong performance of

OSNet on these two small datasets is indicative of its prac-

tical usefulness in real-world applications where collecting

large-scale training data is unscalable.

Ablation Study Table 5 evaluates our architectural de-

sign choices where our primary model is model 1. T is

the stream cardinality in Eq. 2. (1) vs. standard convolu-

tions: Factorising convolutions reduces the R1 marginally

by 0.4% (model 2 vs. 1). This means our architecture de-

sign maintains the representational power even though the

Method Backbone VIPeR GRID

MuDeep [30] Inception 43.0 -

DeepAlign [67] Inception 48.7 -

JLML [25] ResNet 50.2 37.5

Spindle [66] Inception 53.8 -

GLAD [54] Inception 54.8 -

HydraPlus-Net [28] Inception 56.6 -

OSNet (ours) OSNet 68.0 38.2

Table 4. Comparison with deep learning approaches on VIPeR and

GRID. Only Rank-1 accuracy (%) is reported. -: not available.

Model Architecture
Market1501

R1 mAP

1 T = 4 + unified AG (primary model) 93.6 81.0

2 T = 4 w/ full conv + unified AG 94.0 82.7

3 T = 4 (same depth) + unified AG 91.7 77.9

4 T = 4 + concatenation 91.4 77.4

5 T = 4 + addition 92.0 78.2

6 T = 4 + separate AGs 92.9 80.2

7 T = 4 + unified AG (stream-wise) 92.6 80.0

8 T = 4 + learned-and-fixed gates 91.6 77.5

9 T = 1 86.5 67.7

10 T = 2 + unified AG 91.7 77.0

11 T = 3 + unified AG 92.8 79.9

Table 5. Ablation study on architectural design choices.

model size is reduced by more than 3×. (2) vs. ResNeXt-like

design: OSNet is transformed into a ResNeXt-like archi-

tecture by making all streams homogeneous in depth while

preserving the unified AG, which refers to model 3. We

observe that this variant is clearly outperformed by the pri-

mary model, with 1.9%/3.1% difference in R1/mAP. This

further validates the necessity of our omni-scale design. (3)

Multi-scale fusion strategy: To justify our design of the uni-

fied AG, we conduct experiments by changing the way how
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features of different scales are aggregated. The baselines

are concatenation (model 4) and addition (model 5). The

primary model is better than the two baselines by more

than 1.6%/2.8% at R1/mAP. Nevertheless, models 4 and

5 are still much better than the single-scale architecture

(model 9). (4) Unified AG vs. separate AGs: When sep-

arate AGs are learned for each feature stream, the model

size is increased and the nice property in gradient computa-

tion (Eq. 4) is lost. Empirically, unifying AG improves by

0.7%/0.8% at R1/mAP (model 1 vs. 6), despite having less

parameters. (5) Channel-wise gates vs. stream-wise gates:

By turning the channel-wise gates into stream-wise gates

(model 7), both the R1 and the mAP decline by 1%. As

feature channels encapsulate sophisticated correlations and

can represent numerous visual concepts [7], it is advanta-

geous to use channel-specific weights. (6) Dynamic gates

vs. static gates: In model 8, feature streams are fused by

static (learned-and-then-fixed) channel-wise gates to mimic

the design in [30]. As a result, the R1/mAP drops off by

2.0%/3.5% compared with that of dynamic gates (primary

model). Therefore, adapting the scale fusion for individual

input images is essential. (7) Evaluation on stream cardi-

nality: The results are substantially improved from T = 1
(model 9) to T = 2 (model 10) and gradually progress to

T = 4 (model 1).

Model Shrinking Hyperparameters We can trade-off

between model size, computations and performance by ad-

justing the width multiplier β and the image resolution mul-

tiplier γ. Table 6 shows that by keeping one multiplier fixed

and shrinking the other, the R1 drops off smoothly. It is

worth noting that 92.2% R1 accuracy is obtained by a much

shrunken version of OSNet with merely 0.2M parameters

and 82M mult-adds (β = 0.25). Compared with the re-

sults in Table 3, we can see that the shrunken OSNet is still

very competitive against the latest proposed models, most

of which are 100× bigger in size. This indicates that OSNet

has a great potential for efficient deployment in resource-

constrained devices such as a surveillance camera with an

AI processor.

Visualisation of Unified Aggregation Gate As the gat-

ing vectors produced by the AG inherently encode the way

how the omni-scale feature streams are aggregated, we can

understand what the AG sub-network has learned by visu-

alising images of similar gating vectors. To this end, we

concatenate the gating vectors of four streams in the last

bottleneck, perform k-means clustering on test images of

Mix4, and select top-15 images closest to the cluster cen-

tres. Fig. 5 shows four example clusters where images

within the same cluster exhibit similar patterns, i.e., com-

binations of global-scale and local-scale appearance.

Visualisation of Learned Features To understand how

our designs help OSNet learn discriminative features, we vi-

β # params γ Mult-Adds
Market1501

R1 mAP

1.0 2.2M 1.0 978.9M 94.8 84.9

0.75 1.3M 1.0 571.8M 94.5 84.1

0.5 0.6M 1.0 272.9M 93.4 82.6

0.25 0.2M 1.0 82.3M 92.2 77.8

1.0 2.2M 0.75 550.7M 94.4 83.7

1.0 2.2M 0.5 244.9M 92.0 80.3

1.0 2.2M 0.25 61.5M 86.9 67.3

0.75 1.3M 0.75 321.7M 94.3 82.4

0.75 1.3M 0.5 143.1M 92.9 79.5

0.75 1.3M 0.25 35.9M 85.4 65.5

0.5 0.6M 0.75 153.6M 92.9 80.8

0.5 0.6M 0.5 68.3M 91.7 78.5

0.5 0.6M 0.25 17.2M 85.4 66.0

0.25 0.2M 0.75 46.3M 91.6 76.1

0.25 0.2M 0.5 20.6M 88.7 71.8

0.25 0.2M 0.25 5.2M 79.1 56.0

Table 6. Results (%) of varying width multiplier β and resolution

multiplier γ for OSNet. For input size, γ = 0.75: 192 × 96;

γ = 0.5: 128× 64; γ = 0.25: 64× 32.

sualise the activations of the last convolutional feature maps

to investigate where the network focuses on to extract fea-

tures. Following [61], the activation maps are computed as

the sum of absolute-valued feature maps along the channel

dimension followed by a spatial ℓ2 normalisation. Fig. 6

compares the activation maps of OSNet and the single-scale

baseline (model 9 in Table 5). It is clear that OSNet can

capture the local discriminative patterns of Person A (e.g.,

the clothing logo) which distinguish Person A from Person

B. In contrast, the single-scale model over-concentrates on

the face region, which is unreliable for ReID due to the low

resolution of surveillance images. Therefore, this qualita-

tive result shows that our multi-scale design and unified ag-

gregation gate enable OSNet to identify subtle differences

between visually similar persons – a vital requirement for

accurate ReID.

4.2. Evaluation on Person Attribute Recognition

Although person attribute recognition is a category-

recognition problem, it is closely related to the person ReID

problem in that omni-scale feature learning is also critical:

some attributes such as ‘view angle’ are global; others such

as ‘wearing glasses’ are local; heterogeneous-scale features

are also needed for recognising attributes such as ‘age’.

Dataset and Settings We use PA-100K [28], the largest

person attribute recognition dataset. PA-100K contains 80K

training images and 10K test images. Each image is anno-

tated with 26 attributes, e.g., male/female, wearing glasses,

carrying hand bag. Following [28], we adopt five evaluation

metrics, including mean Accuracy (mA), and four instance-

based metrics, namely Accuracy (Acc), Precision (Prec),

Recall (Rec) and F1-score (F1). Please refer to [23] for

the detailed definitions. Implementation is detailed in the

Supplementary Material.

Results Table 7 compares OSNet with two state-of-the-
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(b) Male + black jacket + blue jeans.

(c) Back bags + yellow T-shirt + black shorts. (d) Green T-shirt.

(a) Hoody + back bag.

Figure 5. Image clusters of similar gating vectors. The visualisation shows that our unified aggregation gate is capable of learning the

combination of homogeneous and heterogeneous scales in a dynamic manner.

Person A Person B

Figure 6. Each triplet contains, from left to right, original image,

activation map of OSNet and activation map of single-scale base-

line. These images indicate that OSNet can detect subtle differ-

ences between visually similar persons.

Method PA-100K

mA Acc Prec Rec F1

DeepMar [21] 72.7 70.4 82.2 80.4 81.3

HydraPlusNet [28] 74.2 72.2 83.0 82.1 82.5

OSNet 74.6 76.0 88.3 82.5 85.3

Table 7. Results (%) on pedestrian attribute recognition.

Female: 93.4%

Age 18-60: 99.9%

Front: 52.5%

Short Sleeve: 100.0%

Upper Logo: 94.5%

Shorts: 99.9%

Female: 95.0%

Age 18-60: 99.9%

Side: 10.7%

Shoulder Bag: 99.9%

Long Sleeve: 99.7%

Trousers: 98.3%

Age18-60: 99.8%

Back: 95.7%

Glasses: 96.4%

Long Sleeve: 91.8%

Trousers: 99.9%

(a) (b) (c)

Figure 7. Likelihoods on ground-truth attributes predicted by OS-

Net. Correct/incorrect classifications based on threshold 50% are

shown in green/red.

art methods [21, 28] on PA-100K. It can be seen that OSNet

outperforms both alternatives on all five evaluation metrics.

Fig. 7 provides some qualitative results. It shows that OS-

Net is particularly strong at predicting attributes that can

only be inferred by examining features of heterogeneous

scales such as age and gender.

4.3. Evaluation on Object Categorisation

Datasets and Settings CIFAR10/100 [20] has 50K train-

ing images and 10K test images, each with the size of

32× 32. OSNet is trained following the setting in [13, 60].

Apart from the default OSNet in Table 1, a deeper version is

constructed by increasing the number of staged bottlenecks

from 2-2-2 to 3-8-6. Error rate is reported as the metric.

Results Table 8 compares OSNet with a number of state-

of-the-art object recognition models. The results suggest

that, although OSNet is originally designed for fine-grained

object instance recognition task in ReID, it is also highly

competitive on object category recognition tasks. Note

that CIFAR100 is more difficult than CIFAR10 because

Method Depth # params CIFAR10 CIFAR100

pre-act ResNet [13] 164 1.7M 5.46 24.33

pre-act ResNet [13] 1001 10.2M 4.92 22.71

Wide ResNet [60] 40 8.9M 4.97 22.89

Wide ResNet [60] 16 11.0M 4.81 22.07

DenseNet [18] 40 1.0M 5.24 24.42

DenseNet [18] 100 7.0M 4.10 20.20

OSNet 78 2.2M 4.41 19.21

OSNet 210 4.6M 4.18 18.88

Table 8. Error rates (%) on CIFAR datasets. All methods here use

translation and mirroring for data augmentation. Pointwise and

depthwise convolutions are counted as separate layers.

Architecture CIFAR10 CIFAR100

T = 1 5.49 21.78

T = 4 + addition 4.72 20.24

T = 4 + unified AG 4.41 19.21

Table 9. Ablation study on OSNet on CIFAR10/100.

it contains ten times fewer training images per class (500

vs. 5,000). However, OSNet’s performance on CIFAR100

is stronger, indicating that it is better at capturing useful pat-

terns with limited data, hence its excellent performance on

the data-scarce ReID benchmarks. We have also conducted

experiments on the larger-scale ImageNet 1K object recog-

nition task. The results (see the Supplementary Material)

show that our OSNet outperforms similar-sized lightweight

models including SqueezeNet [19], ShuffleNet [64] and

MobileNetV2 [34]. The overall results show that omni-

scale feature learning is beneficial beyond ReID and should

be considered for a broad range of visual recognition tasks.

Ablation Study We compare our primary model with

model 9 (single-scale baseline in Table 5) and model 5 (four

streams + addition) on CIFAR10/100. Table 9 shows that

both omni-scale feature learning and unified AG contribute

positively to the overall performance of OSNet.

5. Conclusion

We presented OSNet, a lightweight CNN architecture

that is capable of learning omni-scale feature representa-

tions. Extensive experiments on six person ReID datasets

demonstrated that OSNet achieved state-of-the-art perfor-

mance, despite its lightweight design. The superior perfor-

mance on object categorisation tasks and a multi-label at-

tribute recognition task further suggested that OSNet is of

wide interest to visual recognition beyond ReID.
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