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Abstract

Accurate multi-organ abdominal CT segmentation is es-

sential to many clinical applications such as computer-

aided intervention. As data annotation requires massive

human labor from experienced radiologists, it is com-

mon that training data are partially labeled, e.g., pancreas

datasets only have the pancreas labeled while leaving the

rest marked as background. However, these background la-

bels can be misleading in multi-organ segmentation since

the “background” usually contains some other organs of

interest. To address the background ambiguity in these

partially-labeled datasets, we propose Prior-aware Neu-

ral Network (PaNN) via explicitly incorporating anatom-

ical priors on abdominal organ sizes, guiding the train-

ing process with domain-specific knowledge. More specif-

ically, PaNN assumes that the average organ size distribu-

tions in the abdomen should approximate their empirical

distributions, prior statistics obtained from the fully-labeled

dataset. As our training objective is difficult to be directly

optimized using stochastic gradient descent, we propose to

reformulate it in a min-max form and optimize it via the

stochastic primal-dual gradient algorithm. PaNN achieves

state-of-the-art performance on the MICCAI2015 challenge

“Multi-Atlas Labeling Beyond the Cranial Vault”, a compe-

tition on organ segmentation in the abdomen. We report an

average Dice score of 84.97%, surpassing the prior art by

a large margin of 3.27%.

1. Introduction

This work focuses on multi-organ segmentation in ab-

dominal regions which contain multiple organs such as

liver, pancreas and kidneys. The segmentation of inter-

nal structures on medical images, e.g., CT scans, is an es-

sential prerequisite for many clinical applications such as

∗This work was partly done when Yuyin Zhou, Chong Wang, Xinlei

Chen and Mei Han were at Google.
†Equal Contribution.

Figure 1. 3D Visualization of several abdominal organs (liver,

spleen, left kidney, right kidney, aorta, inferior vena cava) to show

the similarity of patient-wise abdominal organ size distributions.

computer-aided diagnosis, computer-aided intervention and

radiation therapy. Compared with other internal structures

such as heart or brain, abdominal organs are much more

difficult to segment due to the morphological and structural

complexity, low contrast of soft tissues, etc.

With the development of deep convolutional neural net-

works (CNNs), many medical image segmentation prob-

lems have achieved satisfactory results only when full-

supervision is available [33, 32, 45, 41, 30, 4]. Despite

the recent progress, the annotation of medical radiology im-

ages is extremely expensive, as it must be handled by ex-

perienced radiologists and carefully checked by additional

experts. This results in the lack of high-quality labeled

training data. More critically, how to efficiently incorpo-

rate domain-specific expertise (e.g., anatomical priors) with

segmentation models [10, 25], such as organ shape, size,

remains an open issue.

Our key observation is that, in medical image analy-

sis domain, instead of scribbles [17, 36, 37] , points [3]

and image-level tags [26, 27, 40], there exists a consid-

erable number of datasets in the form of abdominal CT

scans [31, 33, 34]. To meet different research goals or prac-

tical usages, these datasets are annotated to target differ-

ent organs (a subset of abdominal organs), e.g., pancreas

datasets [31] only have the pancreas labeled while leaving

the rest marked as background.
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Figure 2. Overview of the proposed PaNN for partially-supervised multi-organ segmentation. It is trained with a small set of fully-

labeled dataset and several partially-labeled datasets. The PaNN regularizes that the organ size distributions of the network output should

approximate their prior statistics in the abdominal region obtained from the fully-labeled dataset.

The aim of this work is to fully leverage these exist-

ing partially-annotated datasets to assist multi-organ seg-

mentation, which we refer to as partial supervision. To

address the challenge of partial supervision, an intuitive

solution is to simply train a segmentation model directly

on both the labeled data and the partially-labeled data in

the semi-supervised manner [29, 2, 26]. However, it 1)

fails to take advantages of the fact that medical images

are naturally more constrained compared with natural im-

ages [24]; 2) is intuitively misleading as it treats the unla-

beled pixels/voxels as background. To overcome these is-

sues, we propose Prior-aware Neural Network (PaNN) to

handle such background ambiguity via incorporating prior

knowledge on organ size distributions. We achieve this via

a prior-aware loss, which acts as an auxiliary and soft con-

straint to regularize that the average output size distributions

of different organs should approximate their prior propor-

tions. Based on the anatomical similarities (Fig. 1) across

different patient scans [10, 25, 15], the prior proportions are

estimated by statistics from the fully-labeled data. The over-

all pipeline is illustrated in Fig. 2. It is important to note that

the training objective is hard to be directly optimized using

stochastic gradient descent. To address this issue, we pro-

pose to formulate our objective in a min-max form, which

can be well optimized via the stochastic primal-dual gra-

dient algorithm [20]. To summarize, our contributions are

three-fold:

1) We propose Prior-aware Neural Network, which incor-

porates domain-specific knowledge from medical images,

to facilitate multi-organ segmentation via using partially-

annotated datasets.

2) As the training objective is difficult to be directly opti-

mized using stochastic gradient descent, it is essential to re-

formulate it in a min-max form and optimize via stochastic

primal-dual gradient [20].

3) PaNN significantly outperforms previous state-of-the-

arts even using fewer annotations. It achieves 84.97% on

the MICCAI2015 challenge “Multi-Atlas Labeling Beyond

the Cranial Vault” in the free competition for organ segmen-

tation in the abdomen.

2. Related Work

Currently, the most successful deep learning techniques

for semantic segmentation stem from a common forerun-

ner, i.e., Fully Convolutional Network (FCN) [21]. Based

on FCN, many recent advanced techniques have been pro-

posed, such as DeepLab [5, 6, 7], SegNet [1], PSPNet [43],

RefineNet [18], etc. Most of these methods are based on

supervised learning, hence requiring a sufficient number of

labeled training data to train. To cope with scenarios where

supervision is limited, researchers begin to investigate the

weakly-supervised setting [26, 27, 9], e.g., only bounding-

boxes or image-level labels are available, and the semi-

supervised setting [26, 35], i.e., unlabeled data are used to

enlarge the training set. Papandreou et al. [26] propose EM-

Adapt where the pseudo-labels of the unknown pixels are

estimated in the expectation step and standard SGD is per-

formed in the maximization step. Souly et al. [35] demon-

strate the usefulness of generative adversarial networks for

semi-supervised segmentation.

In the medical imaging domain, it becomes more in-

tractable to acquire sufficient labeled data due to the diffi-

culty of annotation, as the annotation has to be done by ex-

perts. Although fully-supervised methods (e.g., UNet [30],

VoxResNet [4], DeepMedic [14], 3D-DSN [11], HNN [32])

have achieved remarkable performance improvement in
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tasks such as brain MR segmentation, abdominal single-

organ segmentation and multi-organ segmentation, semi- or

weakly-supervised learning is still a far more realistic so-

lution. For example, Bai et al. [2] proposed an EM-based

iterative method, where a CNN is alternately trained on la-

beled and post-processed unlabeled sets. In [42], supervised

and unsupervised adversarial costs are involved to address

semi-supervised gland segmentation. DeepCut [29] shows

that weak annotations such as bounding-boxes in medical

image segmentation can also be utilized by performing an

iterative optimization scheme like [26].

However, these methods fail to capture the anatomical

priors [19]. Inclusion of priors in medical imaging could

potentially have much more impact compared with their us-

age in natural images since anatomical objects in medical

images are naturally more constrained in terms of shape,

location, size, etc. Some recent works [10, 25] demon-

strate that these priors can be learned by a generative model.

But these methods will induce heavy computational over-

head. Kervadec et al. [15] proposed that directly imposing

inequality constraints on sizes is also an effective way of

incorporating anatomical priors. Unlike these methods, we

propose to learn from partial annotations by embedding the

abdominal region statistics in the training objective, which

requires no additional training budget.

3. Prior-aware Neural Network

Our work aims to address the multi-organ segmentation

problem with the help of multiple existing partially-labeled

datasets. Given a CT scan where each element indicates

the Housefield Unit (HU) of a voxel, the goal is to find the

predicted labelmap of each pixel/voxel.

3.1. Partial Supervision

We consider a new supervision paradigm, i.e., partial

supervision, for multi-organ segmentation. This is moti-

vated by the fact that there exists a considerable number of

datasets with only one or a few organs labeled in the form

of abdominal CT scans [31, 33, 34] in medical image anal-

ysis, which can serve as partial supervision for multi-organ

segmentation (see the list in the supplementary material).

Based on domain knowledge, our approach assumes the fol-

lowing characteristics of the datasets which are common in

medical image analysis. First, the scanning protocols of

medical images are well standardized, e.g., brain, head and

neck, chest, abdomen, and pelvis in CT scans, which means

that the internal structures are consistent in a limited range

according to the scanning protocol (see Fig. 1). Second, in-

ternal organs have anatomical and spatial relationships such

as gastrointestinal track, i.e., stomach, duodenum, small in-

testine, and colon are connected in a fixed order.

The partially-supervised setting can be formally defined

as below. Given a fully-labeled dataset SL = {IL,YL}

with the annotation YL known and T partially-labeled

datasets SP = {SP1
,SP2

, ...SPT
} with the t-th dataset de-

fined as SPt
= {IPt

,YPt
}. L = {1, 2, ..., nL} and Pt =

{1, 2, ..., nPt
} denote the image indices for SL and SPt

, re-

spectively. For each element yij ∈ YL, yij denotes the

annotation of the j-th pixel in the i-th image Ii ∈ IPt
and

is selected from L, where L denotes the abdominal organ

space, i.e., L = {spleen, pancreas, liver, ...}. For the t-th
partially-labeled dataset SPt

, yij ∈ YPt
is selected from

LPt
⊆ L. In 2D-based segmentation models, the i-th input

Ii is a sliced 2D image from either Axial, Coronal or Saggi-

tal view of the whole CT scan [45, 32, 44, 39]. In 3D-based

segmentation models, Ii is a cropped 3D patch from the

whole CT volume [8, 22]. Note that semi-supervision and

fully-supervision are two extreme cases of partial supervi-

sion, when the set of partial labels is an empty set (LPt
= ⊘)

and is equal to the complete set (LPt
= L), respectively.

A naive solution is to simply train a segmentation net-

work from both the fully-labeled data and the partially-

labeled data and alternately update the network parame-

ters and the segmentations (pseudo-labels) for the partially-

labeled data [44, 2]. While these EM-like approaches

have achieved significant improvement compared with

fully-supervised methods, they require high-quality pseudo-

labels and fail to explicitly incorporate anatomical priors on

shape or size.

To address this issue, we propose a Prior-aware Neural

Network (PaNN), aiming at explicitly embedding anatom-

ical priors without incurring any additional budget. More

specifically, the anatomical priors are enforced by intro-

ducing an additional penalty which acts as a soft constraint

to regularize that the average output distributions of organ

sizes should mimic their empirical proportions. This prior is

obtained by calculating the organ size statistics of the fully-

labeled dataset. An overview of the overall framework is

shown in Fig. 2, and the detailed training procedures will

be introduced in the following sections.

3.2. Prior­aware Loss

Consider a segmentation network parameterized by Θ,

which outputs probabilities p. Let q ∈ R
(|L|+1)×1 be the

label distribution in the fully-labeled dataset, with ql de-

scribing the proportion of the l-th label (organ). Then, we

estimate the average predicted distribution of the pixels in

the partially-labeled datasets as

p̄ =
1

N

T
∑

t=1

∑

i∈Pt

∑

j

pij , (1)

where pij = [p0ij , p
1
ij , ..., p

|L|
ij ] denotes the probability vec-

tor of the j-th pixel in the i-th input slice Ii, and N is the

total number of pixels/voxels. Recall that T is the total num-

ber of partially-labeled datasets.
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To embed the prior knowledge, the prior-aware loss is

defined as

KLmarginal(q|p̄) ,
∑

l KL(ql|p̄l)

= −
∑

l

(

ql log p̄l + (1− ql) log(1− p̄l)
)

+ const

= −{q log p̄+ (1− q) log(1− p̄)}+ const,

(2)

which measures the matching probability of the two distri-

butions q and p̄ via Kullback-Leibler divergence. Note that

each class is treated as one vs. rest when calculating the

matching probabilities. Therein, the rationale of Eq. (2)

is that the output distributions p̄ of different organ sizes

should approximate their empirical marginal proportions q,

which generally reflects the domain-specific knowledge.

Note that q is a global estimation of label distribution of

the fully-labeled training data, which remains unchanged.

Consequently, H(q) is constant which can be omitted dur-

ing the network training. Nevertheless, we observe that it

is still problematic to directly apply stochastic gradient de-

scent, as we will detail in Sec. 3.3.

Specifically in our case, our final training objective is

min
Θ,YP

JL(Θ) + λ1JP(Θ,YP) + λ2JC(Θ), (3)

where JL(Θ) and JP(Θ,YP) are the cross entropy loss

on the fully-labeled data and the partially-labeled data, re-

spectively. And YP denotes the computed pseudo-labels

as well as existing partial labels from the partially-labeled

dataset(s). Note that the prior-aware loss JC is used as a

soft global constraint to stablize the training process. Con-

cretely, JL(Θ) is defined as

JL = −
1

N

∑

i∈L

∑

j

|L|
∑

l=0

1(yij = l) log plij , (4)

where plij denotes the softmax probability of the j-th pixel

in the i-th image to the l-th category. JP(Θ,YP) is given

by

JP = −
1

N

T∑

t=1

∑

i∈Pt

∑

j

|L|∑

l=0

{1(yij = l) log plij

+1(y′ij = l) log plij},

(5)

where the first term corresponds to the pixels with their la-

bels YP given, i.e., yij ∈ LPt
. The second term corre-

sponds to unlabeled background pixels, and YP needs to

be estimated during the model training as a kind of pseudo-

supervision, i.e., y′ij ∈ L − LPt
.

3.3. Derivation

By substituting Eq. (1) into Eq. (2) and expanding q, p̄
into scalars, we rewrite Eq. (2) as

JC = −

|L|∑

l=0

{ql log
1

N

T∑

t=1

∑

i∈Pt

∑

j

plij+

(1− ql) log(1−
1

N

T∑

t=1

∑

i∈Pt

∑

j

plij)}+ const.

(6)

From Eq. (2) and Eq. (6) we can see that the average distri-

bution p̄ of organ sizes is inside the logarithmic loss, which

is very different from standard machine learning loss such

as Eq. (4) and Eq. (5) where the average is outside loga-

rithmic loss. And directly minimizing by stochastic gra-

dient descent is very difficult as the true gradient induced

by Eq. (2) is not a summation of independent terms, the

stochastic gradients would be intrinsically biased [20].

To remedy this, we propose to optimize the KL diver-

gence term using stochastic primal-dual gradient [20]. Our

goal here is to transform the prior-aware loss into an equiv-

alent min-max problem by taking the sample average out of

the logarithmic loss. We introduce two auxiliary variables

to assist the optimization, i.e., the primal variable α and the

dual variable β. First, the following identity holds

− logα = max
β

(αβ + 1 + log(−β)) (7)

due to the property of the log function. Based on Eq. (7),

we define ν ∈ R
|L|×1 as the dual variable associated to

the primal variable p̄, and define µ ∈ R
|L|×1 as the dual

variable associated to the primal variable (1− p̄). Then, we

have

− log p̄l = max
νl

(

p̄lνl + 1 + log(−νl)
)

− log(1− p̄l) = max
µl

(

(1− p̄l)µl + 1 + log(−µl)
)

,
(8)

where νl (or µl) denotes the l-th element of ν (or µ). Sub-

stituting them into Eq. (2)/Eq. (6), maximizing the KL di-

vergence is equivalent to the following min-max optimiza-

tion problem:

min
Θ

max
ν,µ

∑

l

ql
(

p̄lνl + 1 + log(−νl)
)

+
∑

l

(1− ql)
(

(1− p̄l)µl + 1 + log(−µl)
)

⇔ min
Θ

max
ν,µ

∑

l

(

qlνl − (1− ql)µl
)

p̄l + ql log(−νl)

+
∑

l

(1− ql)
(

µl + log(−µl)
)

,

(9)

which brings the sample average out of the logarithmic loss.

Note that we ignore the constant in the above formulas.
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Algorithm 1: The training procedure of PaNN

Input:

Fully-labeled training data SL;

Partially-labeled training data SP;

Hyperparameters: λ1, λ2;

Output:

Segmentation model Θ;

begin
Train the segmentation model Θ on SL;

Compute the prior distribution q on SL;

Initialize ν = −1/q and µ = 1/(1− q);
repeat

Estimate pesudo-labels YP with Θ;

Update ν and µ via stochastic gradient ascent;

Update Θ via stochastic gradient descent;

return Θ

3.4. Model Training

We consider training a fully convolutional network [21,

6, 30] for multi-organ segmentation, where the input images

are either 2D slices [39, 32, 45] or 3D cropped patches [8,

22]. The training procedure can be divided into two stages.

In the first stage, we only train on the fully-labeled

dataset SL by optimizing Eq. (4) via stochastic gradient de-

scent (also means λ1 = 0 and λ2 = 0 in Eq. (3)). The goal

of this stage is to find a proper initialization Θ0 for the net-

work weights, which can stabilize the training procedure in

the second stage.

In the second stage, we train the model on the union of

the fully-labeled dataset SL and partially-labeled dataset(s)

SP via Eq. (3). As can be drawn, we have two groups of

variables, i.e., the network weights Θ and the three aux-

iliary variables {ν,µ,YP}. We adopt an alternating opti-

mization, which can be decomposed into two subproblems:

• Fixing Θ, Updating {ν,µ,YP}. With the network

weights Θ given, we can first estimate the pesudo-labels

YP of background pixels in the partially-labeled dataset(s)

SP. Meanwhile, the optimization of ν and µ is a maximiza-

tion problem. Hence, we do stochastic gradient ascent to

learn ν and µ. As for the initialization, we set ν to −1/q
and set µ to −1/(1− q), respectively.

• Fixing {ν,µ,YP}, Updating Θ. By fixing the three aux-

iliary variables, we can then update the network weights Θ

via the standard stochastic gradient descent.

As can be seen, our algorithm is formulated as a min-

max optimization. We summarize the detailed procedure of

optimization in Algorithm 1.

4. Experiments

4.1. Experiment Setup

Datasets and Evaluation Metric. We use the training set

released in the MICCAI 2015 Multi-Atlas Abdomen La-

beling Challenge as the fully-labeled dataset SL, which

contains 30 abdominal CT scans with 3779 axial contrast-

enhanced abdominal clinical CT images in total. For

each case, 13 anatomical structures are annotated, includ-

ing spleen, right kidney, left kidney, gallbladder, esopha-

gus, liver, stomach, aorta, inferior vena cava (IVC), por-

tal vein & splenic vein, pancreas, left adrenal gland, right

adrenal gland. Each CT volume consists of 85 ∼ 198
slices of 512 × 512 pixels, with a voxel spatial resolution

of ([0.54 ∼ 0.54]× [0.98 ∼ 0.98]× [2.5 ∼ 5.0])mm3.

As for the partially-labeled dataset(s) SP, we use a spleen

segmentation dataset1 (referred as A), a pancreas segmen-

tation dataset2 (referred as B) and a liver segmentation

dataset1 (referred as C). To make these partially-labeled

datasets balanced, 40 cases are evenly selected from each

dataset to constitute the partial supervision.

Following the standard cross-validation evaluation [33,

32, 23, 45, 39], we randomly partition the fully-labeled

dataset SL into 5 complementary folds, each of which

contains 6 cases, then apply the standard 5-fold cross-

validation. For each fold, we use 4 folds (i.e., 24 cases)

as full supervision and test on the remaining fold.

The evaluation metric we use is the Dice-Sørensen Co-

efficient (DSC), which measures the similarity between the

prediction voxel set Z and the ground-truth set Y . Its math-

ematical definition is DSC(Z,Y) = 2×|Z∩Y|
|Z|+|Y| . We report

an average DSC of all the testing cases over the 13 labeled

anatomical structures for performance evaluation.

Implementation Details. Similar to [45, 32, 33, 39], we use

the soft tissue CT window range of [−125, 275] HU. The in-

tensities of each slice are then rescaled to [0.0, 255.0]. Ran-

dom rotation of [0, 15] is used as an online data augmenta-

tion. Our implementations are based on the current state-of-

the-art 2D3 [7, 6] and 3D models4 [30, 28]. We provide an

extensive study about how partially-labeled datasets facili-

tate multi-organ segmentation task and list thorough com-

parisons under different settings.

As described in Sec. 3.4, the whole training procedure

is divided into two stages. The first stage is the same as

fully-supervised training, i.e., we train exclusively on the

fully-labeled dataset SL for a certain number of iterations

M1.

In the second stage, we switch to the min-max optimiza-

tion on the union of the fully-labeled dataset and partially-

labeled datasets for M2 iterations. In each mini-batch, the

sampling rate of labeled data and partially-labeled data is

3 : 1. It has been suggested [2] that it is less necessary

1Available at http://medicaldecathlon.com
2Available at https://wiki.cancerimagingarchive.net/

display/Public/Pancreas-CT
3https://github.com/tensorflow/models/tree/

master/research/deeplab
4https://github.com/DLTK/DLTK
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Model Supervision

Partially-labeled

Average Dicedataset

A B C

ResNet50 [12]

Full 0.7535

Semi [2]

✓ 0.7593

✓ 0.7632

✓ 0.7596

✓ ✓ ✓ 0.7669

Partial (ours)

✓ 0.7650

✓ 0.7662

✓ 0.7631

✓ ✓ ✓ 0.7705

PaNN (ours)

✓ 0.7716

✓ 0.7712

✓ 0.7705

✓ ✓ ✓ 0.7833

ResNet101 [12]

Full 0.7614

Semi [2]

✓ 0.7637

✓ 0.7649

✓ 0.7647

✓ ✓ ✓ 0.7719

Partial (ours)

✓ 0.7714

✓ 0.7695

✓ 0.7684

✓ ✓ ✓ 0.7735

PaNN (ours)

✓ 0.7770

✓ 0.7819

✓ 0.7748

✓ ✓ ✓ 0.7904

3D-UNet [8]

3D-UNet-fully-sup 0.7066

Semi [2] ✓ ✓ ✓ 0.7193

Partial (ours) ✓ ✓ ✓ 0.7163

PaNN (ours) ✓ ✓ ✓ 0.7208

Table 1. Performance comparison (DSC) with fully-supervised

and semi-supervised methods. Bold underline denotes the best

results, bold denotes the second best results.

to update the pseudo-label YP per iteration. Hence, YP is

updated every 10K iterations in practice. In addition, the

hyperparameters λ1 and λ2 are set to be 1.0 and 0.1, respec-

tively. The same decay policy of learning rate is utilized as

that used in the first stage. In the second stage, the initial

learning rate for the minimization step and the maximiza-

tion step are set as 10−5 and 2× 10−5, respectively.

For 2D implementations, the initial learning rate of the

first stage is 2× 10−5 and a poly learning rate policy is em-

ployed. M1 and M2 are set as 40K and 30K, respectively.

Following [33, 7, 14], we apply multi-scale inputs (scale

factors are {0.75, 1.0, 1.25, 1.5, 1.75, 2.0}) in both training

and testing phase. For 3D implementations, the initial learn-

ing rate of the first stage is 5e−4 and a fixed learning rate

policy is employed. M1 and M2 are set as 80K and 100K,

respectively.

4.2. Experimental Comparison

We compare the proposed PaNN with a series of state-

of-the-art algorithms, including 1) the fully-supervised ap-

proach (denoted as “-fully-sup”), where we train exclu-

sively only on the fully-labeled dataset SL, 2) the semi-

supervised approach (denoted as “-semi-sup”), where we

train the network on both the fully-labeled dataset SL and

the partially-labeled dataset(s) SP while treating SP as un-

labeled following the representative method [2], and 3) the

naive partially-supervised approach (denoted as “-partial-

sup”), where we also train the network on both SL and SP

while treating the partial labels as they are. Different from

PaNN, we set λ2 = 0 in Eq. (3) to verify the efficacy of the

prior-aware loss.

Benefit of Partial Supervision. As shown from Table 1,

among three kinds of supervisions, partial supervision ob-

tains the best performance followed by the semi-supervision

and full supervision. It is no surprise to observe such a

phenomenon for two reasons. First, compared with full su-

pervision, semi-supervision has more training data, though

part of them is not annotated. Second, compared with

semi-supervision, partial supervision involves more anno-

tated pixels in the organ of interest.

Effect of PaNN. From Table 1, PaNN generally achieves

better performance than the naive partially-supervised

methods, which demonstrates the effectiveness of our pro-

posed PaNN. For example, when setting the partial dataset

as the union of A, B and C, PaNN achieves the best result

either using 2D models or 3D models. 2D models generally

observe a better performance in each setting compared with

3D models. This is probably due to the fact that current

3D models only act on local patches (e.g., 64 × 64 × 64),

which results in lacking holistic information [38]. A de-

tailed discussion of 2D and 3D models is listed in [16].

More specifically, PaNN outperforms the naive partially-

supervised method by 1.28% with ResNet-50 and by 1.69%
with ResNet-101 as the backbone model, respectively. Ad-

ditionally, we also observe a convincing performance gain

of 0.45% using 3D UNet [8, 30] as the backbone model.

Meanwhile, by increasing the number of partially-

labeled datasets (from using only A, B or C to the union of

three), the performance improvements of different methods

are also different. For example, with the ResNet-101 as the

backbone, the largest improvement obtained under semi-

supervision is 0.82% (from 76.37% to 77.19%), and that

of partial supervision is 0.51% (from 76.84% to 77.35%).

By contrast, PaNN obtains a much more remarkable im-

provement of 1.56% (from 77.48% to 79.04%). Such an

observation suggests that PaNN is capable of handling more

partially-labeled training data and is less susceptible to the

background ambiguity.

Organ-by-organ Analysis. To reveal the detailed effect of

PaNN, we present an organ-by-organ analysis in Fig. 3. We

use ResNet-50 as the backbone model (ResNet-101 has a

similar trend) and the partially-labeled dataset C (indicates

that the liver is the target organ).

In Fig. 3, we observe clear statistical improvements over

the fully-supervised method for almost every organ (p-

values p < 0.001 hold for 11/13 of all abdominal organs).

Great improvements are also observed for those difficult or-
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Figure 3. Performance comparison (DSC) in box plots of 13 abdominal structures, where the partially-labeled dataset C is used with

ResNet-50 as the backbone model. Our proposed PaNN improves the overall mean DSC and also reduces the standard deviation. Kid-

ney/AG (R), Kidney/AG (L) stand for the right and left kidney/adrenal gland, respectively.

Name Spleen Kidney(R) Kidney(L) Gallbladder Esophagus Liver Aorta IVC
Average Mean Surface Hausdorff

Dice Distance Distance

AutoContext3DFCN [33] 0.926 0.866 0.897 0.629 0.727 0.948 0.852 0.791 0.782 1.936 26.095

deedsJointCL [13] 0.920 0.894 0.915 0.604 0.692 0.948 0.857 0.828 0.790 2.262 25.504

dltk0.1 unet sub2 [28] 0.939 0.895 0.915 0.711 0.743 0.962 0.891 0.826 0.815 1.861 62.872

results 13organs p0.7 0.890 0.898 0.883 0.685 0.754 0.936 0.870 0.819 0.817 4.559 38.661

PaNN* (ours) 0.961 0.901 0.943 0.704 0.783 0.972 0.913 0.835 0.832 1.641 25.176

PaNN (ours) 0.968 0.920 0.953 0.729 0.790 0.974 0.925 0.847 0.850 1.450 18.468

Table 2. Performance comparison on the 2015 MICCAI Multi-Atlas Abdomen Labeling challenge leaderboard. Our method achieves the

largest Dice score and the smallest average surface distances and Hausdorff distances. PaNN* only uses 80% of the training data as the

fully-supervised dataset and use the rest 20% data as partially-labeled data (by randomly removing labels of 8/13 organs), without using

extra data. In this table, we only show 8/13 organs’ average Dice scores due to the space limit.

gans, i.e., organs either in small sizes or with complex ge-

ometric characteristics such as gallbladder (from 67.26%
to 72.26%), esophagus (from 69.35% to 71.21%), stomach

(from 84.09% to 87.21%), IVC (from 77.34% to 80.70%),

portal vein & splenic vein (from 66.74% to 68.75%), pan-

creas (from 71.45% to 73.62%), right adrenal gland (from

53.65% to 55.56%) and left adrenal gland (from 49.51% to

53.63%). This promising result indicates that our method

distills a reasonable amount of knowledge from additional

partially-labeled data and the regularization loss can help

facilitate the network to enhance the discriminative infor-

mation to a certain degree.

Meanwhile, we also observe a distinct performance im-

provement for organs other than the partially-labeled struc-

tures (i.e., the liver). For instance, the performance of gall-

bladder, stomach, IVC, pancreas are boosted from 68.97%,

85.57%, 78.59%, 71.94% to 72.26%, 87.21%, 80.70%,

73.62%, respectively. This suggests that the superiority of

PaNN not only originates from more training data, but also

from the fact that PaNN can effectively incorporate anatom-

ical priors on organ sizes in abdominal regions, which is

helpful for multi-organ segmentation.

Qualitative Evaluation. We also show a set of qualitative

examples, i.e., 5 slices from 3 cases, in Fig. 4, where we

zoom in to visualize the finer details of the improved region.

In these samples, we observe that PaNN is the only

method that successfully detects the pancreatic tail in

Fig. 4(a). In Fig. 4(b), all other methods fail to detect the

portal vein and splenic vein while PaNN demonstrates an

almost perfect detection of these veins. For Fig. 4(c) to

Fig. 4(e), apart from the evident improvements of the pan-

creas, left adrenal gland, one of the smallest abdominal or-

gans, is also clearly segmented by PaNN.

4.3. MICCAI 2015 Multi­Atlas Labeling Challenge

We test our model in the 2015 MICCAI Multi-Atlas Ab-

domen Labeling challenge. The top model (denoted as

“PaNN” in Table 2) we submit is based on ResNet-101,

and trained on all 30 cases of the fully-labeled dataset SL

and the union of three partially-labeled datasets A, B and C.

The evaluation metric employed in this challenge includes

the Dice scores, average surface distances [32] and Haus-

dorff distances [22]. We compare PaNN with the other

top submissions of the challenge leaderboard in Table 2.

As it shows, the proposed PaNN achieves the best perfor-

mance under all the three evaluation metrics, easily sur-

passing prior best result by a large margin. Without using

any additional data and even randomly removing par-

tial labels from the challenge data, our method (denoted as

“PaNN*” in Table 2) stills obtains the state-of-the-art re-

sult of 83.17%, outperforming the previous best result of
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Figure 4. Qualitative comparison of different methods, where the partially-labeled dataset C is used as partial supervision with ResNet-101

as the backbone model. We exhibit 3 cases (5 slices) as examples. Improved segmentation regions are zoomed in from the axial view to

demonstrate finer details.

Organ

Fully Semi Partially PaNN

Supervised Supervised Supervised (ours) (ours)

Gallbladder 0.8225 0.8399 0.8465 0.8467

Aorta 0.9110 0.9096 0.9121 0.9133

IVC 0.8083 0.8175 0.7995 0.8266

Pancreas 0.7831 0.7994 0.8079 0.8193

avg. Dice 0.9008 0.9060 0.9063 0.9103

Table 3. Performance comparison on a newly collected dataset.

Full results are included in the supplementary material.

DLTK UNet [28] by 2% in average Dice. It is notewor-

thy that our method is far from its potential maximum per-

formance as we only use 2D single view algorithms. It is

suggested [45, 38, 44] that using multi-view algorithms or

model ensemble can boost the performance further.

4.4. Generalization to Other Datasets

We also apply our algorithm to a different set of abdomi-

nal clinical CT images, where 20 cases are used for training

and 15 cases are used for testing. A total of 9 structures

(spleen, right kidney, left kidney, gallbladder, liver, stom-

ach, aorta, IVC, pancreas) are manually labeled. Each case

was segmented by four experienced radiologists, and con-

firmed by an independent senior expert. Each CT volume

consists of 319 ∼ 1051 slices of 512 × 512 pixels, and has

voxel spatial resolution of ([0.523 ∼ 0.977] × [0.523 ∼
0.977] × 0.5)mm3. We use the union of all 3 datasets A,

B, and C as the partial supervision. The results are summa-

rized in Table 3, where the proposed PaNN also achieves

better results compared with existing methods.

5. Conclusion

In this work, we have presented PaNN, for multi-organ

segmentation, as a way to better utilize existing partially-

labeled datasets. In several applications such as radia-

tion therapy or computer-aided surgery, physicians and sur-

geons have been doing segmentation of target structures.

Meanwhile, to handle the background ambiguity brought

by the partially-labeled data, the proposed PaNN exploits

the anatomical priors by regularizing the organ size dis-

tributions of the network output should approximate their

prior statistics in the abdominal region. Our proposed PaNN

shows promising results using state-of-the-art models.
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