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Abstract

In this work, we propose a hierarchical Bayesian net-

work based point set registration method to solve missing

correspondences and various massive outliers. We con-

struct this network first using the finite Student’s t laten-

t mixture model (TLMM), in which distributions of latent

variables are estimated by a tree-structured variational in-

ference (VI) so that to obtain a tighter lower bound under

the Bayesian framework. We then divide the TLMM into t-

wo different mixtures with isotropic and anisotropic covari-

ances for correspondences recovering and outliers identifi-

cation, respectively. Finally, the parameters of mixing pro-

portion and covariances are both taken as latent variables,

which benefits explaining of missing correspondences and

heteroscedastic outliers. In addition, a cooling schedule is

adopted to anneal prior on covariances and scale variables

within designed two phases of transformation, it anneal pri-

ors on global and local variables to perform a coarse-to-

fine registration. In experiments, our method outperforms

five state-of-the-art methods in synthetic point set and real-

istic imaging registrations.

1. Introduction

Point set registration is the process of finding one-to-one

correspondence of two point sets (the model and scene) in

ways of which supposed spatial transformations are exerted

on the model point set. It is actually to recover the deforma-

tion while taking the noise, outlier and missing into account.

Point set registration plays an indispensable role in numer-

ous applications such as remote sensing image registration

[12, 33, 37], medical image analysis [22], deformable mo-

tion tracking [9, 26], intermediate frames interpolation, etc.

We summarize the existing problems of traditional point set

registration algorithms in dealing with outliers, missing cor-

respondences and objective function optimization.

There are three approaches to deal with outliers: (i) The

first approach is to construct extra modeling for outliers.

Robust Point Matching (RPM) [4] utilizes a correspondence

matrix where extra entries are added to address outliers, and

the number of outliers is reasonable restrained by conduct-

ing a linear assignment to the correspondence matrix. Mix-

ture point matching (MPM) [3] and Coherent Point Drift

(CPD) [20] employ an extra component of uniform distri-

bution embedded into Gaussian mixture model to handle

outliers, but the correspondences are badly biased because

the extra fixed component can not capture distributions of

positional Gaussian outliers. Han-Bing Qu et al. [27] pro-

poses extra Gaussian mixtures to fit outliers, it alleviates the

estimation bias arising from positional dense outliers even

though it may lack robustness to the outliers presenting as

non-Gaussianity. (ii) The second approach is to employ

a more robust parameter estimator (e.g., L2E [8, 14]) to

minimize the difference between the two point sets which

are taken as the means of two Gaussian mixture model-

s (GMM). Tsin et al. in the kernel correlation (KC) [32]

maximize the correlation of the kernel densities construct-

ed by the two sets. Jian and Vemuri [8], Ma et al. [14]

apply the L2 estimator to maximize the correlation of two

Gaussian densities. Their methods [8, 14, 32] are different

from the Maximum Likelihood estimates (MLE) which will

bring about a bias estimation if there is a fraction of out-

liers, because the penalty intensity of L2E is more smooth

than that of quadratic MLE in the truncation of their penal-

ty curves [8, 14]. So even the remote point (containing the

outliers that cause the biased estimates) can also be assigned

with a low probability. Therefore, the distribution of outlier-

s can be captured by the tails of all Gaussian components.
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But the tuning for the tail of penalty curve relies on an artifi-

cial annealing to adjust covariance directly, and an identical

covariance for all model and scene points can not free the

uncertainty to vary in terms of the context of each point.

In addition, the results of their method are usually unsatis-

factory when outliers has the same pattern as inliers. (iii)

The third approach aims to capture the tail which, in gen-

eral, contains outliers which can lead to biased estimates.

Hence, this approach is essential to select a heavy tailed dis-

tribution where the tail can be tuned to accommodate vary-

ing degrees of outliers. Besides, the empirical assumption

for distribution inevitably brings departures to reality distri-

butions. Thus, a family density with broader distributions

is needed to obtain a better generality to the outliers rep-

resenting as Gaussianity or non-Gaussianity. Recently, the

Student’s t-distribution is proposed to alleviate the vulnera-

bility of Gaussian to outliers caused by its quadratic decay-

ing tail. Student’s t-distribution is widely used in medical

image segmentation [23,24], data classification [29] and da-

ta clustering [30]. In addition, Gaussian can be regarded as

a special case of Student’s t when the degree of freedom

(dof) increases to infinity. Peel and McLachlan [25] intro-

duce an alternative form of Student’s t to figure out analyti-

cal solutions arduously with an EM procedure. Gerogiannis

et al. [5, 6] propose a SMM based registration algorithm

that shows a better robustness than GMM based methods.

However, the trade-off between efficiency and accuracy is

still a problem during objective function optimization. (i)

The first is to construct extra modeling for outliers. Robust

Point Matching (RPM) [4] utilizes a correspondence ma-

trix where extra entries are added to address outliers, and

the number of outliers is reasonable restrained by conduct-

ing a linear assignment to the correspondence matrix. Mix-

ture point matching (MPM) [3] and Coherent Point Drift

(CPD) [20] employ an extra component of uniform distri-

bution embedded into Gaussian mixture model to handle

outliers, but the correspondences are badly biased because

the extra fixed component can not capture distributions of

positional Gaussian outliers. Han-Bing Qu et al. [27] pro-

pose extra Gaussian mixtures to fit outliers. It alleviates the

estimation bias arising from positional dense outliers even

though it may lack robustness to the outliers presenting as

non-Gaussianity.

There are also three ways to deal with the problem of

missing correspondence: (i) Missing correspondence can

cause severe changes to the transformation invalidating the

maintaining of point set structure. Existing methods mostly

rely on more certain correspondences and constrained trans-

formation (e.g., affine or even rigid) to address this problem

[3,4,8,14–17,20,32,35]. CPD and its extensions [7,35,36]

add spatial coherence constraints on transformation. Re-

cently, Ma et al. [15–17] and Zhang et al. [35, 36] present

the global-local point structure to obtain more certain corre-

spondences. But their method do not face with this problem

directly. (ii) MLE based methods [3, 4, 8, 14, 17, 20, 32, 35]

are to minimize the Kullback-Leibler (KL) divergence of

distributions [8] of the two sets where each point has the

same covariance, but the KL divergence (also called the I-

projection) shows a property that the model has a tenden-

cy to under-estimate the support of the distribution of the

scene set [18] because the asymmetric KL divergence are

not a metric. Therefore, the model point tends to lock on-

to one of the scene points, L2E based methods [8, 14] use

a symmetric divergence elegantly to solve the problem of

mixing correspondence arising from the asymmetric KL di-

vergence. However, their approach is still indirect, and the

mixing proportion of the disappeared model should be re-

weighted to gain at least a small value. (iii) For the varia-

tional method, the optimization for parameter, hierarchical-

ly taken as random variable, is yielded from a prior gov-

erned functional space, it also acquires a whole predictive

distribution rather than only one point estimate. Han-Bing

Qu et al. [27] use the Dirichlet prior to re-weight mixing

proportion and optimize objective function under the Varia-

tional Bayesian (VB) framework. The same idea also arises

in DSMM [38,39], it discovers that the varying mixing pro-

portion is beneficial to address missing correspondences.

We summarize three problems of objective function op-

timization: (i) The intuitive EM framework is used widely

in numerous works [17, 35, 38, 39], and the fact that MLE

is implemented by the expectation maximization (EM)

algorithm [21], boosts greatly the development of registra-

tion. Nevertheless, an undesirable over-fitting problem will

arise from the unbounded likelihood function of MLE, and

those MLE based point estimators [8,14,17,35,38,39] also

tend to be trapped into poor local optima easily. (ii) From

the variational perspective, the parameter taken as random

variable is estimated to acquire a predictive distribution

which is then bounded by a prior by Bayesian method, it

alleviates significantly the over-fitting problem of MLE.

However, the current VB based methods [6, 27, 38, 39] are

all to follow the mean-field full factorization to approxi-

mate individually the marginal densities of model posterior,

so they can not capture the correlations among variables

and certainly lose the expressiveness of variational dis-

tribution. (iii) The ill-posed no-rigid deformation calls

for a deterministic annealing to stimulate the algorithm to

escape from poor local optima, the traditional annealing

process [4, 8, 14, 20, 32, 32] update the covariance directly,

therefore the effect of empirical parameter setting on

algorithm stability is reduced. Continuing the discussion

regarding VB methods, the optimization of objective

ELBO requires a trade-off between variational distributions

that could better express the underlying distributions and

that with high entropy. VBPSM is essential to anneal the

same prior on covariances to achieve the same traditional
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annealing process [4, 8, 14, 20, 32].

2. Method

We propose a new point set registration method to deal

with the problems involving outlier, missing correspon-

dence and objective function optimization. In section.2.1.1,

we apply a broader class distribution namely the heavy-

tailed t-distribution which endows our model with nature

robustness to outliers. Furthermore, its tail is adaptive-

ly tuned by using a hierarchical Bayesian network which,

under the Variational Bayesian framework, is reformulat-

ed where both mixing proportion and covariances are taken

as latent variables, so it gives our model the better inter-

pretations of mixing correspondence and heteroscedasticity

compared with the non-Bayesian approach. And then in

section.2.1.2, we separate the mixture model into the two

where the transition mixture with isotropic covariances is

constrained by transformation, and the other with anisotrop-

ic covariances is used to find the outliers with multiple clus-

ters. This separation is complement with the reformulated

Student’s t latent mixture model (TLMM) that further used

to capture tails. For the optimization, in section.2.2, the

tree-structured variational factorization (SVI) is employed

to induce variational dependency for obtaining a higher-

fidelity variational distributions under the two-steps itera-

tive optimization, i.e., the Variational Bayesian Expectation

Maximization (VBEM) algorithm in section.2.2.1 and sec-

tion.2.2.2. In addition, we deduce the transformation be-

yond the conjugate family in section.2.3, and the designed

two phases of transformation based on the global and local

cooling schedule are introduced in section.2.4.

2.1. Hierarchical Bayesian model for point set reg-
istration

Given a model set M = {mk}
K
k=1 with K points and a

scene set S = {sn}
N
n=1 with N points, where each mk and

sn has the same dimension D, the T is supposed as a latent

variable that transforms the model onto the scene point sets

and an auxiliary variable T (M) is introduced to denote the

transition between the model and the scene.

2.1.1 Student’s t mixture model

The Student’s t, a family of distributions, is comprised by

an infinite mixture of overlapped Gaussians with the same

mean but different scaled covariances, so its tail can be

tuned by varying the scaling of covariances, and using the

one with heavier tail, at least in the beginning of iterations,

is less tend to give biased estimates in response to outliers.

For the convenience of conjugate inference, we use the al-

ternative form called the Gaussian scale mixture which can

be written as the convolution of a Gaussian with a Gamma

distribution:

St(sn;µ,Υ, l) =
Z

N
�

sn;µ, (εnΥ)
�1�G(εn;

l
2 ,

l
2 ) dεn

,

(1)

where St, N and G denote Student’s t, Gaussian and Gam-

ma probability density function, respectively. We find that

the precision Υ is scaled in terms of variable ε that is gov-

erned by a Gamma distribution with the same prior parame-

ters l
2 ,

l
2 . The finite Student’s t mixture model (SMM) takes

advantage of the superior statistical properties of Student’s

t-distribution. Furthermore, we divide SMM into two dif-

ferent mixtures for simultaneously accomplishing registra-

tion and outlier rejection. The transition mixture, with K
components, is used to find correspondence, and the outlier

mixture, with K0 components, is used to process outliers.

Hence, the SMM is written as:

p(sn;ϕ,φ) =
K
X

k=1

πkSt
�

sn;ϕk)

K+K0
X

k=K+1

πkSt(sn;φk), (2)

where π denotes the mixing proportion, i.e.,
Pk=K+K0

k=1 πk = 1. It is in effect the posterior of the

fuzzy correspondence inferred from parameters ϕk and φk,

so it plays an essential role as re-estimated responsibility

of all components [1]. And regarding the missing corre-

spondence can be interpreted as the disappeared mixing

proportion since it does not generate scene point, so the

parameterized mixing proportions are taken as random

variables jointly governed by a Dirichlet prior which frees

the mixing proportions to vary and also takes effect on

re-weighting less for models which are more likely to miss

correspondences, that is to say, it reduces the contributions

of those models to promote transformation, and those

models in turn tend to be dragged by other models which

have more responsibility during the next iterations.

2.1.2 The latent variable model of SMM

The latent assignment variable Z = {zn}
K+K0

n=1 of mixture

model is comprised by K+K0 vectors, and each of which is

drawn from a categorical distribution, that is, all its entries

are zero except for a one at the position indicating corre-

spondence. So the distribution of Z conditional on π has a

multinomial density:

p(zn|π) =
K+K0
Y

k=1

πznk

k . (3)

The re-formulate mixture model can be written as:

p(sn|H,Θ) =

K
Y

k=1

N
�

sn|T (mk), (unkΛk)
�1�znk

K+K0
Y

k=K+1

N (sn|xk, (vnkΓnk)
�1)znk ,

(4)
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where xk denotes the mean of one component in outlier

mixture, and U = {un}
N
n=1 and V = {vn}

N
n=1 are the la-

tent scale variables of two mixtures respectively, and both

of them are Gamma distributed:

p(un|zn) =
K
Y

k=1

G(unk;
ak
2
,
ak
2
)znk ,

p(vn|zn) =
K+K0
Y

k=K+1

G(vnk;
bk
2
,
bk
2
)znk .

(5)

We define two collections named model structure

and model parameter, i.e., H = {Z,U ,V}, Θ =
{T ,Λ,X ,Γ,π, a, b}, respectively. We can verify that tak-

ing integral of the product of Eq.3, Eq.5 and Eq.4 over H
leads to the generative model showed in Eq.2. Accord-

ing to the conjugacy property that posterior is preserved

in the same exponential family of prior, the prior imposed

on mean, precision and mixing proportion is deduced in

terms of the likelihood terms shown in Eq.14, Eq.5 and

Eq.4. Specifically, the mixing proportions are jointly im-

posed on a prior of Dirichlet D(π;α0), the means and preci-

sions of outlier mixtures are jointly governed by a Gaussian-

Wishart prior NW(Xk,Γk; η0, ζ0, ε0,β0), and a Gamma

G(Λk; ρ0/2,φ0/2) is imposed on each transition precision

Λk. But, we do not consider priors on degree of freedom a
and b since they are no conjugate priors. So we collect all

hyper-parameters, i.e., ϑ = {ρ,φ, ε,β, η, ζ}. Note that the

transformation will be inferred directly by taking derivation

to obtain a point estimate. The more detailed discussion can

refer to section.2.3. So far, the completed TLMM is repre-

sented by a directed acyclic graph, as shown in Fig.1.

sn

zn

unk vnk

Λk Γk

Tk Xk

⇡

ak bk

mk

↵0

⇢0

�0

✏0

�0

⌘0

⇣0k = 1, ...,K

n = 1, ..., N

k = K + 1, ...,K +K0

Figure 1. Directed acyclic graph of hierarchical probability model

for point set registration

Furthermore, the joint distribution of all variables and

parameters can be factorized by the chain rule of probabili-

ty, as shown below:

p(S,H,Θ) =p(S|H,Θ)p(U|Z)p(V|Z)p(Z|π)p(π)

p(X )p(Γ)p(T )p(Λ).
(6)

2.2. Tree-structured variational inference

The idea of Bayesian is to make inferences of posteri-

or involving an intractable integral over the ensemble of all

unknown quantities contained in the presented probabilis-

tic model. An alternative to that exact inference is to resort

the approximation by using a parameterized and therefore

simpler distribution, because this distribution can be tuned

by the variational parameter to minimize the departure to

true posterior through variational method. Thus, this prob-

lem is in fact turned into an optimization over variational

parameters with variational inference (VI) to minimize the

commonly used Kullback-Leibler (KL) divergence of vari-

ational distribution (also known as the proxy) and model

posterior. It is worth noting that we can lower bound the

evidence to embody the term of KL divergence, mathemat-

ically, the logarithmic evidence taking on a summation:

ln p(S) = L(q(H), q(Θ),S) +KL(q(H,Θ)||p(H,Θ|S)),
(7)

where L:

L(q(H), q(Θ),S)

=

Z

Θ

Z

H

q(H,Θ)[ln p(S,H,Θ)� ln q(H,Θ)]dHdΘ.

(8)

L is known as the evidence lower bound (ELBO) and,

as a result, this optimization is equivalent to maximize the

ELBO, as it can be verified from Eq.7 that the ELBO is ex-

act when the posterior p(H,Θ|S) matches the variational

distribution q(H,Θ). Note that the item p(S,H,Θ) in Eq.7

joints all observations, variables and parameters. Following

the fully factorial assumption which is the most common

tractable form of VI, the proxy is factorized as a product of

independent marginals, respectively named the model struc-

ture H and model parameter Θ, i.e., q(H,Θ) = q(H)q(Θ).
Then, the two steps iterative optimization of VBEM for

non-convex ELBO can be concluded as follows:

qt+1(H) = argmax
q(H)

L(q(H), qt(Θ),S),

qt+1(Θ) = argmax
q(Θ)

L(qt+1(H), q(Θ),S),
(9)

where qt(·) denotes the posterior that has already iterated

t times. The advanced coordinate ascent algorithm VBEM

approximates posterior for one variable, which requires tak-

ing expectation of its complete conditional (the product of

the conditional densities of all variables which depend on

the one variable in the directed graphical model shown in

Fig.1) with respect to the remaining variables. Therefore,

the approximated posterior for the one variable absorbs the

mean values of those remaining variables locating in the one

variable’s Markov-blanket.
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2.2.1 VB-E: Derivation of the latent variables

Experiential independency assumptions may be correct and

valid among some variables in a specific problem. It is used

to trade approximate accuracy for feasibility or efficiency.

In this work we use a superior tree-structured factorization

over the variational distributions so that it can be written as

the following product:

q(U ,V,Z) =q(U|Z)q(V|Z)q(Z). (10)

The tree-structured factorization induces dependencies

between U and Z , and also between V and Z , so it makes

possible to obtain a tighter ELBO. In literature experiments

[10, 30] the tree-structured factorization shows superiority

over the full independent assumption as it yields more ac-

curate approximations at the same cost of the scene set con-

taining significant amount of outliers. The conditional den-

sity can be deduced by Lagrange multiplier. The expression

for the updating of proxy q(un|znk = 1) is given as follows:

q(un|k) / exphln[p(sn|un, k)p(un|k)]iq(un|k), (11)

where ¬q(u, z) denotes the product in Eq.10 except for the

factors containing u or z. According to the conjugate prior

of the distribution employed, its posterior q(un|k) should

follow Gamma distribution, i.e., G(un;ωnk, τnk). Then its

posterior parameters can be updated:

ωnk =
ank +D

2
; τnk =

ank + ϕ̃nk

2
, (12)

where ϕ̃nk denotes the expectation of a Mahalanobis dis-

tance, i.e., ϕ̃nk = h(sn � T (mk))
TunkΛk(sn � T (mk))i,

and h·i represents an expectation operator. In the same man-

ner, we define ε̃nk = h[sn � xk]
TΓk[sn � xk]i, so the vari-

ational distribution q(vn|k) which follows the distribution

G(un;ωnk, τnk) can be updated as follows:

γnk =
b0 +D

2
; δnk =

b0 + ε̃nk

2
. (13)

The joint posterior of the latent assignment and the scale

variable can be obtained from the expectation of their com-

plete conditional. Through marginalization and normaliza-

tion we can acquire the expectation of znk:

hznki =
q(znk = 1)

PK+K0

k=1 q(znk = 1)
. (14)

2.2.2 VB-M: Derivation of the model parameters

The sample size αk of mixing proportion π is updated:

αk = α0 +

K+K0
X

k=1

hzzki. (15)

The posterior parameters of outlier mixtures are written as:

ζ̂ = ζ0 +

N
X

n=1

hznji,

ε̂ = ε0 +
N
X

n=1

hznji,

η̂ =
1

ζ̂

⇥

ζ0η0 +

N
X

n=1

hznjisn
⇤

,

β̂�1 = β̂�1
0 +

1

ζ̂

⇥

ζ0η0η
T

0 + ShΦkiS
T
⇤

,

(16)

where Φk = d([z1k, z2k, ..., zNk]), and for K + 1  k 
K +K0, the function d(·) converts a vector into a diagonal

matrix. The posterior parameters of transition mixtures are

updated as follows:

ρk = ρ0 +
1

2

N
X

n=1

hznki,

φk = φ0 +
1

2

N
X

n=1

Cnkh[sn � T (mk)]
T [sn � T (mk)]i.

(17)

2.3. Non-conjugate derivation for transformation

We first consider the derivation for the non-rigid trans-

formation which, according to the Riesz representation the-

orem [28], can be expressed as a sum form, i.e., T (M) =
M + GB, by constructing a Gaussian radial basis func-

tion (GRBF), i.e., Gij(M) = exp(�1/2κ2 kmi �mjk
2
2).

Then, the problem is converted to solve coefficient matrix

B for GRBF as a result of this representation. Secondly, we

regularize the transformation by imposing a non-conjugate

prior thereon as constraint so that the points in transition

mixture can move coherently to preserve their global struc-

ture, i.e., ln p(T ) = λ/2Tr(BTGB). Finally, we can obtain

the posterior of T that is shown as below:

ln q(T ) / �
1

2

N
X

n=1

K
X

k=1

hznkiϕ̃nk �
λ

2
ln p(T ), (18)

where Tr(·) denotes the trace, parameter κ (default set to

3) controls the spatial smoothness, and parameter λ (default

set to 2) controls the regularization intensity. Note that the

independent items of transformation are omitted. Besides,

the posterior distribution of T is concave and symmetric, so

its mode that is also the only existing extreme point, equals

to its mean. Therefore, it is unnecessary to bring a specific

parametric constraint to the functional family of the trans-

formation, so the optimal solution of the matrix B, can be

obtained by taking partial derivative on the both sides of

Eq.18:

B = [d(C1N )�1CS �M][G + λd(C1N )�1]�1, (19)
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Figure 2. This figure shows the results of six tests. The initial position of model points and scene points are denoted by ’+’ and ’o’, respec-

tively. Transition and outlier mixtures are represented by circle and ellipse which are colored according to estimated mixing proportion

q(π).

where 1d denotes the d dimensional identity vector. And we

define the matrix with entry Cnk = hznkihunki. As for the

transformation confirmed to be rigid/affine, it is also easy

to derive them in terms of [19], and their derivations are

rarely related to our contributions, so the updating for them

is omitted. Besides, it is worth noting that the matrix C is

the equivalent of the probability matrix P given in [19].

2.4. Two phases transformation and prior annealing

The Variational Bayesian scheme with deterministic

annealing technology achieves the penalization for low-

entropy distributions in advance, and then cooling temper-

ature through slowly relaxing the intensity of penalty is to

re-weight the balance between them. An appropriate cool-

ing schedule employs a series of stages for decreasing tem-

perature realizes the refinement of transformation. Because

the differential entropy is proportional to the value of co-

variance, this value can be a measurement of the uncertain-

ty of correspondences. Specifically, in a temperature stage

the prior matrixes on precisions, i.e., φ0, can promote the

convergency for algorithm globally. In addition, the two-

phases transformation is embedded into a cooling schedule,

(i.e., φ0 := 100, 50, 30, 10, 1), each value of φ0 iterating

100 times. The priors on local variables have an impact on

re-weighting all correspondences. Thus, the prior of each

scale variable (u0) is set in terms of local context of every

possible correspondence so better express the existing local

feature detector, e.g., shape context [2, 11], sift [13] and C-

NN based detectors [31], etc. Furthermore, to achieve the

switch of the two-phases transformation, the rigid transfor-

mation is used to capture the global tendency in the first 200

iterations, and the feasible non-rigid transformation is sub-

sequently used to speed up convergence and then obtains

a more accurate result. We can summarize our algorithm

using a pseudocode, as shown in 11.

3. Experimental Results

Both the point set and image registration examples are

carried out to compare our method with five state-of-the-art

methods [8, 14, 20, 27, 35]. Besides, the image stitching ex-

amples are provided to verify the validity of our method.

The experimental datasets consist of five types: (a) the syn-

thetic point sets are provided from the TPS-RPM [4] and

Algorithm 1: Robust Variational Bayesian point

set registration.

input : M = {mj}
J
j=1, S = {sn}

N
n=1, ∆

initialise: ρ0,φ0, ε0,β0, η, ζ0, a0, b0
1 repeat

2 anneal φ0, ak and bk;

3 VB E-step:

4 update q(U|Z) by Eq.12;

5 update q(V|Z) by Eq.13;

6 infer the assignment variable Z by Eq.14;

7 VB M-step:

8 update q(π) by Eq.15;

9 update q(X ) and q(Γ) by Eq.16;

10 calculate T by Eq.19;

11 until the ELBO in Eq.8 increases less than ∆;

CPD [20] for point set registration, (b) the 3D motion hu-

man tracking is consistent with [27], (c) the Graffiti set is

provide by the Oxford data set, the remote sensing image

and hyper-spectral and visible image are provided from RS

dataset, (d) the transerse plain brain MRI and the retinal

and the fingerprint images are provide by Zhang et al. [36],

and (e) the image stitching data are downloaded from 720

cloud1. All experiments are implemented in MATLAB on a

laptop with a 2.90GHz Intel Core CPU and a 16GB RAM.

3.1. Evaluation setting

Three general experimental evaluation methods demon-

strate the performance of our method: (I) In the point set

registration, we follow the same assessment criteria in [34];

(II) In the 3D motion tracking point set registration, we fol-

low the same assessment criteria in [26]; (III) In the image

registration, we follow the same assessment criteria in [14].

3.2. Point registration experiments

We firstly demonstrate the performance of our algorith-

m under six kinds of cases. As shown in Fig. 2, the first

column is the registration example of non-rigid deforma-

tion. In the second column, both model and scene miss 21
points. The mixing proportion is re-weighted after learning,

and then the missing components are correctly identified

1The 720 cloud platform is available at https://720yun.com/.
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with small mixing proportion. Besides, anisotropic Gaus-

sian components fit outliers distribution and thus weaken

the interference of disordered outliers. In the third column,

the registration example of noise shows that Gaussian com-

ponents with identical covariances is not easily collapse for

noised scene points. In the fourth column, the registration

example of scaling and rotation with uniform outliers is test-

ed. In the fifth column, the registration example of nonuni-

form outliers is demonstrated. In the last column, we test

the performance of our method on the 3D rabbit which in-

cludes double nonuniform outliers.

The nine synthesized contour data sets, Chinese char-

acter, hand, fish1, line, horse, face, heart, fish2 and but-

terfly, each of which respectively contains 105, 302, 98,

60, 198, 317,96, 91 and 172 points are used. The aver-

age performances on deformation, missing, outlier, rota-

tion, outlier+deformation 8, outlier+rotation ±70�, outli-

er+missing 0.5, missing+deformation 8, missing+rotation

±70� and missing+outlier 1 are shown in Fig. 3. We follow
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Figure 3. Comparison of our method against five state-of-the-art

methods including MA-L2E, CPD, VBPSM,GMMREG and GL-

CATE on nine point sets and showcase of the average runtime of

our method for different outlier levels.

the experimental settings as in [34]. Meanwhile, We also

test the average runtime of MA-L2E, GMMREG, VBPSM,

CPD, GL-CATE and our method on Outlier 0.4, Outlier 1.6,

Outlier 2.8 and Outlier 4 using fish 1 (98 points). In addi-

tion, the point set registration examples of deformation(D),

rotation(R), missing(M), outliers(O), deformation and out-

liers(D,O), deformation and rotation(D,R), deformation and

missing(D,M), outliers and rotation(O,R) and rotation and

missing(R,M) are demonstrated in Fig. 4.

3.3. 3D human motion capture registration

We test the performance of our method on 3D human

motion tracking compared with others. There are 450

frames and 42 markers on the body of experimenter, and

their error analysis are provided in Fig. 5. Experimental

Table 1. The comparison of RMSE, MAE and SD for five methods

in GID dataset. The percentage of each unit is averaged. The best

results are identified in bold.

Method LLT VFC CPD Yang et al. Ours

RMSE 43.27 54.51 87.33 11.85 3.11

MAE 49.36 61.63 99.34 13.92 4.41

SD 35.79 39.20 71.45 9.76 1.39

results demonstrate that our method achieves better perfor-

mances than state-of-the-art methods.
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Figure 5. Registration performance of the 3D human motion cap-

ture. (a): original data, (b): comparison of mean absolute error

and (c): comparison of the standard deviation.

3.4. Image registration experiments

Image registration examples including the graf image

registration, the remote sensing image registration, the

transerse plain brain MRI image registration, the hyperspec-

tral and visible image registration, retinal image registration

and fingerprint image registration of our method are pro-

vided in Fig. 6. Meanwhile, the root mean square error

(RMSE), the max error (MAE) and the standard deviation

(SD) are provided in Table 1. Our method achieves promi-

nent registration results on images with small overlapping

regions and large viewpoint changes. Image stitching ex-

amples including the mongolian yurt image stitching and

the Leshan Buddha image stitching are provided in Fig. 7.

4. Conclusion

In this work, we employ TLMM to address the issues of

mixing correspondences and outliers under the Variation-

al Bayesian framework, and improve the optimization of

a constructed Bayesian network by a tree-structured Varia-

tional inference which favors a tighter lower bound that the

obtained variational distributions are more expressive. Ex-

perimental results demonstrate that our approach achieves

favorable performances.
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Figure 4. Registration examples of the ten scenarios are Chinese character, hand, fish 1, line, horse, face, heart, fish 2 and butterfly,

respectively. From the first column to the fourth column: deformation(8), rotation(85�), missing(0.5) and outlier(3). From the fifth

column to the last column: deformation and outlier(8+2), deformation and rotation(8+85�), deformation and missing(8+0.6), missing and

rotation(0.8+85�) and outlier and missing(2+0.5).

(c) Transerse plain brain MRI image registration 

(e) Retinal image registration (f) Fingerprint image registration

(d) Hyperspectral and visible image registration

(a) Graf image registration (b) Remote sensing image registration 

Figure 6. Image registration examples. (a)-(f): From the first column to the third column, the sensed image, the reference image and the

checkboard image.

Figure 7. Image stitching examples. Top Row: Mongolian yurt image stitching. Bottom Row: Leshan Buddha image stitching.
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