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Abstract

The non-local module works as a particularly useful

technique for semantic segmentation while criticized for

its prohibitive computation and GPU memory occupation.

In this paper, we present Asymmetric Non-local Neural

Network to semantic segmentation, which has two promi-

nent components: Asymmetric Pyramid Non-local Block

(APNB) and Asymmetric Fusion Non-local Block (AFNB).

APNB leverages a pyramid sampling module into the non-

local block to largely reduce the computation and memory

consumption without sacrificing the performance. AFNB is

adapted from APNB to fuse the features of different levels

under a sufficient consideration of long range dependencies

and thus considerably improves the performance. Extensive

experiments on semantic segmentation benchmarks demon-

strate the effectiveness and efficiency of our work. In par-

ticular, we report the state-of-the-art performance of 81.3

mIoU on the Cityscapes test set. For a 256 × 128 input,

APNB is around 6 times faster than a non-local block on

GPU while 28 times smaller in GPU running memory occu-

pation. Code is available at: https://github.com/

MendelXu/ANN.git.

1. Introduction

Semantic segmentation is a long-standing challenging

task in computer vision, aiming to predict pixel-wise se-

mantic labels in an image accurately. This task is ex-

ceptionally important to tons of real-world applications,

such as autonomous driving [27, 28], medical diagnosing

[51, 52], etc. In recent years, the developments of deep

neural networks encourage the emergence of a series of

works [1, 5, 18, 26, 40, 42, 46]. Shelhamer et al. [26]

proposed the seminal work called Fully Convolutional Net-

work (FCN), which discarded the fully connected layer to

support input of arbitrary sizes. Since then, a lot of works

[5, 18] were inspired to manipulate FCN techniques into

deep neural networks. Nonetheless, the segmentation accu-

racy is still far from satisfactory.
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Sample Sample

(a) Non-local Block (b) Asymmetric Non-local Block

Figure 1: Architecture of a standard non-local block (a) and the asymmet-

ric non-local block (b). N = H ·W while S ≪ N .
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Figure 2: GPU time ( ≥ 1 ms) comparison of different operations between

a generic non-local block and our APNB. The last bin denotes the sum of

all the time costs. The size of the inputs for these two blocks is 256×128.

Some recent studies [20, 33, 46] indicate that the perfor-

mance could be improved if making sufficient use of long

range dependencies. However, models that solely rely on

convolutions exhibit limited ability in capturing these long

range dependencies. A possible reason is the receptive field

of a single convolutional layer is inadequate to cover cor-

related areas. Choosing a big kernel or composing a very

deep network is able to enlarge the receptive field. However,

such strategies require extensive computation and parame-

ters, thus being very inefficient [43]. Consequently, several

works [33, 46] resort to use global operations like non-local

means [2] and spatial pyramid pooling [12, 16].

In [33], Wang et al. combined CNNs and traditional non-

local means [2] to compose a network module named non-

local block in order to leverage features from all locations

in an image. This module improves the performance of

existing methods [33]. However, the prohibitive compu-
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tational cost and vast GPU memory occupation hinder its

usage in many real applications. The architecture of a com-

mon non-local block [33] is depicted in Fig. 1(a). The block

first calculates the similarities of all locations between each

other, requiring a matrix multiplication of computational

complexity O(CH2W 2), given an input feature map with

size C ×H ×W . Then it requires another matrix multipli-

cation of computational complexity O(CH2W 2) to gather

the influence of all locations to themselves. Concerning the

high complexity brought by the matrix multiplications, we

are interested in this work if there are efficient ways to solve

this without sacrificing the performance.

We notice that as long as the outputs of the key branch

and value branch hold the same size, the output size of the

non-local block remains unchanged. Considering this, if

we could sample only a few representative points from key

branch and value branch, it is possible that the time com-

plexity is significantly decreased without sacrificing the per-

formance. This motivation is demonstrated in Fig. 1 when

changing a large value N in the key branch and value branch

to a much smaller value S (From (a) to (b)).

In this paper, we propose a simple yet effective non-

local module called Asymmetric Pyramid Non-local Block

(APNB) to decrease the computation and GPU memory

consumption of the standard non-local module [33] with

applications to semantic segmentation. Motivated by the

spatial pyramid pooling [12, 16, 46] strategy, we propose to

embed a pyramid sampling module into non-local blocks,

which could largely reduce the computation overhead of

matrix multiplications yet provide substantial semantic fea-

ture statistics. This spirit is also related to the sub-sampling

tricks [33] (e.g., max pooling). Our experiments suggest

that APNB yields much better performance than those sub-

sampling tricks with a decent decrease of computations. To

better illustrate the boosted efficiency, we compare the GPU

times of APNB and a standard non-local block in Fig. 2, av-

eraging the running time of 10 different runs with the same

configuration. Our APNB largely reduces the time cost on

matrix multiplications, thus being nearly five times faster

than a non-local block.

Besides, we also adapt APNB to fuse the features of

different stages of a deep network, which brings a con-

siderable improvement over the baseline model. We call

the adapted block as Asymmetric Fusion Non-local Block

(AFNB). AFNB calculates the correlations between every

pixel of the low-level and high-level feature maps, yielding

a fused feature with long range interactions. Our network is

built based on a standard ResNet-FCN model by integrating

APNB and AFNB together.

The efficacy of the proposed network is evaluated on

Cityscapes [9], ADE20K [49] and PASCAL Context [21],

achieving the state-of-the-art performance 81.3%, 45.24%

and 52.8%, respectively. In terms of time and space ef-

ficiency, APNB is around 6 times faster than a non-local

block on a GPU while 28 times smaller in GPU running

memory occupation.

2. Related Work

In this section, we briefly review related works about se-

mantic segmentation or scene parsing. Recent advances fo-

cus on exploring the context information and can be roughly

categorized into five directions:

Encoder-Decoder. A encoder generally reduces the spa-

tial size of feature maps to enlarge the receptive field. Then

the encoded codes are fed to the decoder, which is respon-

sible for recovering the spatial size of the prediction maps.

Long et al. [26] and Noh et al. [22] used deconvolutions

to perform the decoding pass. Ronneberger et al. [25] in-

troduced skip-connections to bridge the encoding features

to their corresponding decoding features, which could en-

rich the segmentation output with more details. Zhang et

al. [42] introduced a context encoding module to predict

semantic category importance and selectively strengthen or

weaken class-specific feature maps.

CRF. As a frequently-used operation that could leverage

context information in machine learning, Conditional Ran-

dom Field [15] meets its new opportunity in combining with

CNNs for semantic segmentation [4, 5, 6, 48, 31]. CRF-

CNN [48] adopted this strategy, making the deep network

end-to-end trainable. Chandra et al. [4] and Vemulapalli

et al. [31] integrated Gaussian Conditional Random Fields

into CNNs and achieved relatively good results.

Different Convolutions. Chen et al. [5, 6] and Yu et al.

[40] adapted generic convolutions to dilated ones, making

the networks sensitive to global context semantics and thus

improves the performance. Peng et al. [24] found large

kernel convolutions help relieve the contradiction between

classification and localization in segmentation.

Spatial Pyramid Pooling. Inspired by the success of spa-

tial pyramid pooling in object detection [12], Chen et al.

[6] replaced the pooling layers with dilated convolutions of

different sampling weights and built an Atrous Spatial Pyra-

mid Pooling layer (ASPP) to account for multiple scales ex-

plicitly. Chen et al. [8] further combined ASPP and the

encoder-decoder architecture to leverage the advantages of

both and boost the performance considerably. Drawing in-

spiration from [16], PSPNet [46] conducted spatial pyramid

pooling after a specific layer to embed context features of

different scales into the networks. Recently, Yang et al. [36]

pointed out the ASPP layer has a restricted receptive field

and adapted ASPP to a densely connected version, which

helps to overcome such limitation.

Non-local Network. Recently, researchers [20, 33, 46] no-

ticed that skillful leveraging the long range dependencies
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Figure 3: Overview of the proposed Asymmetric Non-local Neural Network.

brings great benefits to semantic segmentation. Wang et

al. [33] proposed a non-local block module combining non-

local means with deep networks and showcased its efficacy

for segmentation.

Different from these works, our network uniquely incor-

porates pyramid sampling strategies with non-local blocks

to capture the semantic statistics of different scales with

only a minor budget of computation, while maintaining the

excellent performance as the original non-local modules.

3. Asymmetric Non-local Neural Network

In this section, we firstly revisit the definition of non-

local block [33] in Sec. 3.1, then detail the proposed Asym-

metrical Pyramid Non-local Block (APNB) and Asym-

metrical Fusion Non-local Block (AFNB) in Sec. 3.2 and

Sec. 3.3, respectively. While APNB aims to decrease the

computational overhead of non-local blocks, AFNB im-

proves the learning capacity of non-local blocks thereby im-

proving the segmentation performance.

3.1. Revisiting Nonlocal Block

A typical non-local block [33] is shown in Fig. 1. Con-

sider an input feature X ∈ RC×H×W , where C, W , and

H indicate the channel number, spatial width and height,

respectively. Three 1 × 1 convolutions Wφ, Wθ, and Wγ

are used to transform X to different embeddings φ ∈

RĈ×H×W , θ ∈ RĈ×H×W and γ ∈ RĈ×H×W as

φ = Wφ(X ), θ = Wθ(X ), γ = Wγ(X ), (1)

where Ĉ is the channel number of the new embeddings.

Next, the three embeddings are flattened to size Ĉ × N ,

where N represents the total number of the spatial loca-

tions, that is, N = H · W . Then, the similarity matrix

V ∈ RN×N is calculated by a matrix multiplication as

V = φT × θ. (2)

Afterward, a normalization is applied to V to get a unified

similarity matrix as

~V = f(V ). (3)

According to [33], the normalizing function f can take

the form from softmax, rescaling, and none. We choose

softmax here, which is equivalent to the self-attention

mechanism and proved to work well in many tasks such as

machine translation [30] and image generation [43]. For

every location in γ, the output of the attention layer is

O = ~V × γT, (4)

where O ∈ RN×Ĉ . By referring to the design of the non-

local block, the final output is given by

Y = Wo(O
T) +X or Y = cat(Wo(O

T), X), (5)

where Wo, also implemented by a 1×1 convolution, acts as

a weighting parameter to adjust the importance of the non-

local operation w.r.t. the original input X and moreover, re-

covers the channel dimension from Ĉ to C.

3.2. Asymmetric Pyramid Nonlocal Block

The non-local network is potent to capture the long range

dependencies that are crucial for semantic segmentation.

However, the non-local operation is very time and mem-

ory consuming compared to normal operations in the deep

neural network, e.g., convolutions and activation functions.

Motivation and Analysis. By inspecting the general com-

puting flow of a non-local block, one could clearly find

that Eq. (2) and Eq. (4) dominate the computation. The

time complexities of the two matrix multiplications are both

O(ĈN2) = O(ĈH2W 2). In semantic segmentation, the

output of the network usually has a large resolution to retain

detailed semantic features [6, 46]. That means N is large
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Figure 4: Demonstration of the pyramid max or average sampling process.

(for example in our training phase, N = 96× 96 = 9216).

Hence, the large matrix multiplication is the main cause

of the inefficiency of a non-local block (see our statistic in

Fig. 2).

A more straightforward pipeline is given as

RN×Ĉ ×RĈ×N

︸ ︷︷ ︸

Eq.(2)

→ RN×N ×RN×Ĉ

︸ ︷︷ ︸

Eq.(4)

→ RN×Ĉ . (6)

We hold a key yet intuitive observation that by changing N

to another number S (S ≪ N ), the output size will remain

the same, as

RN×Ĉ ×RĈ×S → RN×S ×RS×Ĉ → RN×Ĉ . (7)

Returning to the design of the non-local block, changing

N to a small number S is equivalent to sampling several

representative points from θ and γ instead of feeding all

the spatial points, as illustrated in Fig. 1. Consequently, the

computational complexity could be considerably decreased.

Solution. Based on the above observation, we propose to

add sampling modules Pθ and Pγ after θ and γ to sample

several sparse anchor points denoted as θP ∈ RĈ×S and

γP ∈ RĈ×S , where S is the number of sampled anchor

points. Mathematically, this is computed by

θP = Pθ(θ), γP = Pγ(γ). (8)

The similarity matrix VP between φ and the anchor points

θP is thus calculated by

VP = φT × θP . (9)

Note that VP is an asymmetric matrix of size N × S. VP

then goes through the same normalizing function as a stan-

dard non-local block, giving the unified similarity matrix
~VP . And the attention output is acquired by

OP = ~VP × γP
T, (10)

where the output is in the same size as that of Eq. (4). Fol-

lowing non-local blocks, the final output YP ∈ RC×N is

given as

YP = cat(Wo(OP
T), X). (11)

The time complexity of such an asymmetric matrix

multiplication is only O(ĈNS), significantly lower than

O(ĈN2) in a standard non-local block. It is ideal that S

should be much smaller than N . However, it is hard to en-

sure that when S is small, the performance would not drop

too much in the meantime.

As discovered by previous works [16, 46], global and

multi-scale representations are useful for categorizing scene

semantics. Such representations can be comprehensively

carved by Spatial Pyramid Pooling [16], which contains

several pooling layers with different output sizes in par-

allel. In addition to this virtue, spatial pyramid pooling

is also parameter-free and very efficient. Therefore, we

embed pyramid pooling in the non-local block to enhance

the global representations while reducing the computational

overhead.

By doing so, we now arrive at the final formulation of

Asymmetric Pyramid Non-local Block (APNB), as given in

Fig. 3. As can be seen, our APNB derives from the design

of a standard non-local block [33]. A vital change is to add

a spatial pyramid pooling module after θ and γ respectively

to sample representative anchors. This sampling process is

clearly depicted in Fig. 4, where several pooling layers are

applied after θ or γ and then the four pooling results are

flattened and concatenated to serve as the input to the next

layer. We denote the spatial pyramid pooling modules as

Pn
θ and Pn

γ , where the superscript n means the width (or

height) of the output size of the pooling layer (empirically,

the width is equal to the height). In our model, we set n ⊆
{1, 3, 6, 8}. Then the total number of the anchor points is

S = 110 =
∑

n∈{1,3,6,8}

n2. (12)

As a consequence, the complexity of our asymmetric matrix

multiplication is only

T =
S

N
(13)

times of the complexity of the non-local matrix multiplica-

tion. When H and W are both equal to 96, the asymmetrical

matrix multiplication saves us 96×96
110

≈ 84 times of com-

putation (see the results in Fig. 2). Moreover, the spatial

pyramid pooling gives sufficient feature statistics about the

global scene semantic cues to remedy the potential perfor-

mance deterioration caused by the decreased computation.

We will analyze this in our experiments.

3.3. Asymmetric Fusion Nonlocal Block

Fusing features of different levels are helpful to seman-

tic segmentation and object tracking as hinted in [16, 18,

26, 41, 45, 50]. Common fusing operations such as addi-

tion/concatenation, are conducted in a pixel-wise and local

manner. We provide an alternative that leverages long range

dependencies through a non-local block to fuse multi-level

features, called Fusion Non-local Block.
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A standard non-local block only has one input source

while FNB has two: a high-level feature map Xh ∈
RCh×Nh and a low-level feature map Xl ∈ RCl×Nl . Nh

and Nl are the numbers of spatial locations of Xh and Xl,

respectively. Ch and Cl are the channel numbers of Xh

and Xl, respectively. Likewise, 1 × 1 convolutions Wh

and Wl are used to transform Xh and Xl to embeddings

Eh ∈ RĈ×Nh and El ∈ RĈ×Nl as

Eh = Wh(Xh), El = Wl(Xl). (14)

Then, the similarity matrix VF ∈ RNh×Nl between Eh and

El is computed by a matrix multiplication

VF = ET
h × El. (15)

We also put a normalization upon VF resulting in a unified

similarity matrix ~VF ∈ RNh×Nl . Afterward, we integrate
~VF with El through a similar matrix multiplication as Eq.

(4) and Eq. (10), written as

OF = ~VF × ET
l . (16)

The output OF ∈ RNh×Ĉ reflects the bonus of El to Eh,

which are carefully selected from all locations in El. Like-

wise, OF is fed to a 1×1 convolution to recover the channel

number to Ch. Finally, we have the output as

YF = cat(Wo(OF
T), Xh). (17)

Similar to the adaption of APNB w.r.t. the generic non-

local block, incorporating spatial pyramid pooling into FNB

could derive an efficient Asymmetric Fusion Non-local

Block (AFNB), as illustrated in Fig. 3. Inheriting from the

advantages of APNB, AFNB is more efficient than FNB

without sacrificing the performance.

3.4. Network Architecture

The overall architecture of our network is depicted in

Fig. 3. We choose ResNet-101 [13] as our backbone net-

work following the choice of most previous works [38, 46,

47]. We remove the last two down-sampling operations

and use the dilation convolutions instead to hold the feature

maps from the last two stages1 1
8

of the input image. Con-

cretely, all the feature maps in the last three stages have the

same spatial size. According to our experimental trials, we

fuse the features of Stage4 and Stage5 using AFNB. The

fused features are thereupon concatenated with the feature

maps after Stage5, avoiding situations that AFNB could not

produce accurate strengthened features particularly when

the training just begins and degrades the overall perfor-

mance. Such features, full of rich long range cues from dif-

ferent feature levels, serve as the input to APNB, which then

1We refer to the stage with original feature map size 1

16
as Stage4 and

size 1

32
as Stage5.

help to discover the correlations among pixels. As done for

AFNB, the output of APNB is also concatenated with its

input source. Finally, a classifier is followed up to produce

channel-wise semantic maps that later receive their supervi-

sions from the ground truth maps. Note we also add another

supervision to Stage4 following the settings of [46], as it is

beneficial to improve the performance.

4. Experiments

To evaluate our method, we carry out detailed experi-

ments on three semantic segmentation datasets: Cityscapes

[9], ADE20K [49] and PASCAL Context [21]. We have

more competitive results on NYUD-V2 [29] and COCO-

Stuff-10K [3] in the supplementary materials.

4.1. Datasets and Evaluation Metrics

Cityscapes [9] is particularly created for scene parsing,

containing 5,000 high quality finely annotated images and

20,000 coarsely annotated images. All images in this

dataset are shot on streets and of size 2048 × 1024. The

finely annotated images are divided into 2,975/500/1,525

splits for training, validation and testing, respectively. The

dataset contains 30 classes annotations in total while only

19 classes are used for evaluation.

ADE20K [49] is a large-scale dataset used in ImageNet

Scene Parsing Challenge 2016, containing up to 150

classes. The dataset is divided into 20K/2K/3K images

for training, validation, and testing, respectively. Different

from Cityscapes, both scenes and stuff are annotated in this

dataset, adding more challenge for participated methods.

PASCAL Context [21] gives the segmentation labels of the

whole image from PASCAL VOC 2010, containing 4,998

images for training and 5,105 images for validation. We

use the 60 classes (59 object categories plus background)

annotations for evaluation.

Evaluation Metric. We adopt Mean IoU (mean of class-

wise intersection over union) as the evaluation metric for

all the datasets.

4.2. Implementation Details

Training Objectives. Following [46], our model has two

supervisions: one after the final output of our model while

another at the output layer of Stage4. Therefore, our loss

function is composed by two cross entropy losses as

L = Lfinal + λLStage4. (18)

For Lfinal, we perform online hard pixel mining, which ex-

cels at coping with difficult cases. λ is set to 0.4.

Training Settings. Our code is based on an open source

repository for semantic segmentation [37] based on Py-
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Torch 1.0 [23]. The backbone network ResNet-101 is pre-

trained on the ImageNet [10]. We use Stochastic Gradient

Descent to optimize our network, in which we set the ini-

tial learning rate to 0.01 for Cityscapes and PASCAL Con-

text and 0.02 for ADE20K. During training, the learning

rate is decayed according to the “poly” leaning rate policy,

where the learning rate is multiplied by 1− ( iter
max iter

)power

with power = 0.9. For Cityscapes, we randomly crop out

high-resolution patches 769× 769 from the original images

as the inputs for training [7, 46]. While for ADE20K and

PASCAL Context, we set the crop size to 520 × 520 and

480× 480, respectively [42, 46]. For all datasets, we apply

random scaling in the range of [0.5, 2.0], random horizon-

tal flip and random brightness as data augmentation meth-

ods. Batch size is 8 in Cityscapes experiments and 16 in

the other datasets. We choose the cross-GPU synchronized

batch normalization in [42] or apex to synchronize the mean

and standard-deviation of batch normalization layer across

multiple GPUs. We also apply the auxiliary loss LStage4

and online hard example mining strategy in all the exper-

iments as their effects for improving the performance are

clearly discussed in previous works [46]. We train on the

training set of Cityscapes, ADE20K and PASCAL Context

for 60K, 150K, 28K iterations, respectively. All the experi-

ments are conducted using 8× Titan V GPUs.

Inference Settings. For the comparisons with state-of-the-

art methods, we apply multi-scale whole image and left-

right flip testing for ADE20K and PASCAL Context while

multi-scale sliding crop and left-right flip testing for the

Cityscapes testing set. For quick ablation studies, we

only employ single scale testing on the validation set of

Cityscapes by feeding the whole original images.

4.3. Comparisons with Other Methods

4.3.1 Efficiency Comparison with Non-local Block

As discussed in Sec. 3.2, APNB is much more efficient than

a standard non-local block. We hereby give a quantitative

efficiency comparison between our APNB and a generic

non-local block in the following aspects: GFLOPs, GPU

memory (MB) and GPU computation time (ms). In our net-

work, non-local block/APNB receives a 96× 96 (1/8 of the

769 × 769 input image patch) feature map during training

while 256× 128 (1/8 of the 2048× 1024 input image) dur-

ing single scale testing. Hence, we give relevant statistics

of the two sizes. The testing environment is identical for

these two blocks, that is, a Titan Xp GPU under CUDA 9.0

without other ongoing programs. Note our APNB has four

extra adaptive average pooling layers to count as opposed

to the non-local block while other parts are entirely identi-

cal. The comparison results are given in Tab. 2. Our APNB

is superior to the non-local block in all aspects. Enlarging

the input size will give a further edge to our APNB because

Method Input size GFLOPs GPU memory GPU time

NB 96 × 96 58.0 609 19.5

APNB 96 × 96 15.5 (↓ 42.5) 150 (↓ 459) 12.4 (↓ 7.1)

NB 256 × 128 601.4 7797 179.4

APNB 256 × 128 43.5 (↓ 557.9) 277 (↓ 7520) 30.8 (↓ 148.6)

Table 1: Computation and memory statistics comparisons between non-

local block and our APNB. The channel numbers of the input feature maps

X is C = 2048 and of the embeddings φ, φP etc. is Ĉ = 256, respec-

tively. Batch size is 1. The lower values, the better.

in Eq. (13), N is increased with a square growth while S

remains unchanged.

Besides the comparison of the single block efficiency, we

also provide the whole network efficiency comparison with

the two most advanced methods, PSANet [47] and DenseA-

SPP [36], in terms of inference time (s), GPU occupation

with batch size set to 1 (MB) and the number of parameters

(Million). According to Tab. 2, though our inference time

and parameter number are larger than DenseASPP [36], the

GPU memory occupation is obviously smaller. We attribute

this to the different backbone networks: ResNet compara-

tively contains more parameters and layers while DenseNet

is more GPU memory demanding. When comparing with

the previous advanced method PSANet [47], which shares

the same backbone network with us, our model is more ad-

vantageous in all aspects. This verifies our network is supe-

rior because of the effectiveness of APNB and AFNB rather

than just having more parameters than previous works.

Method Backbone Inf. time (s) Mem. (MB) # Param (M)

DenseASPP [36] DenseNet-161 0.568 7973 35.63

PSANet [47] ResNet-101 0.672 5233 102.66

Ours ResNet-101 0.611 3375 63.17

Table 2: Time, parameter and GPU memory comparisons based on the

whole networks. Inf. time, Mem., # Param mean inference time, GPU

memory occupation and number of parameters, respectively. Results are

averaged from feeding ten 2048 × 1024 images.

4.3.2 Performance Comparisons

Cityscapes. To compare the performance on the test set of

Cityscapes with other methods, we directly train our asym-

metric non-local neural network for 120K iterations with

only the finely annotated data, including the training and

validation sets. As shown in Tab. 3, our method outper-

forms the previous state-of-the-art methods, attaining the

performance of 81.3%. We give several typical qualitative

comparisons with other methods in Fig. 5. DeepLab-V3 [7]

and PSPNet [46] are somewhat troubled with local inconsis-

tency on large objects like truck (first row), fence (second

row) and building (third row) etc. while our method isn’t.

Besides, our method performs better for very slim objects

like the pole (fourth row) as well.

ADE20K. As is known, ADE20K is challenging due to its

various image sizes, lots of semantic categories and the gap

between its training and validation set. Even under such cir-

cumstance, our method achieves better results than EncNet
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Method Backbone Val mIoU (%)

DeepLab-V2 [6] ResNet-101 70.4

RefineNet [18] ResNet-101 X 73.6

GCN [24] ResNet-101 X 76.9

DUC [32] ResNet-101 X 77.6

SAC [44] ResNet-101 X 78.1

ResNet-38 [34] WiderResNet-38 78.4

PSPNet [46] ResNet-101 78.4

BiSeNet [38] ResNet-101 X 78.9

AAF [14] ResNet-101 X 79.1

DFN [39] ResNet-101 X 79.3

PSANet [47] ResNet-101 X 80.1

DenseASPP [36] DenseNet-161 X 80.6

Ours ResNet-101 X 81.3

Table 3: Comparisons on the test set of Cityscapes with the state-of-the-art

methods. Note that the Val column indicates whether including the finely

annotated validation set data of Cityscapes for training.

Method Backbone mIoU (%)

RefineNet [18] ResNet-152 40.70

UperNet [35] ResNet-101 42.65

DSSPN [17] ResNet-101 43.68

PSANet [47] ResNet-101 43.77

SAC [44] ResNet-101 44.30

EncNet [42] ResNet-101 44.65

PSPNet [46] ResNet-101 43.29

PSPNet [46] ResNet-269 44.94

Ours ResNet-101 45.24

Table 4: Comparisons on the validation set of ADE20K with the state-of-

the-art methods.

Method Backbone mIoU (%)

FCN-8s [26] – 37.8

Piecewise [19] – 43.3

DeepLab-V2 [6] ResNet-101 45.7

RefineNet [18] ResNet-152 47.3

PSPNet [46] ResNet-101 47.8

CCL [11] ResNet-101 51.6

EncNet [42] ResNet-101 51.7

Ours ResNet-101 52.8

Table 5: Comparisons on the validation set of PASCAL Context with the

state-of-the-art methods.

[42]. It is noteworthy that our result is better than PSPNet

[46] even when it uses a deeper backbone ResNet-269.

PASCAL Context. We report the comparison with state-

of-the-art methods in Tab. 5. It can be seen that our model

achieves the state-of-the-art performance of 52.8%. This

result firmly suggests the superiority of our method.

4.4. Ablation Study

In this section, we give extensive experiments to verify

the efficacy of our main method. We also give several de-

sign choices and show their influences on the results. All the

Method mIoU (%)

Baseline 75.8

+ NB 78.4

+ APNB 78.6

+ Common fusion 76.5

+ FNB 77.3

+ AFNB 77.1

+ Common fusion + NB 79.0

+ FNB + NB 79.7

+ AFNB + APNB (Full) 79.9

Table 6: Ablation study on the validation set of Cityscapes about APNB

and AFNB. “+ Module” means add “Module” to the Baseline model.

following experiments adopt ResNet-101 as the backbone,

trained on the fine-annotated training set of Cityscapes for

60K iterations.

Efficacy of the APNB and AFNB. Our network has two

prominent components: APNB and AFNB. The following

will evaluate the efficacy of each and integration of both.

The Baseline network is basically a FCN-like ResNet-101

network with a deep supervision branch. By adding a non-

local block (+ NB) before the classifier to the Baseline

model, the performance is improved by 2.6% (75.8% →
78.4%), as shown in Tab. 6. By replacing the normal non-

local block with our APNB (+ APNB), the performance is

slightly better (78.4% → 78.6%).

When adding a common fusion module (+ Com-

mon Fusion) from Stage4 to Stage5: Stage5 +
ReLU(BatchNorm(Conv(Stage4))) to Baseline model,

we also achieve a good improvement compared to the Base-

line (75.8% → 76.5%). This phenomenon verifies the use-

fulness of the strategy that fuses the features from the last

two stages. Replacing the common fusion module with

our proposed Fusion Non-local Block (+ FNB), the perfor-

mance is further boosted at 0.8% (76.5% → 77.3%). Like-

wise, changing FNB to AFNB (+ AFNB) reduces the com-

putation considerably at the cost of a minor performance

decrease (77.3% → 77.1%).

To study whether the fusion strategy could further boost

the highly competitive + NB model, we add Common fusion

to + NB model (+ Common fusion + NB) and achieve 0.6%

performance improvement (78.4% → 79.0%). Using both

the fusion non-local block and typical non-local block (+

FNB + NB) can improve the performance of 79.7%. Using

the combination of APNB and AFNB, namely our asym-

metric non-local neural network (+ AFNB + APNB (Full)

in Fig. 3), achieves the best performance of 79.9%, demon-

strating the efficacy of APNB and AFNB.

Selection of Sampling Methods. As discussed in Sec. 3.2,

the selection of the sampling module has a great impact on

the performance of APNB. Normal sampling strategies in-

clude: max, average and random. When integrated into
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Images Ground truthPSPNet DeepLabV3 Ours
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Traffic light
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Fence

Wall

Building

Sidewalk

Road

Figure 5: Qualitative comparisons with DeepLab-V3 [7] and PSPNet [46]. The red circles mark where our model is particularly superior to other methods.

spatial pyramid pooling, there goes another three strategies:

pyramid max, pyramid average and pyramid random. We

thereupon conduct several experiments to study their effects

by combining them with APNB. As shown in Tab. 7, aver-

age sampling performs better than max and random sam-

pling, which conforms to the conclusion drawn in [46]. We

reckon it is because the resulted sampling points are more

informative by receiving the provided information of all the

input locations inside the average sampling kernel, when

compared to the other two. This explanation could also be

transferred to pyramid settings. Comparing average sam-

pling and pyramid sampling under the same number of an-

chor points (third row vs. the last row), we can surely find

pyramid pooling is a very key factor that contributes to the

significant performance boost.

Influence of the Anchor Points Numbers. In our case, the

output sizes of the pyramid pooling layers determine the to-

tal number of anchor points, which influence the efficacy

of APNB. To investigate the influence, we perform the fol-

lowing experiments by altering the pyramid average pool-

ing output sizes: (1, 2, 3, 6), (1, 3, 6, 8) and (1, 4, 8, 12). As

shown in Tab. 7, it is clear that more anchor points improve

the performance with the cost of increasing computation.

Considering this trade-off between efficacy and efficiency,

we opt to choose (1, 3, 6, 8) as our default setting.

5. Conclusion

In this paper, we propose an asymmetric non-local neu-

ral network for semantic segmentation. The core contribu-

tion of asymmetric non-local neural network is the asym-

metric pyramid non-local block, which can dramatically

improve the efficiency and decrease the memory consump-

tion of non-local neural blocks without sacrificing the per-

formance. Besides, we also propose asymmetric fusion

Sampling method n S mIoU (%)

random 15 225 78.2

max 15 225 78.1

average 15 225 78.4

pyramid random 1,2,3,6 50 78.8

pyramid max 1,2,3,6 50 79.1

pyramid average 1,2,3,6 50 79.3

pyramid average 1,3,6,8 110 79.9

pyramid average 1,4,8,12 225 80.1

Table 7: Ablation study on the validation set of Cityscapes in terms of

sampling methods and anchor point number. “n” column represents the

output width/height of a pooling layer. Note when implementing random

and pyramid random, we use the numpy.random.choice function to ran-

domly sample n2 anchor points from all possible locations. “S” column

means the total number of the anchor points.

non-local block to fuse features of different levels. The

asymmetric fusion non-local block can explore the long

range spatial relevance among features of different levels,

which demonstrates a considerable performance improve-

ment over a strong baseline. Comprehensive experimental

results on the Cityscapes, ADE20K and PASCAL Context

datasets show that our work achieves the new state-of-the-

art performance. In the future, we will apply asymmetric

non-local neural networks to other vision tasks.
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