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Abstract

Recent advances in domain adaptation show that deep

self-training presents a powerful means for unsupervised

domain adaptation. These methods often involve an itera-

tive process of predicting on target domain and then taking

the confident predictions as pseudo-labels for retraining.

However, since pseudo-labels can be noisy, self-training

can put overconfident label belief on wrong classes, leading

to deviated solutions with propagated errors. To address the

problem, we propose a confidence regularized self-training

(CRST) framework, formulated as regularized self-training.

Our method treats pseudo-labels as continuous latent vari-

ables jointly optimized via alternating optimization. We

propose two types of confidence regularization: label reg-

ularization (LR) and model regularization (MR). CRST-LR

generates soft pseudo-labels while CRST-MR encourages

the smoothness on network output. Extensive experiments

on image classification and semantic segmentation show

that CRSTs outperform their non-regularized counterpart

with state-of-the-art performance. The code and models of

this work are available at https://github.com/yzou2/CRST.

1. Introduction

Transferring knowledge learned by deep neural networks

from label-rich domains to a new target domain is an impor-

tant but challenging problem. Such domain change natural-

ly occurs in many applications, such as synthetic data train-

ing [42, 46] and simulation for robotics/autonomous driv-

ing. The existence of cross-domain differences often leads

to considerably decreased model performance, and unsuper-

vised domain adaptation (UDA) aims to address this prob-

lem by adapting source model to target domain with the aid

of unlabeled target data. To this end, a predominant stream

of adversarial learning based UDA methods have been pro-

posed to reduce the discrepancy between source and target

domain features [9, 10, 23, 26, 34, 38, 44, 50, 53, 60].
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Figure 1: Illustration of proposed confidence regularization.

(a) Self-training without confidence regularization gener-

ates and retrains with hard pseudo-labels, resulting in sharp

network output. (b) Label regularized self-training intro-

duces soft pseudo-labels, therefore enabling outputs to be

smooth. (c) Model regularized self-training also retrains

with hard pseudo-labels, but incorporates a regularizer to

directly promote output smoothness.

More recently, self-training with networks emerged as a

promising alternative towards domain adaptation [4, 5, 25,

29, 49, 54, 69]. Self-training iteratively generates a set of

one-hot (or hard) pseudo-labels corresponding to large se-

lection scores (i.e., prediction confidence) in target domain,

and then retrains network based on these pseudo-labels with

target data. Recently, [69] proposes class-balanced self-

training (CBST), formulating self-training as unified loss

minimization with pseudo-labels that can be solved in an

end-to-end manner. Instead of reducing domain gap by min-

imizing both the task loss and domain adversarial loss, the

self-training loss implicitly encourages cross-domain fea-

ture alignment for each class by learning from both labeled

source data and pseudo-labeled target data.

Early work [29] shows that the essence of deep self-

training is entropy minimization - pushing network output

to be as sharp as hard pseudo-label. However, 100% accu-

racy cannot always be guaranteed for pseudo-labels. Trust-

ing all selected pseudo-labels as “ground truth” by encoding

them as hard labels can lead to overconfident mistakes and
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propagated errors. In addition, semantic labels of natural

images can be highly ambiguous. Taking a sample image

from VisDA17 [42] (see Fig. 1) as an example: both person

and car dominate significant portions of this image. Enforc-

ing a model to be very confident on only one of the class

during training can hurt the learning behavior [2], particu-

larly within the under-determined context of UDA.

The above issues motivate us to prevent infinite entropy

minimization in self-training via confidence regularization.

A natural idea is to generate soft pseudo-label that redis-

tributes a certain amount of confidence to other classes.

Learning with soft pseudo-labels attenuates the misleading

effect brought by incorrect or ambiguous supervision. Al-

ternatively, to achieve the same goal, one can also encour-

age the smoothness of output probabilities and prevent over-

confident prediction in network training. Both ideas are il-

lustrated in Fig. 1. At high-level, the major goal of CRST is

still aligned with entropy minimization. However, the con-

fidence regularization serves as a safety measure to prevent

infinite entropy minimization and degraded performance.

In this work, we choose CBST [69] as a state-of-the-art

non-regularized self-training baseline, and propose a vari-

ety of specific confidence regularizers to comprehensively

validate CRST. Our contributions are listed as follows:

• In section 3, We generalize CBST to continuous CBST

as a necessary preliminary for introducing our CRST,

where we relax the feasible space of pseudo-labels

from one-hot vectors to a probability simplex,

• In section 4.1, we introduce label regularized self-

training (CRST-LR). CRST-LR generates soft pseudo-

labels for self-training. Specifically, we propose a la-

bel entropy regularizer (LRENT). In section 4.2, we

introduce model regularized self-training (CRST-MR).

CRST-MR introduces an output smoothing regularizer

to network training. Specifically, we introduce three

model regularizers, including L2 (MRL2), entropy (M-

RENT), and KLD (MRKLD).

• In section 5, we investigate theoretical properties of

CRST, and prove that CRST is equivalent to regular-

ized Classification Maximum Likelihood which can

be solved via Classification Expectation Maximization

(CEM). We also prove the convergence of CRST, and

show that LRENT-regularized pseudo-label is equiva-

lent to a generalized softmax with temperature [22].

• In section 6, we comprehensively evaluate CRST

on multiple domain adaptation tasks, including im-

age classification (visDA17/Office-31) and seman-

tic segmentation (GTA5/SYNTHIA → Cityscapes).

We demonstrate state-of-the-art or competitive results

from the proposed framework, and discuss the com-

parison between different regularizers in section 7. We

also show that LR+MR may benefit self-training.

2. Related works

Self-training: Self-training has been widely investigated

in semi-supervised learning [65, 1, 18]. An overview of

different self-training techniques is presented in [59]. Re-

cent interests in self-training were revitalized with deep

neural networks [29]. A subtle difference between self-

training on fixed features and deep self-training is that the

latter involves the learning of embeddings which renders

greater flexibility towards domain alignment than classifier-

level adaptation. Within this context, [69] proposed class-

balanced self-training (CBST) and achieved state-of-the-art

performance in cross-domain semantic segmentation.

Domain adaptation: (Unsupervised) domain adaptation

(UDA) has recently gained considerable interests. For U-

DA with deep networks, a major principle is to let the net-

work learn domain invariant embeddings by minimizing the

cross-domain difference of feature distributions with cer-

tain criteria. Examples of these methods include maximum

mean discrepancy (MMD) [33, 62], deep correlation align-

ment (CORAL) [56], sliced Wasserstein discrepancy [28],

adversarial learning at input-level [16, 24, 68], feature lev-

el [8, 14, 23, 31, 50, 61, 64], output space level [60], and

a variety of follow up works [10, 34, 44, 53] etc. Open set

domain adaptation [40, 52] focuses on the problem where

classes are not totally shared between source and target do-

mains. More recently, there have been multiple deep self-

training/pseudo-label based methods that are proposed for

domain adaptation [4, 20, 25, 49, 54, 69].

Semi-supervised learning (SSL): There exist a natural

strong connection between domain adaptation and semi-

supervised learning with their problem definitions. A se-

ries of teacher-student based approaches have been recently

proposed for both SSL [27, 58, 37] and UDA problems[13].

Noisy label learning: Self-training can also be regard-

ed as noisy label learning [39, 45, 55, 66] due to potential

mistakes on pseudo-labels. [45] introduced a bootstrapping

method for noisy label learning. [55] proposed an extra

noise layer into the network adapting the network outputs

to match the noisy label distribution.

Network regularization: Regularization is a typical ap-

proach in supervised neural network training to avoid over-

fitting. Besides the standard weight decay, typical regu-

larization techniques include label smoothing [17, 57, 32],

network output regularization [43], knowledge distillation

[22]. Yet few principled research have considered regular-

ized self-training within the context of SSL/UDA.

3. Continuous class-balanced self-training

In this section, we review the class-balanced self-training

(CBST) [69] and reformulate it as a continuous frame-

work. Specifically, for an UDA problem, we have access

to the labeled source samples (xs,ys) from source domain
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{XS ,YS}, and target samples xt from unlabeled target do-

main data XT . Any target label ŷt = (ŷ
(1)
t , ..., ŷ

(K)
t ) from

ŶT is unknown. K is the total number of classes. We define

the network weights as w and p(k|x;w) as the classifier’s

softmax probability for class k.

CBST is a self-training framework that performs join-

t network learning and pseudo-label estimation under a u-

nified loss minimization problem. The pseudo-labels are

treated as discrete learnable latent variables being either

one-hot or all-zero. Here, we first relax the pseudo-label

variables to continuous domain, as shown in Eq. (1):

min
w,ŶT

LCB(w, Ŷ) = −
∑

s∈S

K
∑

k=1

y(k)s log p(k|xs;w)

−
∑

t∈T

K
∑

k=1

ŷ
(k)
t log

p(k|xt;w)

λk

s.t. ŷt ∈ ∆K−1 ∪ {0}, ∀t

(1)

The feasible set is the union of {0} and a probability sim-

plex ∆K−1. The continuous CBST is solved by alternating

optimization based on the following a), b) steps:

a) Pseudo-label generation Fix w and solve:

min
ŶT

−
∑

t∈T

K
∑

k=1

ŷ
(k)
t log

p(k|xt;w)

λk

s.t. ŷt ∈ ∆K−1 ∪ {0}, ∀t

(2)

b) Network retraining Fix ŶT and solve:

min
w

−
∑

s∈S

K
∑

k=1

y(k)s log p(k|xs;w)

−
∑

t∈T

K
∑

k=1

ŷ
(k)
t log p(k|xt;w)

(3)

We define going through step a) and b) once as one “self-

training round”. For solving step a), there is a global opti-

mizer for arbitrary ŷt = (ŷ
(1)
t , ..., ŷ

(K)
t ) as follows.

ŷ
(k)∗
t =



















1, if k = argmax
k

{
p(k|xt;w)

λk

}

and p(k|xt;w) > λk

0, otherwise

(4)

For solving step b), one can use typical gradient-based

methods such as mini-batch gradient descent. Intuitively,

solving a) by (4) is actually conducting pseudo-label learn-

ing and selection simultaneously. Note that ŷ∗
t in (4) not

only can be one-hot, but also can be a zero vector 0. For

each target sample (xt, ŷ
∗
t ), if ŷ∗

t is an one-hot, the sample

is selected for model retraining. If ŷ∗
t = 0, this sample is

not chosen. Specifically, λk is a parameter controlling sam-

ple selection. If a sample’s predication is relatively confi-

dent with p(k∗|xt;w) > λk∗ , it is selected and labeled as

class k∗ = argmaxk{
p(k|xt;w)

λk
}. The less confident ones

with p(k∗|xt;w) ≤ λk∗ are not selected.

λk are critical parameters to control pseudo-label learn-

ing and selection. The same class-balanced λk strategy in-

troduced in [69] is adopted for all self-training methods in

this work. λk for each class k is determined by a single

portion parameter p which indicts how many samples we

want to select in target domain. Specifically, we define the

confidence for a sample as the max of its output softmax

probabilities. For each class k, λk is determined by the con-

fidence value selecting the most confident p portion of class

k predictions in the entire target set. We emphasize that on-

ly one parameter p is used to determine all λk’s. Practically,

we gradually increase p to incorporate more pseudo-labels

for each additional round. For detailed algorithm, we rec-

ommend to read Algorithm 2 in [69].

Remark: The only difference between CBST and contin-

uous CBST lies in the feasible set where continuous CB-

ST has a probability simplex while CBST has a set of one-

hot vectors. Although the feasible set relaxization does not

change the solutions of CBST and the pseudo-labels are

still one-hot vectors, continuous CBST allows generating

soft pseudo-labels if specific regularizers are introduced in-

to pseudo-label generation. Thus it serves as the basis for

our proposed label regularized self-training.

4. Confidence regularized self-training

As mentioned in Section 1, we leverage confidence regu-

larization (CR) to prevent the over-minimization of entropy

in self-training. Here, we introduce the general definition of

confidence regularized self-training (CRST):

min
w,ŶT

LCR(w, ŶT ) = LCB(w, ŶT ) + αRC(w, ŶT )

= −
∑

s∈S

K
∑

k=1

y(k)s log p(k|xs;w)

−
∑

t∈T

[

K
∑

k=1

ŷ
(k)
t log

p(k|xt;w)

λk

− αrc(w, ŷt)
]

s.t. ŷt ∈ ∆(K−1) ∪ {0}, ∀t (5)

RC(w, ŶT ) =
∑

t∈T rc(w, ŷt) is the confidence regular-

izer and α ≥ 0 is the weight coefficient. Similar to CB-

ST, the optimization algorithm of CRST can be formulated

as taking step a) pseudo-label generation and step b) net-

work retraining alternatively. In this paper, we introduce

two types of CRST: label regularized self-training (LR) and

model regularized self-training (MR).
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4.1. Label regularization

The label regularizer has a general form of RC(ŶT ) =
∑

t∈T rc(ŷt) and only depends on pseudo-labels {ŷt}.

With fixed w, the pseudo-label generation in step a) of

CRST-LR is defined as follows:

min
ŶT

−
∑

t∈T

[

K
∑

k=1

ŷ
(k)
t log

p(k|xt;w)

λk

− αrc(ŷt)
]

s.t. ŷt ∈ ∆(K−1) ∪ {0}, ∀t

(6)

The global minimizer of (6) can be found via a two-

stage optimization given the special structure of the feasi-

ble space. The first stage involves minimizing (6) within

∆(K−1) only, which gives ŷ
†
t . The second stage is to select

between ŷ
†
t or 0 by checking which leads to a lower cost:

ŷ∗
t =

{

ŷ
†
t , if C(ŷ†

t ) < C(0)

0 , otherwise
(7)

where C(ŷt) is the cost of a single sample t in (6):

C(ŷt) = −ŷ
(k)
t

K
∑

k=1

log
p(k|xt;w)

λk

+ αrc(ŷt)

Note that the above regularized term prefers selecting

pseudo-labels with certain smoothness rather than sparse

ones. In addition, CRST-LR and CBST share the same net-

work retraining strategy in step b).

Specifically, we introduce a negative entropy label regu-

larizer (LRENT) in Table 1 with its definition and the cor-

responding solution of ŷ
†
t . For clarity, we write p(k|xt;w)

as p(k|xt) for short. ŷ
†
t can be obtained via solving with a

Lagrangian multiplier (KKT conditions) [3]. The detailed

derivations are shown in Section B of the Supplementary.

4.2. Model regularization

The model regularizer has a general form of RC(w) =
∑

t∈T rc(p(xt;w)) where p(xt;w) is the network softmax

output probabilites. Compared to CBST, CRST-MR has the

same hard pseudo-label generation process. But in network

retraining of step b), CRST-MR uses a cross-entropy loss

regularized by an output smoothness encouraging term. We

define the optimization problem in step b) as follows:

min
w

−
∑

s∈S

K
∑

k=1

y(k)s log p(k|xs;w)

−
∑

t∈T

[

K
∑

k=1

ŷ
(k)
t log p(k|xt;w)− αrc(p(xt;w))]

(8)

Specifically, we introduce three model regularizers in Ta-

ble 1 based on L2, negative entropy and KLD between uni-

form distribution u and softmax output. The gradients w.r.t.

softmax logits zi are also provided. H(p) is the entropy.

Regularizer Pseudo-label solution (LR)/Gradient (MR)

LRENT
K
∑

k=1

ŷ
(k)
t log (ŷ

(k)
t )

ŷ
(i)†
t =

(p(i|xt)
λk

)
1

α

K
∑

k=1

(p(k|xt)
λk

)
1

α

MRL2
K
∑

k=1

p(k|xt)
2 2

K
∑

k=1

p2(k|xt)[δki − p(i|xt)], δki = 1[k = i]

MRENT
K
∑

k=1

p(k|xt) log p(k|xt) p(i|xt)[log p(i|xt) +H(p(xt))]

MRKLD −
K
∑

k=1

1
K

log p(k|xt) p(i|xt)−
1
K

Table 1: List of proposed regularizers with corresponding

pseudo-label solution or gradients w.r.t. softmax logit zi.

5. Theoretical properties

5.1. A probabilistic view of CRST

There exists an inherent connection between the CRST

and some probabilistic models. Specifically, the CRST self-

training algorithm can be interpreted as an instance of clas-

sification expectation maximization [1]:

Proposition 1. CRST can be modeled as a regularized clas-

sification maximum likelihood (RCML) problem optimized

via classification expectation maximization.

Proof. Please refer to Section A.1 of Supplementary.

Proposition 2. Given pre-determined λk, CRST is conver-

gent under certain conditions.

Proof. Please refer to Section A.2 of Supplementary.

5.2. Soft pseudolabel in LRENT

There is an intrinsic connection between the soft pseudo-

label of LRENT (given in Table 1) and softmax with tem-

perature. Softmax with temperature [22] is a common ap-

proach in neural network for scaling softmax probabilities

with applications in knowledge distillation [22], model cal-

ibration [19], etc. Typically, networks produce categorical

probabilities by a softmax activation layer to convert the

logit zi for each class into a probability p(i). And the soft-

max with temperature introduces a positive temperature α
to scale its smoothness as follows.

p(i) =
e

zi
α

∑

k=1,...,K e
zk
α

(9)

For high temperature (α → ∞), the new distribution is

softened as a uniform distribution that has the highest en-

tropy and uncertainty. For temperature α = 1, we recov-

er the original softmax probabilities. For low temperature

(α → 0), the distribution collapses to a sparse one-hot vec-

tor with all probability on the class with the most original

softmax probability. Now we draw the connection of soft

pseudo-label in LRENT to softmax with temperature:
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Proposition 3. If λk are equal for all k, the soft pseudo-

label of LRENT given in Table 1 is exactly the same as soft-

max with temperature.

Proof.

ŷ
(i)∗
t =

(p(i|xt)
λk

)
1

α

∑

k (
p(k|xt)

λk
)

1

α

=
p(k|xt)

1

α

∑

k p(k|xt)
1

α

=
[ ezi∑

q
ezq

]
1

α

∑

k [
ezk∑
q
ezq

]
1

α

=
(ezi)

1

α

∑

k (e
zk)

1

α

=
e

zi
α

∑

k e
zk
α

The soft pseudo-label of LRENT can be regarded as a

generalized softmax with temperature. In self-training, if

selected properly, λk can help to generate class-balanced

soft pseudo-labels.

Proposition 4. KLD model confidence regulared self-

training is equivalent to self-training with pseudo-label u-

niformly smoothed by ǫ = (Kα− α)/(K +Kα), where α
is the regularizer weight.

Proof. Please refer to Section A.3 of Supplementary.

Proposition 5. DKL(p(xt)||u) KLD model regularizer

(the reverse of the proposed DKL(u||p(xt)) KLD regular-

izer) is equivalent to entropy model regularizer −H(p(xt)),
where u is the uniform distribution.

Proof. Please refer to Section A.4 of Supplementary.

6. Experiments

In this section, we conduct comprehensive evaluation on

different domain adaptation tasks.

Adaptation for image classification: We consider two

adaptation benchmarks: 1) VisDA17 [42] and 2) Office-31

[48]. VisDA17 contains 152, 409 2D synthetic images of

12 classes in the source training set and 55, 400 real im-

ages from MS-COCO [30] as the target domain validation

set. Office-31 is a small-scale dataset containing images

of 31 classes from three domains - Amazon (A), Webcam

(W) and DSLR (D). Each domain contains 2, 817, 795 and

498 images respectively. We follow the standard protocol

in [48, 53] and evaluate on six transfer tasks A → W ,

D → W , W → D, A → D, D → A, and W → A.

Adaptation for semantic segmentation: We consider t-

wo popular synthetic-to-real adaptation scenarios: 1) G-

TA5 [46] to Cityscapes [11], and 2) SYNTHIA [47] to C-

ityscapes. The GTA5 dataset includes 24, 966 images ren-

dered by GTA5 game engine. For SYNTHIA, we choose

SYNTHIA-RAND-CITYSCAPES which includes 9, 400
labeled images. Following the standard protocols [23, 60],

we adapt the model to the Cityscapes training set and eval-

uate the performance on the validation set.

To comprehensively demonstrate the improvement of

CRST, we report the performance of CRST with all regu-

larizers and compare with CBST in each task.

6.1. Implementation details

Image classification: For VisDA17/Office-31, we imple-

ment CBST/CRSTs using PyTorch [41] and choose ResNet-

101/ResNet-50 [21] as backbones. For fair comparison, we

compare to other works with the same backbone networks.

Both backbones are pre-trained on ImageNet [12], and then

fine-tuned on source domain using SGD, with learning rate

1×10−3, weight decay 5×10−4, momentum 0.9 and batch

size 32. For self-training, we apply the same training strat-

egy but a different learning rate 1× 10−4.

Semantic segmentation: For semantic segmentation,

we further consider DeepLabv2 [6] as a backbone besides

the ResNet-38 backbone in [69]. For experiments with

DeepLabv2, we implement CBST/CRSTs using PyTorch,

while following the MXNet [7] implementation of [69] for

experiments with ResNet-38. DeepLabv2 is pre-trained on

ImageNet and fine-tuned on source domain using SGD,

with learning rate 2.5× 10−4, weight decay 5× 10−4, mo-

mentum 0.9, batch size 2, patch size 512 × 1024, multi-

scale training augmentation (0.5− 1.5) and horizontal flip-

ping. In self-training, we apply SGD with learning rate of

5×10−5. For fair comparison, we unify the total number of

self-training rounds to be 3, each with 2 re-training epochs.

6.2. Domain adaptation for image classification

VisDA17: We present the results on VisDA17 in Table 2 in

terms of per-class accuracy and mean accuracy. For each

proposed approach, we run 5 times and report the average

and standard deviation of the evaluation results. Note that

both MRKLD and LRENT outperform the non-regularized

CBST, whereas MRL2 and MRENT show slightly worse

results. Among CRSTs with single regularizer, MRKLD

achieves the best performance with considerable improve-

ment. The combination of MRKLD and LRENT further

outperforms single regularizers and other recently proposed

methods. Interestingly, the result even outperforms certain

methods with a stronger backbone ResNet-152 [44, 53].

Office-31: We compare the performance of different meth-

ods on Office-31 with the same backbone ResNet-50 in Ta-

ble 3. All CRSTs achieve similar results that outperform the

baseline CBST. In addition, MRKLD+LRENT again out-

performs single regularizers, achieving comparable or bet-

ter performance compared with other recent methods.

6.3. Domain adaptation for semantic segmentation

GTA5 → Cityscapes: Table 4 shows the adaptation per-

formance of CRSTs and other comparing methods. On a
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Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean

Source [50] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD [33] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [15] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

ENT [18] 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0

MCD [51] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

ADR [50] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

SimNet-Res152 [44] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9

GTA-Res152 [53] - - - - - - - - - - - - 77.1

Source-Res101 68.7 36.7 61.3 70.4 67.9 5.9 82.6 25.5 75.6 29.4 83.8 10.9 51.6

CBST 87.2±2.4 78.8±1.0 56.5±2.2 55.4±3.6 85.1±1.4 79.2±10.3 83.8±0.4 77.7±4.0 82.8±2.8 88.8±3.2 69.0±2.9 72.0±3.8 76.4±0.9

MRL2 87.0±2.9 79.5±1.9 57.1±3.2 54.7±2.9 85.5±1.1 78.1±11.7 83.0±1.5 77.7±3.7 82.4±1.7 88.6±2.7 69.1±2.2 71.8±3.0 76.2±1.0

MRENT 87.1±2.7 78.3±0.7 56.1±4.0 54.4±2.7 84.4±2.3 79.9±10.6 83.7±1.1 77.9±4.4 82.7±2.4 87.4±2.8 70.0±1.4 72.8±3.3 76.2±0.8

MRKLD 87.3±2.5 79.4±1.9 60.5±2.4 59.7±2.5 87.6±1.4 82.4±4.4 86.5±1.1 78.4±2.6 84.6±1.7 86.4±2.8 72.5±2.4 69.8±2.5 77.9±0.5

LRENT 87.7±2.4 78.7±0.8 57.3±3.3 54.5±4.0 84.8±1.7 79.7±10.3 84.2±1.4 77.4±3.7 83.1±1.5 88.3±2.6 70.9±2.1 72.6±2.4 76.6±0.9

MRKLD+LRENT 88.0±0.6 79.2±2.2 61.0±3.1 60.0±1.0 87.5±1.2 81.4±5.6 86.3±1.5 78.8±2.1 85.6±0.9 86.6±2.5 73.9±1.3 68.8±2.3 78.1±0.2

Table 2: Experimental results on VisDA17.

Method A→W D→W W→D A→D D→A W→A Mean

ResNet-50 [21] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DAN [33] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4

RTN [35] 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

DANN [15] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2

ADDA [61] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN [36] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3

GTA [53] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5

CBST 87.8±0.8 98.5±0.1 100±0.0 86.5±1.0 71.2±0.4 70.9±0.7 85.8

MRL2 88.4±0.2 98.6±0.1 100±0.0 87.7±0.9 71.8±0.2 72.1±0.2 86.4

MRENT 88.0±0.4 98.6±0.1 100±0.0 87.4±0.8 72.7±0.2 71.0±0.4 86.4

MRKLD 88.4±0.9 98.7±0.1 100±0.0 88.0±0.9 71.7±0.8 70.9±0.4 86.3

LRENT 88.6±0.4 98.7±0.1 100±0.0 89.0±0.8 72.0±0.6 71.0±0.3 86.6

MRKLD+LRENT 89.4±0.7 98.9±0.4 100±0.0 88.7±0.8 72.6±0.7 70.9±0.5 86.8

Table 3: Experimental results on Office-31.

DeepLabv2 backbone, one could see that MRKLD achieves

the best result outperforming previous state-of-the-art. In

addition, Fig. 2 visualizes the adapted prediction results

obtained by CBST and CRSTs on Cityscapes validation set.

Fig. 3 further compares the pseudo-label maps in the sec-

ond round of self-training. On a wide ResNet-38 backbone,

all CRSTs outperform the baseline CBST and we achieve

the state-of-the-art system-level performance with the spa-

tial priors (SP) and multi-scale testing (MST) from [69].

SYNTHIA → Cityscapes: Table 5 shows the adaptation

results where CRSTs again show the performance on par

with or better than the baseline CBST. In particular, M-

RKLD maintains the best performance among all regular-

izers and outperforms the previous state-of-the-art [69].

6.4. Parameter analysis

p is an important parameter controling the pseudo-label

generation and selection sensitivity. We adopt the same p
policy as [69] where we start p from 20%, and empirical-

ly add 5% to p in each additional self-training round. We

conduct a sensitivity analysis for portion p similar to [69],

where we consider the starting portion p0 and the incremen-

tal portion ∆p on a difficult task of Office-31: W → A.

Table 6 shows that CRSTs are not sensitive to p0 and ∆p.

In CRST, the coefficient α is an important parameter that

balances the weight between self-training loss and confi-

dence regularizer. In all the experiments, we unify α to be

0.025, 0.1, 0.1, 0.25 for MRL2, MRENT, MRKLD and L-

RENT, respectively. Note that various regularizers have d-

ifferent α due to their intrinsic differences. We also present

the sensitivity analysis of α on W → A in Table 7. We can

see all CRSTs are not sensitive to α in certain intervals.

7. Discussions

7.1. Why confidence regularization work?

Confidence regularization smooths the output by lower-

ing the confidence (the max of output softmax) and raising

the probability level of other classes. Such smoothing helps

to reduce the confidence on false positives (FP), although

the confidence of certain true positives (TP) may also de-

crease. To see the change w/wo CR, we compare CBST

vs MRKLD/LRENT (DeepLabv2) on GTA5 → Cityscapes,

by presenting their per-class mean confidence of TP (CTP ),

mean confidence of FP (CFP ) and the CTP /CFP ratios at

the end of first round in Table 8. For both TP and FP, the

confidence of MRKLD/LRENT are lower than CBST, but

either MRKLD or LRENT outperforms CBST on almost all

per-class ratios and mean ratios. This intuitively illustrates

how confidence regularization benefits self-training.

7.2. MR versus LR

We analyze MR/LR intuitively and theoretically to give

suggestions for practical choice of confidence regularizers.

Complexity analysis: All model regularizers only intro-

duce negligible extra costs for the gradient computation.

Label regularizers, however, requires the storage of dataset-

level soft pseudo-labels. This does not present an issue in

image classification but may introduce extra I/O costs in

segmentation, where labels are often too large to be stored

in memory and need to be written to disk.

Loss curves: To further illustrate the different properties

of regularizers, we visualize how they influence the original

loss surfaces by reducing the problem into binary classifica-

tion with a single sample. We assume a cross-entropy loss

−y log p− (1− y) log(1− p) plus an MR/LR weighted by

α. For MRs, we assume y = 1 and illustrate the regularized

loss curves versus p in Fig. 4. For all MRs, p∗ becomes

smoother when α increases. We notice that MRKLD serves

as a better barrier to prevent sharp outputs than other MRs
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Method Backbone Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

Source
DRN-26

42.7 26.3 51.7 5.5 6.8 13.8 23.6 6.9 75.5 11.5 36.8 49.3 0.9 46.7 3.4 5.0 0.0 5.0 1.4 21.7

CyCADA [23] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

Source
DRN-105

36.4 14.2 67.4 16.4 12.0 20.1 8.7 0.7 69.8 13.3 56.9 37.0 0.4 53.6 10.6 3.2 0.2 0.9 0.0 22.2

MCD [51] 90.3 31.0 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30.0 69.1 58.5 19.6 81.5 23.8 30.0 5.7 25.7 14.3 39.7

Source
DeepLabv2

75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet [60] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

AdvEnt [63] DeepLabv2 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

Source
DeepLabv2

- - - - - - - - - - - - - - - - - - - 29.2

FCAN [67] - - - - - - - - - - - - - - - - - - - 46.6

Source

DeepLabv2

71.3 19.2 69.1 18.4 10.0 35.7 27.3 6.8 79.6 24.8 72.1 57.6 19.5 55.5 15.5 15.1 11.7 21.1 12.0 33.8

CBST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRL2 91.9 55.2 80.9 32.1 21.5 36.7 30.0 19.0 84.8 34.9 80.1 56.1 23.8 83.9 28.0 29.4 20.5 24.0 40.3 46.0

MRENT 91.8 53.4 80.6 32.6 20.8 34.3 29.7 21.0 84.0 34.1 80.6 53.9 24.6 82.8 30.8 34.9 16.6 26.4 42.6 46.1

MRKLD 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

LRENT 91.8 53.5 80.5 32.7 21.0 34.0 29.0 20.3 83.9 34.2 80.9 53.1 23.9 82.7 30.2 35.6 16.3 25.9 42.8 45.9

Source

ResNet-38

70.0 23.7 67.8 15.4 18.1 40.2 41.9 25.3 78.8 11.7 31.4 62.9 29.8 60.1 21.5 26.8 7.7 28.1 12.0 35.4

CBST [69] 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2

MRL2 84.4 52.7 74.7 38.0 32.2 43.7 53.7 38.6 73.9 24.4 64.4 45.6 24.6 63.2 3.22 31.9 45.9 44.2 34.8 46.0

MRENT 84.6 49.5 73.9 35.8 25.1 46.2 53.3 43.3 75.2 24.2 63.8 48.2 33.8 65.7 2.89 32.6 39.2 50.0 34.7 46.4

MRKLD 84.5 47.7 74.1 27.9 22.1 43.8 46.5 37.8 83.7 22.7 56.1 56.8 26.8 81.7 22.5 46.2 27.5 32.3 47.9 46.8

LRENT 80.3 40.8 65.8 24.6 30.5 43.1 49.5 40.3 82.1 26.0 54.6 59.4 32.1 68.0 31.9 30.0 21.9 44.8 46.7 45.9

CBST-SP

ResNet-38

85.6 55.1 76.9 26.8 23.4 38.9 47.1 46.9 83.4 25.5 68.7 45.6 15.7 79.7 27.7 50.3 38.2 33.4 44.6 48.1

MRKLD-SP 90.8 46.0 79.9 27.4 23.3 42.3 46.2 40.9 83.5 19.2 59.1 63.5 30.8 83.5 36.8 52.0 28.0 36.8 46.4 49.2

MRKLD-SP-MST 91.7 45.1 80.9 29.0 23.4 43.8 47.1 40.9 84.0 20.0 60.6 64.0 31.9 85.8 39.5 48.7 25.0 38.0 47.0 49.8

Table 4: Experimental results on GTA5 → Cityscapes.

Method Backbone Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*

Source
DRN-105

14.9 11.4 58.7 1.9 0.0 24.1 1.2 6.0 68.8 76.0 54.3 7.1 34.2 15.0 0.8 0.0 23.4 26.8

MCD [51] 84.8 43.6 79.0 3.9 0.2 29.1 7.2 5.5 83.8 83.1 51.0 11.7 79.9 27.2 6.2 0.0 37.3 43.5

Source
DeepLabv2

55.6 23.8 74.6 − − − 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 − 38.6

AdaptSegNet [60] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 − 46.7

AdvEnt [63] DeepLabv2 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

Source
ResNet-38

32.6 21.5 46.5 4.8 0.1 26.5 14.8 13.1 70.8 60.3 56.6 3.5 74.1 20.4 8.9 13.1 29.2 33.6

CBST [69] 53.6 23.7 75.0 12.5 0.3 36.4 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 42.5 48.4

Source

DeepLabv2

64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3

CBST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

MRL2 63.4 27.1 76.4 14.2 1.4 35.2 23.6 29.4 78.5 77.8 61.4 29.5 82.2 22.8 18.9 42.3 42.8 48.7

MRENT 69.6 32.6 75.8 12.2 1.8 35.3 23.3 29.5 77.7 78.9 60.0 28.5 81.5 25.9 19.6 41.8 43.4 49.6

MRKLD 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

LRENT 65.6 30.3 74.6 13.8 1.5 35.8 23.1 29.1 77.0 77.5 60.1 28.5 82.2 22.6 20.1 41.9 42.7 48.7

Table 5: Experimental results on SYNTHIA → Cityscapes.

road sidewalk building wall fence pole traffic lgt traffic sgn vegetation ignored

terrain sky person rider car truck bus train motorcycle bike

Figure 2: Adaptation results on GTA5 → Cityscapes. Rows correspond to sample images in Cityscapes. From left to right,

columns correspond to original images, ground truth, and predication results of CBST, MRL2, MRENT, MRKLD, LRENT.

Figure 3: Pseudo-labels in GTA5 → Cityscapes. Rows correspond to sample images in Cityscapes. From left to right,

columns correspond to original images, ground truth, and pseudo-labels of CBST, MRL2, MRENT, MRKLD, LRENT.

by having steeper gradient near p = 1. This accords with

our observation that MRKLD overall works the best. For

LRENT, we assume p = 0.9 and illustrate the regularized

loss curves versus y at different α in Fig. 4. Again, y∗ be-

comes smoother when α increases.

Class ranking: Based on the closed-form solution of LR

in Table 1, we can prove that LR preserves the confidence

ranking order between classes. On the other hand, given

one-hot labels, MRs tend to discard such order informa-

tion by giving equal confidences to negative classes. Tak-
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W → A (Office-31)

MRL2 MRENT

p0/∆p 20/5 15/5 25/5 20/2.5 20/7.5 20/5 15/5 25/5 20/2.5 20/7.5

Accuracy 72.1±0.2 71.3±0.2 71.4±1.0 71.6±0.4 71.3±0.5 71.0±0.4 71.0±0.6 70.8±0.5 71.0±0.6 71.0±0.7

MRKLD LRENT

p0/∆p 20/5 15/5 25/5 20/2.5 20/7.5 20/5 15/5 25/5 20/2.5 20/7.5

Accuracy 70.9±0.4 70.8±0.4 70.7±0.2 70.9±0.5 71.0±0.8 71.0±0.3 71.0±0.8 71.2±0.6 71.1±0.5 71.0±0.4

Table 6: Sensitivity analysis of portion p0 and portion step ∆p.

W → A (Office-31)

MRL2 MRENT MRKLD LRENT

α 0.01 0.025 0.05 0.075 0.1 0.125 0.075 0.1 0.125 0.1 0.25 0.5

Accuracy 71.5±0.8 72.1±0.2 71.7±1.1 71.0±0.8 71.0±0.4 70.9±1.0 70.9±0.6 70.9±0.4 70.6±0.7 71.2±1.2 71.0±0.3 70.8±0.6

Table 7: Sensitivity analysis of regularizer weight α.

Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mean

CBST

CTP (%) 96.2 86.0 94.6 83.8 84.9 84.5 80.4 78.0 93.9 87.9 94.5 90.4 81.4 95.4 88.4 85.9 59.5 78.5 80.6 85.5

CFP (%) 72.2 74.1 69.8 71.7 76.7 73.7 72.9 76.5 71.9 71.2 68.5 67.2 69.1 66.1 76.9 65.5 76.7 67.2 73.0 71.6

CTP /CFP 1.33 1.16 1.36 1.17 1.11 1.15 1.10 1.02 1.31 1.23 1.38 1.35 1.18 1.44 1.15 1.31 0.78 1.17 1.10 1.19

MRKLD

CTP (%) 94.7 82.8 92.4 81.7 77.8 84.4 77.0 76.4 93.4 86.5 94.4 88.8 79.7 93.9 87.0 84.9 71.9 77.6 79.2 84.5

CFP (%) 67.7 70.3 65.4 68.5 69.2 66.7 69.4 71.3 66.7 68.8 66.7 60.0 65.5 63.0 74.6 63.6 70.2 59.3 53.2 66.3

CTP /CFP 1.40 1.18 1.41 1.19 1.12 1.27 1.11 1.07 1.40 1.26 1.42 1.48 1.22 1.49 1.17 1.34 1.02 1.31 1.49 1.27

LRENT

CTP (%) 95.9 84.4 94.0 80.7 75.3 84.8 77.8 78.3 93.9 86.3 94.5 89.2 79.3 95.3 89.3 80.5 76.4 86.4 78.8 85.3

CFP (%) 69.5 72.1 68.0 67.8 71.3 69.7 71.5 75.4 69.5 69.9 70.1 64.1 67.6 67.3 77.7 70.3 63.4 58.6 55.2 68.4

CTP /CFP 1.38 1.17 1.38 1.19 1.06 1.22 1.09 1.04 1.35 1.23 1.35 1.39 1.17 1.42 1.15 1.15 1.2 1.47 1.43 1.25

Table 8: Comparison of CTP , CFP and CTP /CFP on GTA5 → Cityscapes.
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Figure 4: Loss curves regularized by different regularizers.

LRENT minimizer

1 2 3 4
0

0.2

0.4

0.6

0.8

1
Input

=0

=0.5

=1

=1.5

MRKLD minimizer

1 2 3 4
0

0.2

0.4

0.6

0.8

1
Input

=0

=0.5

=1

=1.5

Figure 5: Minimizers of LRENT and MRKLD.

ing MRKLD as example: using Lagrangian multiplier, we

can prove the closed-form global minimizer for regularized

cross-entropy loss as p∗(k) = (y(k) + α
K
)/(1 + α), where

k = 1, ...,K is class index. With y being one-hot, the global

minimizer is uniformly smoothed on negative classes. Sim-

ilar property can be also proved for MRENT/MRL2.

We illustrate two examples of LRENT and MRKLD in

Fig. 5, where we assume p = [0.2, 0.1, 0.55, 0.15] for L-

RENT and y(2) = 1 for MRKLD. One can see, LREN-

T sharpens the input p when α ∈ [0, 1] (one-hot when

α = 0), while smooths p when α > 1. In all cases, the

inter-class confidence orders are always preserved, while

the same property does not hold for MRKLD.

MR+LR: The combination of MR and LR can take advan-

tages of both regularizers and achieve better performance

compared to single regularizer, demonstrated in VisDA17

and Office-31. However, it will also introduce extra cost to

validate both hyperparameters for MR and LR.

Practical suggestions: Overall, we recommend CRST-

MRKLD most based on the above analysis and its better

performance. Moreover, combining MR and LR may also

benefit self-training at the cost of slight extra tuning.

8. Conclusions

In this paper, we introduce a confidence regularized self-

training framework formulated as regularized self-training

loss minimization. Model regularization and label regu-

larization are considered with a family of proposed confi-

dence regularizers. We investigate theoretical properties of

CRST, including its probabilistic explanation and connec-

tion to softmax with temperature. Comprehensive exper-

iments demonstrate the effectiveness of CRST with state-

of-the-art performance. We also systematically discuss the

pros and cons of the proposed regularizers and made prac-

tical suggestions. We believe this work can inspire future

research on novel designs of regularizations as desired in-

ductive biases to benefit many UDA/SSL problems.
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