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Figure 1: Zebras from images. We automatically extract 3D textured models of zebras from in-the-wild images. We regress

directly from pixels, without keypoint detection or segmentation.

Abstract

We present the first method to perform automatic 3D

pose, shape and texture capture of animals from images

acquired in-the-wild. In particular, we focus on the prob-

lem of capturing 3D information about Grevy’s zebras from

a collection of images. The Grevy’s zebra is one of the

most endangered species in Africa, with only a few thou-

sand individuals left. Capturing the shape and pose of

these animals can provide biologists and conservationists

with information about animal health and behavior. In

contrast to research on human pose, shape and texture es-

timation, training data for endangered species is limited,

the animals are in complex natural scenes with occlusion,

they are naturally camouflaged, travel in herds, and look

similar to each other. To overcome these challenges, we

integrate the recent SMAL animal model into a network-

based regression pipeline, which we train end-to-end on

synthetically generated images with pose, shape, and back-

ground variation. Going beyond state-of-the-art methods

for human shape and pose estimation, our method learns

a shape space for zebras during training. Learning such

a shape space from images using only a photometric loss

is novel, and the approach can be used to learn shape

in other settings with limited 3D supervision. Moreover,

we couple 3D pose and shape prediction with the task of

texture synthesis, obtaining a full texture map of the ani-

mal from a single image. We show that the predicted tex-

ture map allows a novel per-instance unsupervised opti-

mization over the network features. This method, SMALST

(SMAL with learned Shape and Texture) goes beyond pre-

vious work, which assumed manual keypoints and/or seg-

mentation, to regress directly from pixels to 3D animal

shape, pose and texture. Code and data are available at

https://github.com/silviazuffi/smalst.

1. Introduction

Rapid progress has been made on estimating 3D human

pose, shape, and texture from images. Humans are spe-
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Figure 2: Challenges of animals in the wild. Challenging

images for keypoint detection and assignment (left), where

the zebra in the foreground appears to have three front legs;

and for segmentation (right), where the back legs of the

foreground animal are hard to distinguish from the neck of

the zebra in the background.

cial and, consequently, the amount of effort devoted to this

problem is significant. We scan and model the body, la-

bel images by hand, and build motion capture systems of

all kinds. This level of investment is not possible for every

animal species. There are simply too many and the scien-

tific community interested in a particular species may not

have the resources for such an effort. This is particularly

true of endangered species. We focus on one of the most

endangered animal species, the Grevy’s zebra, for which

only about 3000 individuals remain [25]. Here we describe

a new deep-learning method to regress 3D animal shape,

pose, and texture directly from image pixels (Figure 1) that

does not require extensive image annotation, addresses the

key challenges of animals in the wild, and can scale to large

data collections. This provides a new method that can be ex-

tended to other species (see Sup. Mat. for results on horses).

In general, there is very little previous work on estimat-

ing animal shape and pose. Existing methods require man-

ual annotation of the test images with keypoints and/or seg-

mentation [33, 34] or clean imaging conditions where auto-

matic segmentation is possible [5].

Animals present unique challenges relative to humans

(see Figure 2). First, animals often live in environments

where their appearance is camouflaged, making bottom-

up approaches such as automatic segmentation a challenge.

Second, animals like zebras live in herds, where overlap-

ping subjects of similar appearance make reliable keypoint

extraction challenging. Third, in comparison to the study

of human body pose and shape, the amount of data is lim-

ited, particularly for endangered animals, where 3D scan-

ning is infeasible. Thus, although humans and animals are

both deformable articulated objects, the lack of training data

makes naive application of current deep learning methods

that work for humans impractical for animals.

We overcome the lack of data by exploiting synthetic

data and an image reconstruction loss using a generative,

analysis-by-synthesis, approach. While accurate synthetic

human models exist for training, animals models of suffi-

cient quality are rare, particularly for endangered species. A

novelty of our approach is that instead of using completely

synthetic data, we capture the texture of the animals from

real images and render them with variability of background,

pose, illumination and camera. This is obtained exploiting

the recent SMALR method [33], which allows us to obtain

accurate shape, pose, and texture of 10 animals by anno-

tating only about 50 images. From this, adding variations

to the subjects, we generate thousands of synthetic training

images (Figure 3). We demonstrate that these are realis-

tic enough for our method to learn to estimate body shape,

pose and texture from image pixels without any fine-tuning

on additional hand-labeled images.

We go beyond previous works in several important ways

and our main contributions are as follows. Using a fully

generative model of animal shape, appearance, and neural

rendering, we use a photometric loss to train a neural net-

work that predicts the 3D pose, shape, and texture map of an

animal from a single image. A key novelty of the network

is that it links the texture prediction to 3D pose and shape

through a shared feature space, such that, in predicting the

texture map, the network estimates model parameters for

an optimal mapping between image pixels and texture map

elements. In order to prevent the network from just learn-

ing average texture map colors, inspired by [13], we predict

the flow between the image pixels and the texture map. We

go beyond [13], however, to deal with an articulated object

with a much more complex texture map containing multi-

ple, disconnected regions.

We base our method on a recently introduced 3D ar-

ticulated shape model of animals, the SMAL model [34],

which can represent animals of different shape with a low-

dimensional linear model learned from a small set of toys.

Instead of relying on the SMAL model shape space, we

compute shape variations with a network layer. This corre-

sponds to learning a novel shape space during training and

predicting the shape coefficients in this space at test time.

We have not seen this sort of neural shape learning before

and this is key for endangered species where it would be

difficult to build an accurate a priori shape model. Addi-

tionally, unlike most human pose estimation methods, we

estimate camera focal length. This is important for ani-

mals where the elongated shape can result in significant

foreshortening. Finally, we also show that, since our net-

work predicts a full texture map, we can exploit the pho-

tometric loss to perform a per-instance optimization of the

model parameters at test time by searching in the network

feature space. By using a background model we are able

to refine and obtain more detailed pose and shapes in a

fully automatic manner without relying on any segmenta-

tion masks at test time. Figure 4 provides an overview of

the approach. We call our method SMALST, for SMAL
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Figure 3: Datasets. Example of images from the digital dataset (top) and real dataset (bottom).

with learned Shape and Texture. We test the approach on

a dataset of 200 individual zebra images where we evaluate

the method both quantitatively and qualitatively.

2. Previous work

Human 3D Pose and Shape Estimation. The amount

of work in the field of 3D human pose estimation is huge;

here we review monocular model-based approaches that

estimate shape and pose, as they are most related to the

goal of this paper. The estimation of 3D pose and shape

from monocular images is largely based on low dimen-

sional statistical models of the human body learned from

thousands of scans [3, 4, 18]. Currently the most popular

model is SMPL [18] and recent work on modeling animals

also builds on its formulation. Low-dimensional parametric

models are particularly attractive for neural architectures as

they can generate high quality meshes from a small number

of network-generated parameters. Tan et al. [27] train a net-

work that learns the mapping from silhouettes to pose and

shape parameters of the SMPL model. Omran et al. [22]

exploit SMPL in conjunction with a bottom-up body part

segmentation. Pavlakos et al. [23] estimate 3D body pose

and shape of the SMPL model using a two-stage architec-

ture based on 2D keypoints and silhouettes.

Methods focused on humans have the advantage of large

datasets of images with ground truth 3D poses captured in-

door with mocap systems [9]. We do not have this for

animals and indoor imagery does not generalize well to

the wild. One way for obtaining approximate 3D pose

and shape from outdoor images is to use human annota-

tors. Lassner et al. [15] build a dataset of human-rated

high-quality 3D model fits. von Marcard et al. [31] intro-

duce an in-the-wild dataset of human 3D pose and shape

obtained by exploiting IMU sensors and video. Alterna-

tively, Varol et al. [29] create SURREAL, a full synthetic

dataset of 3D pose and shape. Tung et al. [28] exploit tem-

poral consistency over video frames to train an end-to-end

prediction model on images without ground truth 3D pose

and shape. Kanazawa et al. [11] exploit adversarial train-

ing, which uses decoupled datasets of 2D keypoints and 3D

pose and shape to train on in-the-wild images in a weakly-

supervised manner.

Model-based methods that capture texture are becom-

ing popular with the goal of creating rigged human avatars.

Bogo et al. [6] create 3D models of shape and appearance

from RGB-D sequences. Alldieck et al. [2] go further to

create 3D textured models with approximate clothing shape

from multiple video frames of a subject in a reference pose.

Deep learning methods for human pose and shape esti-

mation combine powerful 2D joint detectors, accurate body

part segmentations, large datasets of human 3D pose, and

an expressive articulated 3D shape model. None of the pre-

vious work exploits appearance, likely because it varies so

much due to clothing. For birds, not humans, Kanazawa

et al. [13] learn a generative model of appearance by mod-

eling the way surface colors are mapped from the image

to a texture map. In our work we explore this approach

to appearance modeling in conjunction with a SMPL-style

model of animals with the intuition that learning to predict

texture helps in the task of pose and shape recovery.

Animals Pose and Shape Estimation. Animals are pre-

sented in many object-recognition datasets where methods

for bounding box detection, recognition, and instance seg-

mentation are common [8]. There is very little work, how-

ever, on detecting 3D animal shape and pose. The seminal

work on this from Cashman and Fitzgibbon [7] shows how

to estimate the shape of dolphins from monocular images.

Ntouskos et al. [21] model articulated animals as a collec-

tion of 3D primitives that they estimate from segmented

images. Vincente and Agapito [30] show how to build a

rough giraffe shape from two views. Kanazawa et al. [12]

learn deformation models for cats and horses. Kanazawa et

al. [13] predict 3D shape and texture of birds from images,

without assuming a template model of the bird’s 3D shape,

but they do not model pose. Methods based on video have

potentially more information about animal shape at their

disposal. Reinert et al. [24] show the extraction of a rough

animal shape from video in terms of generalized cylinders.

They also recover a texture map from one video frame.

In contrast to humans, none of the previous approaches

is based on 3D animal models learned from scans, therefore
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they lack realism and fine detail. Moreover, previous work

estimates the 3D shape of a single animal; none address the

problem of capturing shape for a large number of subjects

of the same species with variable body shape.

Zuffi et al. [34] introduced the SMAL model, a 3D artic-

ulated shape model of animals, that can represent inter and

intra species shape variations. They train the model from

scans of toys, which may not exist for endangered species or

may not be accurate. They go further in [33] to fit the model

to multiple images, while allowing the shape to deform to fit

to the individual shape of the animals. This allows them to

capture shape outside of the SMAL shape space, increasing

realism and generalization to unseen animal shapes. Unfor-

tunately, the method is based on manually extracted silhou-

ettes and keypoint annotations. More recently, Biggs et al.

[5] fit the SMAL model to images automatically by train-

ing a joint detector on synthetically generated silhouettes.

At inference time, their method requires accurate segmen-

tation and is not robust to occlusion.

In biology, animal tracking is extremely important and

many tools exist. Recently deep learning methods have

been applied to help solving the feature tracking problem.

Mathis et al. [20] use deep learning to track animal key-

points defined by a user on infrared images captured in the

lab. They show applications to rodents, bees and other small

animals. So far, no methods address the shape and pose es-

timation problem we tackle here.

3. Approach

We formulate the problem of estimating the 3D pose and

shape of zebras from a single image as a model-based re-

gression problem, where we train a neural network to pre-

dict 3D pose, shape and texture for the SMAL model.

An important aspect of our approach is that we rely on a

digitally generated dataset to train our network. While the

quality of synthetic image generation has dramatically im-

proved thanks to advancements in computer graphics ren-

dering and 3D modeling approaches, such synthetic data are

expensive to obtain and insufficient in terms of variation in

shape and appearance. Unlike faces, where the community

has developed realistic generative models of shape and ap-

pearance from a large amount of high quality 3D scans, no

convincing generative models of 3D animals exist.

Instead of relying on synthetic data that is not sufficiently

realistic for representing animals, we capture appearance

from real images and use this data to render realistic sam-

ples with pose, shape and background variation. This ap-

proach of mixing real and synthetic is not novel: Alhaija

et al. [1] use synthetic cars in a real scene; here we do

the opposite: use real subjects against random backgrounds.

We use the SMALR method [33] to create instance-specific

SMAL models from images with a captured texture map

(see an example in Figure 5 left). We animate and render

such models to create our digital training set.

3.1. SMAL model

The SMAL model is a function M(β,θ,γ) of shape β,

pose θ and translation γ. β is a vector of the coefficients of

the learned PCA shape space, θ ∈ R
3N = {ri}

N
i=1

is the

relative rotation, expressed with Rodrigues vectors, of the

joints in the kinematic tree, and γ is the global translation

applied to the root joint. Unlike [34], which uses N = 33
joints, we segment and add articulation to the ears, obtain-

ing a model with N = 35 body parts. The SMAL function

returns a 3D mesh, where the model template is shaped by

β, articulated by θ and shifted by γ. Formally, let β be

a row vector of shape variables, then vertices of a subject-

specific shape in the reference T-pose are computed as:

vshape(β) = vhorse +Bsβ, (1)

where vhorse represents the vertices of the SMAL model

template and Bs is a matrix of deformation vectors. In this

work we focus on an animal in the Equine family, thus the

template vhorse is the shape that corresponds to the mean

horse in the original SMAL model. Given a set of pose

variables θ and global translation γ, the model generates

3D mesh vertices v = M(β,θ,γ) in the desired pose by

articulating vshape with linear blend skinning.

SMALR. Zuffi et al. [33] show that aligning the SMAL

model to images and then allowing the model vertices to

deviate from the linear shape model can create realistic

textured 3D models of unseen animals from images. The

method is based on an initial stage where SMAL is fitted

to a set of images of the same animal from different views

and poses, obtaining an estimation of global shape parame-

ters β̂, per image translation γ̂i, pose θ̂i, and camera focal

length f̂i. In a refinement step, shape parameters, transla-

tions, poses and cameras are held fixed, but the model shape

is allowed to change through a set of displacement vectors:

vshape(dvSMALR) = vhorse +Bsβ̂ + dvSMALR, (2)

where the superscript SMALR indicates that the displace-

ment vector dv is obtained with the SMALR method.

3.2. Digital dataset

We created a computer generated dataset of 12850 RGB

images of single zebras. We applied SMALR to a set of

57 images of Grevy’s zebras creating models for 10 differ-

ent subjects. For each zebra model we generated random

images that differ in background, shape, pose, camera, and

appearance. Models are rendered with OpenDR [17]. Ex-

amples of the images are in Figure 3, top.

Pose variation. For each zebra model we generated

1000 images with different poses obtained by sampling a

multivariate Gaussian distribution over the 3D Rodrigues
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vectors that describe pose. The sampling distribution is

learned from the 57 poses obtained with SMALR and a syn-

thetic walking sequence. We also add, for each zebra model,

about 285 images obtained by adding noise to the 57 poses.

We also add noise to the reference animal translation, that

we set at γ0 = [0.5,−0.1, 20]. Changing depth varies the

size of the animal as we use perspective projection.

Appearance variation. In order to vary the appearance

of the zebras, we apply a white-balance algorithm to the

textures, doubling the number of texture maps, while on the

generated images we randomly add noise to the brightness,

hue and saturation levels. Moreover, we also randomly add

lighting to the rendered scene. We generate images with

random backgrounds by sampling background images from

the COCO dataset [16].

Shape and size variation. We increase the variability of

the zebra shapes by adding noise to the shape variables (we

use 20 shape variables). In addition to size variations due to

depth, we add size variation by adding noise to the reference

camera, which has a reference focal length f0 = 4000.

Images are created with size (640, 640). For each im-

age we also compute the texture uv-flow that represents the

mapping between image pixels and textels, and can be inter-

preted as the flow between the image and the texture map.

For each image we save the following annotation data: tex-

ture map Tgt, texture uv-flow uvgt, silhouette Sgt, pose θgt,

global translation γgt, shape variables βgt, vertex displace-

ments dvSMALR
gt , landmark locations K2D,gt. We use a

total of 28 surface landmarks, placed at the joints, on the

face, ears and tail tip. These are defined only once on the

3D model template.

3.3. Real datasets

For evaluation, we have collected a new dataset of im-

ages of Gravy’s zebra captured in Kenya with pre-computed

bounding boxes. Examples of the images are in Figure 3,

bottom. We selected a set of 48 images of zebras that were

not used to create the digital dataset, and we annotated them

for 2D keypoints. We used this as validation set. We then

selected 100 images as our test set, also avoiding zebras

from the two sets above. For evaluation, we manually gen-

erated the segmentation mask for this set of images, and

annotated the 2D keypoints. We mirror the images in order

to double the test set data.

3.4. Method

We design a network to regress a texture map T , dv, 3D

pose θ, translation γ and focal length f variables from an in-

put image. We implemented the SMAL model in PyTorch.

The vertex displacements from the template are not com-

puted as in SMAL (see Equation 1), but are estimated from

the regression network. Formally:

vshape(dv) = vhorse + dv, (3)

where dv is a displacement vector generated as output of a

linear layer. Consequently, given ground truth shapes from

Equation 2, we define ground truth vertex displacements for

network training as: dvgt = Bsβgt + dvSMALR
gt . We use the

Neural Mesh Renderer (NMR) [14] for rendering the model

and perspective projection.

The regression network is illustrated in Figure 4. The

encoder is composed of a Resnet 50 module that computes

image features for an image of size (256, 256, 3). At train-

ing time the input image is a noisy bounding box computed

given the ground truth segmentation mask. Ground truth

values of translation and camera focus are modified accord-

ingly when computing the bounding box. At test time the

input image is a pre-computed bounding box of the animal.

The Resnet module is followed by a convolutional layer

with group normalization and leaky ReLU. The output of

this layer is of size 2048. We then add 2 fully connected

layers, each of them composed by a linear layer, batch nor-

malization and leaky ReLU. We obtain as output a set of

1024 features. From this set of features, we add indepen-

dent layers that predict texture, shape, 3D pose, translation

and camera focus.

Texture prediction. The texture prediction module is

inspired by the work of Kanazawa et al. [13]. While [13]

explores texture regression on a simple texture map that cor-

responds to a sphere, quadrupeds, like zebras, have a more

complicated surface and texture map layout. We therefore

predict the texture map as a collection of 4 sub-images that

we then stitch together. We found this to work better than

directly predicting the full texture map, probably because,

given the complexity of the articulated model, the network

has difficulty with the spatial discontinuities in the texture

map. We cut the texture map (that has size (256, 256))
into 4 regions illustrated in Figure 5. For each sub-image

we define an encoder and decoder. Each encoder outputs a

(256, H,W ) feature map, where H and W are a reduction

of 32 of the size of the sub-image, and is composed of 2

fully connected layers. The decoders are composed of a set

of convolutional layers and a final tanh module. The out-

put of the decoders is stitched to create a full uv-flow map,

that encodes which image pixels correspond to pixels in the

texture map.

Shape prediction. The shape prediction module is com-

posed of a fully connected layer that outputs 40 shape fea-

tures fc, and a linear layer that predicts vertex deformations:

dv = Wfs + b, (4)

where b is a bias term. W is initialized with the SMAL

blendshapes Bs (see Equation 1). We want to represent

the shapes with a linear model that is more expressive than

SMAL, therefore we seek to optimize the shape blend-

shapes through the network. In order to limit the number of

network parameters, we exploit the symmetry of the SMAL
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Figure 4: Overall framework. Given an input image the network predicts the uv-flow for each texture map sub-image (Fig.

5) and then combines them to recover a full texture map. The vector displacements dv are added to the SMAL horse template

to generate a 3D model in T-pose, which can be rendered given texture, pose, camera, and translation parameters. After

prediction, we can perform per-instance optimization (dotted line), where we optimize over the feature space variables.

Figure 5: Texture map. Example of ground truth texture

map (left) with sub-regions layout (right).

model and predict only half of the mesh vertices.

Pose prediction. The pose prediction module is a linear

layer that outputs a vector of 3D poses as relative joint an-

gles, expressed as Rodrigues vectors. The pose vector is of

size 105 as we use 35 body joints.

Translation prediction. The translation prediction

module is composed of two linear layers that predict trans-

lation in the camera frame and depth independently: γx =
1.0 + x, γy = y, γz = 1.0 + z + γz,0, where (x, y, z) are

the outputs of the prediction layer, γz,0 = 20 as in the syn-

thetic dataset. We add 1.0 to the x coordinate due to the

distribution of the ground truth values in the training set.

Camera prediction. The camera prediction layer pre-

dicts the focal length of the perspective camera. Since we

also predict the depth in the network, this parameter can be

redundant; however we have found empirically that it al-

lows better model fits to images. The camera focal length

is obtained as f = f0 + f1x, where x is the output of the

prediction layer and f0 = f1 = 2700.

3.5. 3D pose, shape and texture estimation

We train the network to minimize the loss:

Ltrain = Lmask(Sgt, S) + Lkp2D
(K2D,gt,K2D) +

Lcam(fgt, f) + Limg(Iinput, I, Sgt) + Lpose(θgt, θ) +

Ltrans(γgt,γ) + Lshape(dvgt, dv) +

Luv(uvgt, uv) + Ltex(Tgt, T ) + Ldt(uv, Sgt) (5)

where: Sgt is the mask, Lmask is the mask loss, de-

fined as the L1 loss between Sgt and the predicted mask.

Lkp2D
is the 2D keypoint loss, defined as the MSE loss be-

tween K2D,gt and the projected 3D keypoints defined on

the model vertices. Lcam is the camera loss, defined as the

MSE loss between fgt and predicted focal length. Limg is

the image loss, computed as the perceptual distance [32]

between the masked input image and rendered zebra. Lpose

is the MSE loss between θgt and predicted 3D poses, com-

puted as geodesic distance [19]. Ltrans is the translation

loss, defined as the MSE between γgt and predicted trans-

lation. Lshape is the shape loss, defined as the MSE be-

tween dvgt and predicted dv. Luv is the uv-flow loss, de-

fined as the L1 loss between uvgt and the predicted uv-flow.

Note that the ground truth uv-flows are necessarily incom-

plete because, from one image, we can only assign a partial

texture map. When generating the digital dataset we also

compute visibility masks for the uv-flow, that we exploit

for computing the loss only on the visible textels. Ltex is

the L1 loss between the Tgt and the predicted texture map.

Ldt is a texture loss term that encourages the uv-flow to pick

colors from the foreground region (see [13]). This term is

consistently applied to the full texture. Each loss is associ-

ated with a weight. Note that we include both a loss on the

model parameters and a loss on silhouettes and projected

keypoints. Similar to Pavlakos et al. [23], we observed that
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a per-vertex loss improves training compared with naive

parameter regression. The network is implemented in Py-

Torch.

3.6. Per­instance optimization

The prediction of the texture map allows us to perform

an unsupervised per-instance optimization exploiting the

learned feature space and a photometric loss. Methods that

also exploit photometric loss often are assisted by a seg-

mentation [10], where the loss is computed only in the

foreground region. In this work we do not assume any

segmentation is available at test time, instead we render a

full image prediction, which requires building a background

model [26]. We estimate an average background color ex-

ploiting the manual segmentations of the images used to

build the SMALR models for training. Given an input im-

age, we run the regression network and then perform a per-

instance optimization where we keep the network layers

fixed and optimize over the feature space variables (Figure 4

dotted line). In this way we exploit the correlation between

variables learned by the network. During optimization we

minimize the following loss: Lopt =

Lphoto(Iinput, I) + Lcam(f̂ , f) + Ltrans(γ̂,γ), (6)

where Lphoto is the photometric loss, computed as the per-

ceptual distance [32] between input image and image pre-

diction. f̂ and γ̂ are the initialization values for focal length

and translation estimated with the network, respectively.

4. Experiments

Direct regression from the image. We train two networks:

a full network and one without the texture prediction mod-

ule, which is therefore trained without the uv-flow loss Luv ,

the image loss Limg , and the texture map losses Ltex and

Ldt. We train both networks for a budget of 200 epochs,

and retain the networks that performed best on the valida-

tion set. We use the Adam optimizer with a learning rate of

0.0001 and momentum of 0.9.

We run the prediction network on the set of 200 anno-

tated test images; see Figure 6 for representative results.

Table 1 reports the average PCK error for the predicted 2D

keypoints at two thresholds for the feed-forward prediction

(F) and for the network without texture prediction (G). For

comparison with previous work we fit the SMAL model to

the testset using the manual segmentations and keypoint an-

notations (A). We also evaluate the performance on a syn-

thetic dataset (B). To illustrate robustness, we perform an

experiment adding noise to the input bounding boxes (H).

To quantify the accuracy of the shape estimation, we com-

pute an overlap score as intersection over union of the man-

ual image segmentations and predicted animal mask.

In order to visualize the variability of the estimated shape

we computed the variance of the 40 shape features fs ob-

tained on the test set (see Equation 4) and look at the defor-

mations that are associated with the 4 features with maxi-

mum variance. In Figure 7 (top) we show vhorse+b−3σiWi

in the odd rows, and vhorse + b + 3σiWi in the even rows,

where σi is the standard deviation of the i − th shape fea-

ture and Wi is a row in the learned matrix W (Equation

4). In order to visualize the difference between the initial

SMAL shape space and the shape space learned from the

network, Figure 7 (bottom) shows the mean shape of the

network model (blue) obtained by adding the bias b to the

SMAL template, the SMAL template (pink) and the aver-

age of the SMALR meshes used to create the training set

(green).

Per-instance optimization. We run per-instance opti-

mization on the whole test set. We optimize over a budget of

120 epochs, and retain the solution with lowest photomet-

ric loss. Table 1 shows the performance of the optimization

(C). Figure 8 shows some examples. For comparison, we

also perform per-instance optimization over the model vari-

ables (D).

Method PCK@0.05 PCK@0.1 IoU

(A) SMAL (gt kp and seg) 92.2 99.4 0.463

(B) feed-forward on synthetic 80.4 97.1 0.423

(C) opt features 62.3 81.6 0.422

(D) opt variables 59.2 80.6 0.418

(E) opt features bg img 59.7 80.5 0.416

(F) feed-forward pred. 59.5 80.3 0.416

(G) no texture 52.3 76.2 0.401

(H) noise bbox 58.7 79.9 0.415

Table 1: Results. (A) We compare with SMAL model fit-

ting [34], which requires ground truth keypoints and seg-

mentations; (B) We run the network feed-forward predic-

tion on a synthetic dataset; (C) our proposed method; (D)

per-instance optimization on model variables rather than

network features; (F) feed-forward prediction (no optimiza-

tion); (G) feed-forward prediction without texture; (H)

feed-forward prediction with noise on the bounding boxes.

5. Conclusion

We have presented the first study of automatic 3D pose,

shape and appearance capture of animals from a single

image acquired “in-the-wild”. Traditionally the focus of

computer vision research has been the human body: deal-

ing with wild animals presents new technical challenges.

We overcome the lack of training data by creating a digi-

tal dataset that combines real appearance with synthesized

pose, shape and background. We remove the need for key-

point detection or segmentations by training an end-to-end

network to directly regress 3D pose, shape, camera, global

translation and texture from an image. We have shown that

predicting texture maps helps to recover more accurate pose
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Figure 6: Results. On two columns: input image, mesh overlap, predicted texture map, 3D rendering, 3D mesh.

Figure 7: Shape space. Top: Visualization of the variability

of shape in the testset from top and lateral view (see text).

We observe variability is in the belly and ears. Bottom:

Mean shapes: blue-network, pink-SMAL, green-SMALR.

and shape. Moreover we have shown that, thanks to the pre-

dicted texture map, we can improve results by performing

per-instance network-based optimization over the encoder

features by exploiting a photometric loss. In this work we

have focused on the Grevy’s zebra, but our approach is gen-

eral and can be applied to other animals or humans.

Figure 8: Per-instance optimization. Input image, initial

network prediction, optimization image and overlap.
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