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Abstract

Guided super-resolution is a unifying framework for sev-

eral computer vision tasks where the inputs are a low-

resolution source image of some target quantity (e.g., per-

spective depth acquired with a time-of-flight camera) and a

high-resolution guide image from a different domain (e.g., a

grey-scale image from a conventional camera); and the tar-

get output is a high-resolution version of the source (in our

example, a high-res depth map). The standard way of look-

ing at this problem is to formulate it as a super-resolution

task, i.e., the source image is upsampled to the target resolu-

tion, while transferring the missing high-frequency details

from the guide. Here, we propose to turn that interpretation

on its head and instead see it as a pixel-to-pixel mapping

of the guide image to the domain of the source image. The

pixel-wise mapping is parametrised as a multi-layer per-

ceptron, whose weights are learned by minimising the dis-

crepancies between the source image and the downsampled

target image. Importantly, our formulation makes it possi-

ble to regularise only the mapping function, while avoiding

regularisation of the outputs; thus producing crisp, natural-

looking images. The proposed method is unsupervised, us-

ing only the specific source and guide images to fit the map-

ping. We evaluate our method on two different tasks, super-

resolution of depth maps and of tree height maps. In both

cases we clearly outperform recent baselines in quantita-

tive comparisons, while delivering visually much sharper

outputs.

1. Introduction

A number of computer vision tasks can be seen as in-

stances of guided super-resolution. For instance, many

robots are equipped with a conventional camera as well

as a time-of-flight camera (or a laser scanner). The latter

acquires depth maps of low spatial resolution, respectively

large pixel footprint in object space, and it is a natural ques-

tion whether one can enhance its resolution by transferring

details from the camera image – see Figure 1. Another ex-

Figure 1: Guided super-resolution: given a low-resolution

depth map and a high-resolution guide image, our method

predicts a high-resolution depth map. The figure shows an

example output of the proposed method, for an upsampling

factor of 16×.

ample is environmental mapping, where maps of parame-

ters like tree height or biomass are available at a mapping

resolution that is significantly lower than the ground sam-

pling distance of modern earth observation satellites.

An alternative view of guided super-resolution is as a

generalisation of guided filtering [8], widely used in image

processing and analysis. A guided filter maps a source im-

age to a target image of the same size by computing, at each

pixel, a function that depends on the local neighbourhood

in both the source and the guide image (which can be the

source itself, as in the popular bilateral filter [27]). Guided

super-resolution does the same, except that the source im-

age has a lower spatial resolution and must additionally be

upsampled in the process.

The standard way to model guided super-resolution is as

an inverse problem: the source image is understood as the
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result of downsampling the target image. The objective is

to undo that operation, utilising the guide to constrain the

solution, by transferring high-frequency details that were

lost during downsampling, such as fine structures and sharp

boundaries. Model inference can either be done by directly

minimising an appropriate loss function, e.g., with varia-

tional methods [5]; or in two separate steps, e.g., upsam-

pling with generic bilinear or bicubic interpolation followed

by guided filtering [30].

Here, we propose an alternative interpretation of guided

super-resolution, where the roles of the source and guide

images are swapped: rather than finding a transformation

from source to target and constraining the output to be con-

sistent with the guide from a different image domain; we

instead prefer to find a transformation from the guide to the

target, i.e., a pixel-wise mapping from one image domain to

another without changing the resolution, and constrain the

output by demanding that its downsampled version matches

the source image.

In our implementation, we parametrise the mapping as a

multi-layer perceptron that takes as input all channels of the

guide image at a single pixel (plus two additional ”chan-

nels” corresponding to the pixel’s x- and y-coordinates).

In CNN terminology, the guide is augmented with two ex-

tra channels that encode pixel location, and then passed

through a convolutional network whose layers all use only

1 × 1 kernels. Thus, the transformation from the guide to

the target domain acts on pixels individually, without look-

ing at their neighbours. Spatial context relations are en-

coded implicitly, and adaptively per image, via the struc-

tural bottleneck created by learning a single set of transfor-

mation parameters that must be valid for all pixels. We refer

to this setup as ”pixel-to-pixel transformation”, as opposed

to ”image-to-image translation” with large receptive fields.

Importantly, our method is unsupervised: while the map-

ping is structurally a form of CNN, we do not learn a static

set of network weights from a training set and then apply

those weights to every new test image. Rather, we fit an

individual set of weights for each new image similarly to

[28], using all its pixels as ”training data” and the consis-

tency with the low-resolution source as ”supervision”.

We argue that this view of guided super-resolution has

two very practical advantages. (i) by starting already at the

desired resolution, and using only 1 × 1 kernels, different

input locations do not mix, which avoids blurring. (ii) by

using the same mapping function for all pixels and placing a

shrinkage prior on its parameters, one obtains a well-posed

problem without regularisation of the output image. In this

way, blurring is also avoided at the output stage. Together,

these properties lead to outputs with superior sharpness.

The contribution of this paper is a novel formulation

of guided super-resolution, as unsupervised learning of a

pixel-to-pixel transformation from the guide to the tar-

get image, constrained by the low-resolution source. We

present experiments on two tasks: super-resolution of depth

maps, and super-resolution of tree height maps. They

demonstrate that our formulation clearly outperforms com-

peting super-resolution methods at high upsampling factors

(×8 to ×32).

2. Related Work

Guided filtering. A large body of work exists about

guided filtering, without the additional challenge of super-

resolution. The general principle is to enhance the source

image by applying a filter whose output depends not only

on a local neighbourhood of the source image, but also on

weights derived from the same neighbourhood in the guide

image. The starting point is the bilateral filter [27], where

the source image itself serves as a guide. Classical exam-

ples that employ a guide from a different domain include the

joint bilateral filter [23], the guided filter (GF) [8] and the

weighted median filter [20]. Guided filtering has been used

to a diverse range of image processing applications, ranging

from low-level tasks like denoising [8] or colourisation [13]

all the way to stereo matching [10].

Guided super-resolution. Extensions of guided filtering

to the super-resolution problem have been explored for

super-resolving depth, as well as for low-level operations

like tone mapping and image colourisation. We distinguish

between local methods based on the above local filtering

principle, and global methods that formulate the upsam-

pling task as a global energy minimisation.

The local methods are variants of the two-step proce-

dure, i.e., first upsample the low-resolution source image

with naive interpolation, then enhance it by applying a fil-

ter that is controlled by the high-resolution guide [13, 30].

Variants include using the geodesic distance in the high-res

image instead of the raw contrast [19], and combining the

contrast in both the source and the guide image to determine

the filter strength [3].

Global methods formulate the super-resolution as an en-

ergy minimisation problem, whose solution returns the val-

ues of all pixels in the target image. The energy function

consists of a data term that measures the compatibility be-

tween the downsampled target image and the low-resolution

source image, and a smoothness term to regularise the ill-

posed problem. In the guided scenario the latter term is not

an isotropic preference for smooth solutions, but is modu-

lated by the guide image. The global approach has been

implemented as a Markov Random Field [4], and has been

extended to additionally include the idea of non-local means

to enhance image structures [22]. Another possible imple-

mentation is as variational inference [5], with an anisotropic

version of the total generalised variation (TGV) prior, mod-

ulated by the guide image. It has also been proposed to
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replace the TGV prior by an auto-regressive model [29],

whose parameters are again a function of the bilateral filter

response in the guide image.

Recently some methods have appeared that embed the

idea of bilateral/guided filtering in a global optimisation

framework, rather than apply a local filter. In particular, the

fast bilateral solver (FBS) [2] offers an optimisation mecha-

nism based on a sparse linear system [1] to obtain bilateral-

smooth outputs with sharp discontinuities. Whereas the

static/dynamic (SD) filter [7] converts the guided filtering

problem into a non-convex optimisation that is solved by

the majorisation-minimisation algorithm. Both have been

successfully used for guided super-resolution, besides other

image processing tasks.

Learned guided super-resolution. The methods de-

scribed so far are unsupervised. There is also a line of work

that learns from examples how to upsample the source im-

age while transferring high-frequency details from the guide

image to the target output. The advantage of such data-

driven methods is that learning from real image data how

to optimally fuse the source and guide images can poten-

tially give better results than a hand-crafted heuristic. The

disadvantages, as for all supervised learning, are on the

one hand that one must have access to a sufficient amount

of training data - in our case triplets of low-resolution

source, high-resolution guide and high-resolution target im-

ages. And on the other hand that the super-resolution algo-

rithm is, by design, overfitted to the training data and un-

likely to generalise across even mild domain shifts. Early

learning-based methods were based on the idea of dictio-

nary learning, where an image patch is seen as a (sparse)

linear combination of basis functions. For super-resolution,

one jointly constructs a basis (dictionary) of corresponding

source, guide and target patches, so that at test time the basis

coefficients can be extracted from the source and guide im-

ages and used to reconstruct the target image [18, 14]. More

recently, deep convolutional networks have been used to di-

rectly learn the mapping from the two inputs to the target

output, keeping the dictionary implicit in the network. The

deep primal-dual network [24] employs a standard encoder-

decoder architecture that takes as input the naively upsam-

pled source image and the guide, and outputs a differential

correction to the source image. The result is then further

refined with non-local total variation (TV) minimisation,

unrolled into a series of neural network layers. The deep

joint image filter [16, 17] encodes the source image and the

guide, then decodes the resulting features into the target.

Most prominently, the multi-scale guided network (MSG-

Net) [11] extracts features at different resolutions from the

guide image with an encoder branch, and uses them to guide

the upsampling of the source image by concatenating them

to layers of corresponding resolutions in a decoder branch

low resolution source

high resolution targethigh resolution guide

Figure 2: Illustration of the problem setting and notation.

that upsamples the source image. As before, the network

is trained to output a differential correction of the naive up-

sampling. [21] targets the specific case of super-resolving

semantic segmentations. The high-resolution ”guide” im-

age is passed through a standard semantic segmentation net-

work to generate a ”target” segmentation map, using a loss

function that encourages the target to have the same label

distribution as the low-resolution source map.

3. Method

Notation and Preliminaries

We denote the low-resolution source map as S, the high-

resolution target map that we aim to recover as T, and

the high-resolution guide image as G. For simplicity, and

w.l.o.g., we assume square images, with source S of size

M × M , target T of size N × N , and guide G of size

N × N × C, where C is the number of channels. To sim-

plify the notation, we use 1-dimensional pixel indices m ∈
[1 . . .M2] for the low resolution and n ∈ [1 . . . N2] for the

high resolution, which can be expanded to 2-dimensional

pixel coordinates [xm, ym] = xm when needed. The rela-

tion between N and M is given by the upsampling factor

D ∈ N
+: N = D · M . In other words, each source pixel

Sm covers a block b(m) of D ×D target pixels; see Fig. 2.

The value of a low-resolution pixel is the average of the un-

derlying high-resolution pixels (weighted averaging with a

known point spread function is also possible, but omitted to

simplify the notation):

sm =
1

D2

∑

n∈b(m)

tn =
〈

tn
〉

b(m)
. (1)

Our goal is to obtain an estimate T̂ of the high-resolution

map, given S and G.
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Proposed Solution

Instead of directly estimating the unknown target pixels

tn, we reformulate the problem as trying to find a function

fθ : R
C → R with parameters θ that maps every guide

pixel to a target pixel, t̂n = fθ(gn), such that the result is

consistent with the source image according to Eq. (1). As

a loss function to measure the consistency, we empirically

use the ℓ1-distance, leading to:

θ̂ = argmin
θ

∑

m

∣

∣sm −
〈

fθ(gn)
〉

b(m)

∣

∣. (2)

That problem is obviously ill-posed, since many different

target images T can be constructed that have loss 0. More-

over, even for given S, T and G a perfect solution can always

be found by choosing a sufficiently complex function1 fθ .

Here, we parametrise the function fθ as a multi-layer

perceptron (MLP), which takes as input the (C × 1)-vector

of intensities at a guide pixel gn and outputs the correspond-

ing target value t̂n. Restricting fθ to a function with reason-

ably low complexity ensures the problem is solvable. But

since some input images are easier to upsample than others,

always utilising the full capacity of fθ is prone to overfit in

most cases. A core insight of our method is that, instead of

regularising the output T̂, one can also combat overfitting

by encouraging the choice of a simpler fθ through a suit-

able regulariser, in our case an ℓ2-penalty on the network

weights:

θ̂ = argmin
θ

∑

m

∣

∣sm −
〈

fθ(gn)
〉

b(m)

∣

∣+ λ
∥

∥θ
∥

∥

2
, (3)

with a hyper-parameter λ that controls the strength of the

regularisation. There is still one issue with Eq. (3), namely

that the model in this form is too restrictive: it imposes a

one-to-one relationship between guide pixels gn and output

pixels t̂n. If, for instance, two pixels have the same colour

in the guide, then they will be mapped to the same target

depth, which is clearly not reasonable. Our trick to inject

the necessary flexibility is to additionally allow the mapping

to vary across the image plane:

θ̂ = argmin
θ

∑

m

∣

∣sm −
〈

fθ(gn,xn)
〉

b(m)

∣

∣+ λ
∥

∥θ
∥

∥

2
. (4)

Note that the regulariser ‖θ‖2 enforces low complexity of

the network fθ not only w.r.t. the guide pixel values, but

also w.r.t. the spatial location. In practice, we found it bene-

ficial to train separate branches for the intensities gn and the

coordinates xn, which are then merged by adding their acti-

vations, as depicted in Fig. 3. With this architecture it is also

possible to regularise each branch differently, by setting in-

dividual hyper-parameters λg, λx, λhead. This is convenient

1Except for the pathological case of two or more identical blocks in G

with different source values.

+

Linear 

+ 

ReLu

Linear 

ReLu

+

Linear

ReLu

+

Linear

Linear 

+ 

ReLu

Linear 

Figure 3: Architecture of the neural network used to model

the mapping between the guide image and the high resolu-

tion map.

when one has corresponding a priori knowledge, e.g., when

super-resolving semantic segmentations one may not want

the mapping to strongly vary across the image plane.

Super-resolving a given input image S with the help of

a guide image G now amounts to solving the optimisation

problem (4). This can be done with simple stochastic gradi-

ent descent, but it may be beneficial to use more advanced

optimisation schemes for this specific problem structure –

finding the best numerical scheme is left for future work.

Note that the optimisation over all pixels can be performed

efficiently in any deep learning framework, by implement-

ing fθ as a convolutional network F 1×1
θ

with (1 × 1) ker-

nels on all layers. The network takes as input the complete

guide image, augmented with two additional channels for

the pixel indices xn, yn, and outputs the complete target

image. Once the network parameters have been fitted, the

target is recovered by applying the function fθ to each pixel

of the guide, which corresponds to a forward pass in the

convolutional version:

t̂n = f
θ̂
(gn) , T̂ = F 1×1

θ̂
(G) . (5)

4. Experimental Results

In the following, we analyse the performance of the pro-

posed pixel-to-pixel transformation method on two differ-

ent datasets, and compare it to three state-of-the-art guided

super-resolution methods, as well as two baselines.

Evaluation Settings

In all experiments, we set the target resolution to 2562

pixels. We evaluate the algorithms at different upsam-

pling factors, namely ×4, ×8, ×16, and ×32, correspond-
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ing to source resolutions of 642, 322, 162, and 82 respec-

tively. We test the proposed method on two different appli-

cations, super-resolving depth and super-resolving vegeta-

tion height. For depth we use the data from the 2005 version

of the Middlebury benchmark [25, 9], from which we ex-

tract 120 high-resolution RGB images and depth maps. For

vegetation height, the test set is composed of 40 maps ex-

tracted from the Swiss national forest inventory [6] (we use

an updated version issued after the publication). As guide

images we use multi-spectral images from ESA’s Sentinel-2

satellite2. The satellite sensor records 13 channels at three

different resolutions, we limit ourselves to the four chan-

nels with the highest resolution of 10 m per pixel, which

are recorded in blue, green, red and near infra-red. In both

cases the source images are generated by downsampling the

ground truth targets with the appropriate scaling factor.

As baselines we adopt on the one hand naive bicubic in-

terpolation, without guide image; and on the other hand the

classical guided filter [8]. We further compare to two state-

of-the-art methods for guided super-resolution, namely the

Fast Bilateral Solver (FBS) [2] and the static-dynamic filter

(SD) [7]. For the former we used the authors’ original im-

plementation3, for the latter we ported the authors’ imple-

mentation4 to Python, and modified the data fidelity term

of the optimisation to match the per-block consistency of

Eq. (1). We select the parameters of FBS and SD according

to the authors’ guidelines and keep them constant for all ex-

periments. We have verified that the quantitative results are

consistent with the original publications.

The last method we compare to is a recent supervised

learning algorithm, MSG-Net [11], also in the authors’

original implementation5. We argue that guided super-

resolution is most useful if it is not easily possible to record

large amounts of data at the target resolution (e.g., large-

scale vegetation height maps at 10 m resolution cannot be

produced at a reasonable cost). Therefore, we follow a

common procedure from the literature [26, 15]: under the

assumption that the upsampling model is to some degree

scale-invariant, one can downsample the available M ×M
data by the factor D to obtain synthetic training data for

×D upsampling. The model thus trained for upsampling

(M/D)2 → M2 is then, at test time, applied to the actual

super-resolution task M2 → N2. We found that, due to the

repeated downsampling, the data provided by [11] was not

enough, so we additionally used the training data of [24].

Overall, we train MSG-Net on 5’000 images for depth and

on 8’000 images for vegetation height. Still, the data was

not sufficient to train for factors larger than ×8. For prac-

2Copernicus Sentinel data 2016, processed by ESA. https://

scihub.copernicus.eu/
3https://github.com/poolio/bilateral_solver
4 https://github.com/bsham/SDFilter
5https://github.com/twhui/MSG-Net

tical applications of guided super-resolution, the need for

large amounts of labelled training data is a real issue, and a

serious limitation.

For our method, we train the mapping fθ on batches

of 32 low-resolution pixels/blocks, using the ADAM op-

timiser [12] with learning rate 0.001. We centre the image

values and normalise them to unit standard deviation, for

both the source and the guide image. If the guide has more

than one channel, we normalise them separately. Pixel coor-

dinates xn are rescaled to the interval [−0.5, 0.5]. We train

for 32’000 iterations (independent of the upsampling fac-

tor), which takes about 120 seconds for a ×8 upsampling

on a standard GPU (Nvidia GTX 1080 Ti). The implemen-

tation of our method is available online 6.

As quantitative error metrics we use the Mean Squared

Error (MSE) and the Mean Absolute Error (MAE), both in

the original units of the respective datasets (pixel disparity

for depth, metres for tree height). Moreover, we also mea-

sure the Percentage of Bad Pixels (PBP) as defined in [7]:

PBPδ =
1

N2

∑

n

[

|t̂n − tn| > δ
]

(6)

with δ = 1 pixel for disparity, and δ = 3 metres for vegeta-

tion height.

Analysis

In this subsection we analyse the mapping learned by our

method, and illustrate the influence of the regularisation.

First, we visualise the mapping function fθ . In Fig. 4

we plot the learned dependence between intensity gn in the

guide and depth tn in the target image, at different image

locations xn. Close to the discontinuity the function has a

steep slope, as the network learns to translate the large in-

tensity change into a large depth change, so as to be consis-

tent with the depth change seen, at coarser resolution, in the

source image. As one moves away from the discontinuity

and into the homogeneous depth region to its right, the net-

work response flattens out, indicating that all colours of the

guide shall be translated to similar depth values. The pic-

ture nicely illustrates the mechanism behind our algorithm’s

ability to reproduce sharp edges: imposing smoothness on

the mapping function fθ is very different from imposing

smoothness on the target output. The function fθ indeed

changes slowly and has similar shape at the two leftmost

locations. But since that shape corresponds to a steep gradi-

ent, the depths at the two locations are very different. Reg-

ularising the mapping function instead of the output image

is a lot more robust to variations in image content.

Figure 5 depicts the effect of changing the regularisation

parameters λg, λx and λhead. The figure shows four cases:

6https://github.com/riccardodelutio/

PixTransform
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Figure 4: Illustration of the location-dependent mapping

function fθ .

guide ground truth target x = g = head = 0.0

x = 0.0, g = head = 0.1 g = 0.0, x = head = 0.1 g = 0.001, x = head = 0.0001

Figure 5: Illustration of different regularisation settings (up-

sampling factor ×8).

with no regularisation, the network fθ has more capac-

ity than needed and overreacts to intensity contrasts in the

guide. That behaviour is amplified if one excessively regu-

larises only w.r.t. the location xm, thus forcing fθ to base its

outputs mostly on the colour values gm. Conversely, regu-

larising heavily only w.r.t. gm causes the network to ignore

the colours of the guide, leading to blurry outputs. In the

bottom right, the regularisation weights are set to a sensible

compromise: λg = 10−3 and λx = λhead = 10−4. These

are the settings used in all our experiments.

Depth super­resolution

As commonly done, we run the super-resolution in dis-

parity (inverse depth) space. In Table 1 we show the means

and standard deviations of the three error metrics MSE,

MAE and PBP over the images in the depth dataset, for

upsampling factors of ×4, ×8, ×16 and ×32. For a ×4 up-

sampling factor all methods achieve similar performance.

MSG-Net stands out for having very low MSE, probably

since it was optimised on a huge training set to minimise

that error. The SD filter has a slight edge in terms of ro-

bustness and reaches the lowest MAE and PBP. It is worth

pointing out that even naive bicubic upsampling is compet-

itive, i.e., upsampling by a moderate ×4 is quite an easy

problem, for which the guide image has only limited effect.

For larger upsampling factors our method outperforms

all others w.r.t. all three metrics. We could not run MSG-Net

for factors above ×8, because not enough training data was

left after downsampling the low-resolution source images.

Fig. 6a shows a depth upsampling result for upsampling

factor ×8. Although our method on average achieves the

best results for this task – see Tab. 1 – we deliberately show

an image where MSG-Net has lower MSE. Nevertheless,

our output is visibly sharper and better preserves discon-

tinuities. The top right corner of the image shows a par-

ticularly difficult situation where the contrast is high, and

nearby pixels have similar colours, but different depths. In

this situation several methods, including ours, exhibit a ten-

dency to rely too much on the guide image and hallucinate

spurious depth patterns. In such cases, an additional reg-

ularisation of the output, e.g., with a total variation prior,

could potentially be helpful.

Fig. 6b shows the results for depth upsampling by a fac-

tor ×32. As can be seen, our method greatly outperforms

the competitors. Not only it achieves a much lower MSE,

but also the resulting image is a lot sharper and exhibits

fewer artefacts. Notice in particular the two thin sticks at the

bottom, where only our method reaches a reasonable recon-

struction quality. Another impressive feature is the recon-

struction of the hole in the middle of the image. While it is

not that surprising that the boundary can be transferred from

the guide; it is remarkable that from seeing the red colour of

the foreground, the white colour in the background outside

the object, and the area-weighted depth average of the two

in the source, the network is able to extract enough infor-

mation to choose the correct depth in the hole.

Super-resolution by a factor as high as ×32 is evidently

pushing things to the limit of what is possible, and satisfac-

tory results are not reached for all images. Figure 7 shows

a failure case. The guide image has a lot of texture details,

and nearby pixels with the same colour but different depths.

The target is still consistent with the source and contains the

true depth boundaries, but our method also transfers a lot of

spurious texture details where there should not be depth dis-

continuities. It may be possible to mitigate the problem –

but probably not completely solve – by stronger regularisa-

tion, perhaps making the regulariser λg dependent on the

upsampling factor.

Super­resolution of vegetation height

Table 2 again shows the means and standard deviations

of the three error metrics over the images of the vegeta-

tion height dataset, for upsampling factors ×8, ×16, and
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a. Depth ×8 b. Depth ×32 c. Vegetation ×8 d. Vegetation ×32

Guide Guide Guide Guide

Input Target Input Target Input Target Input Target

Bicubic (MSE=40.9) GF (MSE=45.5) Bicubic (MSE=246.3) GF (MSE=234.3) Bicubic (MSE=19.8) GF (MSE=20.4) Bicubic (MSE=89.8) GF (MSE=87.8)

FBS (MSE=73.4) SD Filter (MSE=46.3) FBS (MSE=205.8) SD Filter (MSE=20795.8) FBS (MSE=25.6) SD Filter (MSE=21.5) FBS (MSE=114.1) SD Filter (MSE=226.3)

MSG-Net (MSE=23.0) Ours (MSE=33.3) Ours (MSE=62.6) MSG-Net (MSE=20.0) Ours (MSE=15.5) Ours (MSE=33.8)

Figure 6: Qualitative results of different guided super-resolution methods.

×32. On this dataset most methods, including the bicubic

upsampling, still have comparable performance at upsam-

pling factor ×8, likely because vegetation height maps are

in general smoother than depth maps. Visually, our method

is again clearly sharper and recovers more high-frequency

details than its competitors, see Fig. 6c-d. As for the depth

case, our method outperforms others by a considerable mar-

gin at higher upsampling factors, in all three metrics.

Fig. 6c shows the results for vegetation upsampling by

a factor ×8. While the MSE values are not that different,

there is nevertheless a pronounced qualitative difference be-

tween our method and all others. The one that comes closest

is MSG-Net, but even after having seen thousands of low-

res / high-res pairs during training, the network is not able

to fully recover the high-frequency details and misses a lot

of the fine structures. FBS produces fairly sharp disconti-

nuities, but has a bias towards piece-wise constant outputs,

such that many of the fine details are also lost. In a sense, all

methods except for ours fail, in that they perform similar to

bicubic interpolation without a guide image, or even worse.

Fig. 6d shows an example for the extreme case of ×32
upsampling. The example illustrates that methods which

start by blowing up the low-resolution source image can-

not bridge such large resolution differences and essentially

produce a smoothed version of the input. On the contrary,

our method, which relies more strongly on the guide im-

age, shines in this difficult scenario. In the pixel-to-pixel

transformation from the image domain to vegetation height,

no spatial detail is lost. While it appears that even the av-

erage values over large blocks of 32 × 32 pixels provide

enough information to constrain the super-resolution in the

target domain. Obviously, it depends also on the nature of

the images whether such extreme super-resolution is feasi-

ble. In the case of the remote sensing images, the function

fθ is mostly driven by the colours gn of the guide, with

only little spatial variation. Still, while it is less surprising

that the height 0 m is correctly recovered outside the forest,

which largely corresponds to a semantic segmentation of

the guide; it is pleasing that within the forest regions a large

portion of the height variability is correctly reconstructed

too (yellow to green tones in Fig. 6d).

5. Conclusions

We have proposed a novel, unsupervised method for

guided super-resolution. The key idea is to view the prob-

lem as a pixel-wise transformation of the high-res guide im-

age to the domain of the low-res source image. By choosing
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Bicubic GF [8] FBS [2] SD filter [7] MSG-Net [11] Ours

×4
MSE 6.5 (11.5) 7.3 (13.0) 6.6 (10.9) 5.5 (9.9) 1.9 (3.0) 5.0 (8.6)

MAE 0.6 (0.5) 0.8 (0.6) 0.8 (0.5) 0.4 (0.4) 0.4 (0.2) 0.5 (0.3)

PBPδ=1 7.5 (5.8) 12.3 (8.4) 14.3 (9.4) 4.5 (3.8) 6.0 (4.9) 6.9 (5.1)

×8
MSE 12.2 (21.9) 10.2 (18.5) 11.9 (18.5) 15.1 (27.4) 8.3 (11.2) 5.6 (9.7)

MAE 1.0 (0.9) 1.0 (0.9) 1.3 (0.9) 0.7 (0.7) 1.4 (0.5) 0.6 (0.4)

PBPδ=1 14.6 (10.0) 16.3 (10.8) 29.9 (16.6) 9.1 (7.1) 43.7 (8.5) 8.8 (6.8)

×16
MSE 26.5 (48.7) 21.6 (40.9) 19.3 (34.9) 115.5 (369.7) - 8.4 (14.9)

MAE 1.9 (1.8) 1.7 (1.6) 1.8 (1.5) 1.3 (1.5) - 0.9 (0.7)

PBPδ=1 27.3 (15.8) 26.8 (15.4) 38.8 (19.3) 18.7 (12.5) - 15.5 (10.9)

×32
MSE 54.1 (95.2) 49.7 (88.3) 40.2 (72.3) 1343.3 (3374.5) - 26.0 (42.9)

MAE 3.3 (2.9) 3.2 (2.8) 3.0 (2.5) 2.7 (2.6) - 2.0 (1.7)

PBPδ=1 44.9 (21.6) 45.0 (21.7) 50.6 (22.5) 37.2 (19.4) - 36.3 (20.6)

Table 1: Performance comparison with the state-of-the-art algorithms on the depth map dataset for different values of upsam-

pling factors. The tables shows the means and (standard deviations) over all images of the MSE (in pixel2), MAE (in pixels),

and PBP (in %).

Bicubic GF [8] FBS [2] SD filter [7] MSG-Net [11] Ours

×8
MSE 18.1 (13.3) 19.0 (14.1) 28.2 (24.8) 20.7 (15.8) 17.9 (13.3) 17.6 (15.1)

MAE 2.4 (1.5) 2.5 (1.7) 3.1 (2.2) 2.4 (1.6) 2.3 (1.5) 2.1 (1.5)

PBPδ=3 26.2 (19.2) 28.2 (21.4) 32.3 (25.0) 26.8 (19.8) 26.1 (19.3) 23.5 (18.2)

×16
MSE 29.1 (22.5) 27.7 (21.1) 33.7 (27.8) 45.1 (45.4) - 19.7 (17.2)

MAE 3.1 (2.1) 3.1 (2.1) 3.5 (2.5) 3.8 (2.2) - 2.3 (1.7)

PBPδ=3 33.0 (24.4) 33.7 (25.5) 36.9 (28.0) 34.2 (25.6) - 24.2 (18.9)

×32
MSE 41.5 (33.6) 40.2 (32.6) 42.3 (34.4) 160.0 (228.3) - 21.2 (17.5)

MAE 4.0 (2.8) 3.9 (2.8) 4.1 (2.9) 4.2 (3.0) - 2.6 (1.8)

PBPδ=3 39.1 (29.4) 39.3 (29.8) 42.0 (31.8) 40.9 (30.7) - 29.2 (22.4)

Table 2: Performance comparison with the state-of-the-art algorithms on the vegetation height map dataset for different

values of upsampling factors. The tables shows the means and (standard deviations) over all images of the MSE (in m2),

MAE (in m), and PBP (in %).

guide source ground truth target predictied

Figure 7: An example of ×32 super-resolution where our

method fails. The predicted target is corrupted with lots of

high-frequency details from the highly textured guide.

a multi-layer perceptron as mapping function, inference in

our model is the same as fitting a CNN with only (1 × 1)
kernels to the guide, where the loss function is the com-

patibility between the downsampled output and the source

image. The advantage of our model is that, by construc-

tion, it avoids all unnecessary blurring. On the one hand,

it does not involve any upsampling of the source image by

interpolation. On the other hand, the reconstruction of the

super-resolved target image is regularised at the level of the

mapping function, in the spirit of CNNs, by fitting the same

kernels to tens of thousands of pixels, and by penalising

large weights (weight decay). Consequently, our method

is able to recover very fine structures and extremely sharp

edges even at high upsampling factors, setting a new state

of the art.

In future work, we hope to extend the approach to han-

dle not only super-resolution of coarse source images, but

also inpainting of sparse source images, so as to recover for

instance vegetation height from sparse field samples.
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