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Abstract

Quantization is a popular way of increasing the speed

and lowering the memory usage of Convolution Neural Net-

works (CNNs). When labelled training data is available,

network weights and activations have successfully been

quantized down to 1-bit. The same cannot be said about

the scenario when labelled training data is not available,

e.g. when quantizing a pre-trained model, where current ap-

proaches show, at best, no loss of accuracy at 8-bit quanti-

zations.

We introduce DSConv, a flexible quantized convolu-

tion operator that replaces single-precision operations with

their far less expensive integer counterparts, while main-

taining the probability distributions over both the kernel

weights and the outputs. We test our model as a plug-

and-play replacement for standard convolution on most

popular neural network architectures, ResNet, DenseNet,

GoogLeNet, AlexNet and VGG-Net and demonstrate state-

of-the-art results, with less than 1% loss of accuracy, with-

out retraining, using only 4-bit quantization. We also show

how a distillation-based adaptation stage with unlabelled

data can improve results even further.

1. Introduction

A popular method to make neural networks faster and

use less memory is quantization, which replaces 32-bit

floating point weights and, potentially, activations with

lower bit (i.e. lower precision) representations, while aim-

ing to maintain accuracy.

Quantization is often used in neural network compres-

sion. This aims to reduce the memory occupied by the net-

work weights as much as possible to, for example, lower

the overall memory footprint required to store the network.

It can also be used to increase neural network inference

speed (fast inference), when applied to both weights and

activations, by substituting expensive floating-point Multi-

ply and Accumulate (MAC) operations with cheaper alter-

natives such as integer, bitwise operations or addition-only

operations.

The best quantization results are achieved when labelled

training data is available, as the quantized model can be fit-

ted to the dataset, which feeds the training algorithm with

prior knowledge of what the activation maps will look like

and what the expected output will be. Maintaining a high

accuracy becomes much more difficult when only a pre-

trained model is available.

In this paper we focus on this latter scenario, and quan-

tize both weights and activations to produce neural net-

works that are both smaller and have faster inference. Our

key insight is that, in the absence of training data, this can be

best achieved by forcing the probability distributions over

the weights and activations of the low precision quantized

model to mirror those of the original full-precision model.

We introduce a novel convolution operator, which we call

DSConv, that factorises the convolution weights into (i) a

low-precision component with the same size as the origi-

nal kernel and (ii) a high-precision distribution shift compo-

nent, with a variable size (e.g. as small as one float 32 value

per kernel). A similar procedure, inspired by the block float-

ing point approach [35], is used to quantize activations. We

also show that accuracy can be improved when using a dis-

tillation [19] inspired weight adaptation approach, that uses

the original pre-trained model and unlabelled input data.

The main contribution of this paper is the introduction

of a convolution operator that (i) serves as a “drop-in and

play” replacement for standard convolution and uses low-

bit fixed point computation for the bulk of operations with-

out the need of retraining using labelled data, and (ii) pro-

vides a hyperparameter that can be tuned to favor accuracy

or memory usage/speed of computation for any given task.

Our quantization strategy is able to achieve state-of-the-art

results, as demonstrated by our experimental section.

The remainder of this paper is structured as follows. §2

presents the previous papers on quantization. §3 explains

the method in detail. §4 shows the results of the experi-

ments performed in a variety of architectures and settings.

§5 concludes the paper with a discussion on its performance

and possible applications and limitations.
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2. Related Work

The use of low-bit width networks saves a significant

amount of memory and computation, especially when tar-

geted to custom hardware. For example, for 8-bit oper-

ations, [26] reports up to 10x increase in speed, and [12]

reports up to 30x in energy saving and chip area. We cate-

gorize the previous research that tries to increase the neural

network efficiency in two groups:

Quantization with labelled data. Most research in neu-

ral network quantization has focused on problems that in-

volve retraining, by either starting from scratch or by adapt-

ing from an existing pre-trained network. BinaryConnect,

BWN and TWN [11, 32, 28] use 1-bit and ternary weights

to make the FP-MACS addition only. XNOR-Net and BNN

[32, 11] applied 1-bit quantized weight and activations to

ImageNet for fast inference, at the cost of a significant drop

in accuracy. WRPN [30] improved this accuracy by using

wider versions of the same architectures. Early demonstra-

tions of low-bit network acceleration in custom hardware

include Ristretto [16], which also uses data to quantize the

network to 8-bit models. Many other papers followed, by

also training the quantization scheme, using binary basis

vectors, such as in LQ-Nets [38], Halfway Gaussian Quan-

tization (HWGQ) [6], and ABC-Net [29]. DoReFa-Net [40]

also quantized gradients, alongside weights and activations.

The compression problem has also mostly been dealt

with by using retraining with access to labelled data. In

DeepCompression [17], two of the three steps of the al-

gorithm require retraining (pruning and quantization), with

Huffman Encoding being performed without the need for

data. HashedNet [7] use the “hashing trick” to save signifi-

cant amounts of memory when storing the network, but still

require labelled data for tuning. The more recent approach

[31], uses distillation [3, 19] obtain compressed weights,

but also requires the full labelled training set.

Several approaches introduce novel float data formats.

Examples are Dynamic Fixed Point [10], which substitutes

the normal floating point numbers with a mix of both fixed

and floating point; and Flexpoint [25], which aims to lever-

age the range of floating point numbers and the computa-

tional complexity of fixed point and promises to perform

forward and backwards operations with limited range. The

idea of substituting the representation of single-precision

(FP32) values in favour of other formats is also adopted in

the bfloat16 format in Tensorflow [2], which employs the

binary float 16 format that uses 7-bits for the mantissa in-

stead of the usual 23-bits.

Quantization without labelled data. Whereas the problem

of quantizing with labelled data has been researched exten-

sively, the problem of quantizing without data has received

far less attention. Recent papers that explore this possibil-

ity are [39, 8, 23, 4], which either report results only for

8-bit quantization or employ calibration data of some sort

- i.e. an unlabelled small fraction of the validation dataset

that is used for weight adaptation. Industry approaches have

implemented quantization techniques that use only a small

amount of unlabelled data, in systems such as TensorRT [1].

In this instance, they can successfully quantize a network to

8-bits with no loss of accuracy (sometimes even with im-

proved accuracy) from 1000s of sampled images [1]. Other

examples include the Google TPU, and Project Brainwave

([15, 9]), all of which quantize neural networks to 8-bits for

fast inference. Another work that shows that 8-bit quanti-

zation does not affect efficiency significantly is [26], where

they show that this is true even when quantizing both acti-

vation and weights.

In this paper, we show that quantization can be done ef-

fectively to 4-bits for both weights and activations, without

the need of retraining labelled data, with further potential

improvements when using adaptation with unlabelled data.

3. Method

For a given neural network inference f(x), the predic-

tion of f(Mx) should be identical (considering that biases

are scaled accordingly), for M ∈ R. DSConv is built on the

intuition that this property holds for some nonlinear trans-

forms of x, as long as the relative distribution of the weights

and activation values remains the same. We believe one

such transform to be quantization, i.e. we can scale and bias

quantized weights and activations in a way that is friendly

for low precision representation and still maintain the same

neural network accuracy, as long as distribution over the

weights and activations remains unchanged.

Adopting this strategy to the entire 4D tensor would

yield a very high cropping error, since a single scaling factor

M would not be able to single-handedly capture the entire

tensor distribution. In this paper we adopt the more gen-

eral strategy of using a tensor of scaling factors, whose size

is adjusted to capture the range of values with higher fi-

delity. Every tensor of floating point values is divided into

two components: one tensor with the same size of the orig-

inal, composed of low-bit integer values, and another one

with a fraction of the size, composed of floating point scal-

ing factors. Each scaling factor is responsible for the scal-

ing of a subgroup of B integer values along its tensor depth

dimension, where B is the block size hyperparameter.

The steps taken by DSConv are as follows: (I) From a

pre-trained network, divide the weight tensor depth-wise

into blocks of variable length B and quantize each block;

(II) Use the block floating point (BFP) format to quan-

tize the activations, where the block is the same size as the

weight tensor; (III) Multiply the integer values of the acti-

vations and the weight tensor to maximize inference speed;

(IV) Multiply the final values by their respective scales to

shift the distribution of the individual blocks to the correct

range.
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3.1. Weight Quantization

We propose a method for quantizing weights that shares

one floating-point value for each block of size B, along the

depth dimension of each weight tensor filter. An example

for the resulting sizes for each filter can be seen in Figure 1.

Given a weight tensor of size (Co, Ci,Kh,Kw) and a

block size hyperparameter B, we first divide the tensor into

two components: the Variable Quantized Kernel (VQK),

which is composed of low-bit values, and is of the same

size as the original tensor; and the Kernel Distribution Shift

(KDS), composed of single precision numbers ξ, and of size

(Co, ⌈
Ci

B
⌉,Kh,Kw), where ⌈x⌉ is the ceiling operation.

The B hyperparameter can seamlessly be modified to ac-

commodate for trade-off between floating point arithmetic

and fixed point arithmetic, with B = 1 for pure floating

point to B ≥ Ci for maximum fixed point.

Figure 1. Size of VQK and KDS for each weight filter, for the case

of B = 64. This reduces the number of FP MACs from 1350 to

27.

The VQK then holds integer values in 2s complement

such that for a specific number of bits b chosen, the weights

are in the interval:

wq ∈ Z, b ∈ N | −2b−1 ≤ wq ≤ 2b−1 − 1, (1)

This allows all the operations to be performed using 2s

complement arithmetic, as explained in §3.3.

By simply changing the normal convolution to DSConv,

the memory saved per tensor weight is:

p =
b

32
+
⌈Ci

B
⌉

Ci

(2)

Equation 2 shows that, for large enough values of B and

Ci, the memory saved is approximately the number of bits

b divided by 32. For illustration purposes, Table 1 shows

the numerical results for realistic values of Ci, B, b and p
for some layers of the GoogLeNet [34] architecture. As it

can be seen, significant memory saving can be achieved by

only quantizing, with no additional method such as Huff-

man Coding [21].

Channel (Ci) Block (B) Bit (b) Saving (p)

Inception (4a) 128 64 4 14.1%

Inception (4a) 128 128 4 13.3%

Inception (4a) 128 32 3 12.5%

Inception (4c) 256 128 3 10.2%

Table 1. Memory savings by quantizing only.

Given a known pre-trained model, the weights of each

block are stretched and rounded to fit in the interval in Equa-

tion 1, and they are stored in the VQK. Next, we explored

two possible methods to calculate the KDS values: (i) min-

imizing the KL-Divergence, which seeks to find the min-

imum loss of information between the distribution of the

original weights and the kernel distribution shifter and em-

phasizes the idea that the resulting VQK, after being shifted,

should have a similar distribution to the original weights; or

(ii) minimizing the L2 norm (Euclidean distance), which

can have the interpretation that parameters should be the

closest to the optimum value of the original network.

To minimise the KL-Divergence we first take the soft-

max values of both the shifted VQK and the original distri-

butions:

Tj =
ewj

∑

i e
wi

, Ij =
eξ̂·wqj

∑

i e
ξ̂·wqi

(3)

We then use gradient descent to minimize the following

for each slice:

ξ = min
ξ̂

∑

j

Tj log

(

Tj

Ij

)

, ∀ (1, B, 1, 1) slices (4)

where ξ is the KDS value for that block.

The other method minimises the following L2 norm for

each slice:

ξ = min
ξ̂

B−1
∑

i=0

(wqi ξ̂ − wi)
2 (5)

which has the closed form solution:

∴ ξ =

∑B−1

i=0
wiwqi

∑B−1

i=0
w2

qi

, ∀ (1, B, 1, 1) slices (6)

In practice, both strategies produced approximately

equal values. We performed all the experiments using the

L2 norm approach, since it has a closed form solution.

Algorithm 1 summarizes the process of initializing both

the VQK and the KDS given a pre-trained network model.

3.2. Activation Quantization

Our approach aims to achieve good performance in the

absence of any training data. This means that we have no

prior knowledge of what values or distribution the activa-

tion maps will have. Therefore, this quantization cannot be

data-driven. Instead, we used an approach inspired by the

block floating point (BFP) method of [35, 33, 14, 9, 15].
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Figure 2. Example of quantizing activation. This is the specific case where the mantissa bit was set to 3 and the block hyperparameter was

set to 8. Note that ½ LSB rounding performed when cropping. Note that this is performed after the ReLU layer, which means that all

values are unsigned positive.

Algorithm 1 Weight Initialization

Input bit-length b, pre-trained weights w, block size B

1: procedure QUANTIZE

2: m← 2b−1 − 1
3: for all Block B do:

4: wm ← argmax
w
(|w|)

5: s← m/wm

6: for all wi in B do:

7: wq ← round(wi · s)

8: ξ =
∑B−1

i=0
wiwqi/

∑B−1

i=0
w2

qi
return ξ, wq

Figure 2 shows our activation quantization approach. For

a given mantissa width, the activation tensor is divided into

blocks, and, for each block, we find the maximum expo-

nent. The mantissa values of all the other activations in

the block is shifted such that they match the maximum ex-

ponent, which is then cropped (using ½ LSB rounding) to

match the number of specified bits. This results in two ten-

sors: a mantissa tensor, which has the same shape as the

original tensor, but populated with b bits; and an exponent

tensor, which has size (Co, ⌈
Ci

B
⌉, H,W ).

We call this a BFP approach because we are essentially

“sharing” the exponent for each block of size B. This al-

lows for a control over how coarse the quantization is, and

how much cropping error we are willing to accept to get the

lowest bit-length for the mantissa tensor.

This approach has the added benefit of allowing low-bit

integer operations between the weights and activations, as

we show in §3.3. Therefore, the trade-off between effi-

ciency and speed of computation is as follows: the higher

the value of B, the bigger the cropping error will be, but the

exponent tensor and the KDS will be shallower. This is a

different trade-off to the number of bits b, which adds more

computational complexity and memory to the mantissa ten-

sor. The values of b and B are then inversely proportional

to each other and counter-balance each other’s positive and

negative effects. The goal then becomes to get the most ac-

curacy with the lowest number of mantissa bits b and largest

value for the block size B.

3.3. Inference

During inference, the hardware can take advantage of the

fact that the VQK and the mantissa tensors are low-bit inte-

ger values, which allows it to save time performing integer

operations rather than floating point operations. The data

path is illustrated in Figure 3.

First, each of the blocks of the VQK and the mantissa

tensor are dot producted, resulting in one value each. All

of these operations can be conducted in low-bit fixed point

arithmetic, which saves significant processing time. At the

end of the block multiplications, the result is a tensor of the

same size as both the exponent tensor and the KDS.

The exponent tensor is merged with the KDS tensor by

adding its value to the exponent of the KDS tensor values.

This results in a tensor of the same size of floating point

numbers. Finally, this tensor multiplies the result of the

product of the VQK and the KDS, and yields a single float-

ing point number as the output activation.

Notice that the inference is as highly parallelizable as a

standard convolution, but instead of performing most of the

multiplications using floating point arithmetic, the majority

can be substituted by integer multiplications, saving energy,

bandwidth and computation time.

This also means that, for each weight and activation mul-

tiplication, the number of blocks is proportional to the num-

ber of total floating point MAC operations, and the size of

the tensor itself gives the number of INT MAC operations.

Batch Normalization Folding. Similar to [23], we perform

“folding” of the Batch Normalization (BN) [22] parameters

in models that have them. Since batch normalization has

been shown to improve training (see [22]), we keep it during

the training phase and only fold it for inference.
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Figure 3. Example of convolution being performed, with VQK tensor (in blue) multiplying one section of the Mantissa Tensor (in red).

Each block of the VQK performs a dot product with each block of the Mantissa tensor. The result is a tensor with depth equal to the number

of blocks depth-wise. The Exponent Tensor performs addition of the exponent value of the KDS, and the result is multiplied by the result

of the dot product of the VQK and the Mantissa tensor, and that becomes the final output activation. This is performed for every filter.

When folding the BN parameters, we do so with the

KDS, since they are unique per channel and use FP32 val-

ues. We perform the folding using the equations:

ξfold =
ξγ

√

σ2

B + ǫ
(7)

bfold = β −
γµb

√

σ2

B + ǫ
(8)

where the parameters γ, σ, ǫ, β and µ are as defined in [22],

ξ is the KDS tensor and bfold is the resulting bias of the

DSConv.

3.4. Distillation for Unlabelled Data Adaptation

It is often the case that unlabelled data may be available,

as shown by the vast array of unsupervised learning meth-

ods available. For this specific scenario, we adopt a strategy

similar to [19]. We use the distillation loss without labelled

data to try to regress the FP32 model to the quantized one,

by using the FP32 logits as the target, and minimizing the

loss for regression.

We create a “shadow” model which holds single-

precision numbers. Before each inference, this model is

quantized to the VQK and KDS, inference is performed and

the gradients are calculated. During the update phase, the

gradients are accumulated as single-precision numbers, and

the method is performed until convergence.

Quantizing the activation maps after each inference

would cause the gradients to be zero everywhere. To avoid

this problem, we use the Straight-Through Estimator (STE)

[5, 37], to calculate the backwards gradient. Particularly, we

use the ReLU STE since it was shown in [37] that it gives a

better accuracy than using the Identity STE for deeper net-

works. The gradient is then also accumulated in a “shadow”

FP32 model, which is quantized after each batch iteration.

We use the ADAM Optimizer [24], with initial learning

rate 10−5 and after the loss plateaus, this rate is changed

to 10−6. All other hyperparameters and data augmentation

details follow their respective original papers.

We use 960 images (30 batches of 32) from the validation

dataset for the distillation, and we test the accuracy using

the rest of the images (49,040 images in total).

4. Experiments and Results

We tested our method on various neural network archi-

tectures: ResNet [18], AlexNet [27], GoogleNet [34], and

DenseNet [20]. We benchmarked our results on the Ima-

geNet dataset [13] (more specifically ILSVRC2012), which

has 1.2M images in the training set and 50k images in the

validation set. The results reported use images drawn from

the validation set. We tested our algorithm for all the tasks

indicated in the introduction. This section continues as fol-

lows: §4.1 finds the theoretical computational saving for

DSConv; §4.2 shows the results without training or adapta-

tion; §4.3 shows the accuracies when the model is adapted

with unlabelled data; and §4.4, for comparison with previ-

ous methods, shows the results for the retraining performed

in DSConv using labelled data.

4.1. Theoretical Computational Load on Block Size

Computational load is traditionally reported as a func-

tion of number of MAC operations needed in order to com-
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plete the algorithm. We note two caveats: integer MACs are

far less complex than FP MACs and, when supported by a

hardware implementation, can be run orders of magnitudes

faster than FP operations [26]; our method also relies on the

ability to create the mantissa tensor and the exponent tensor

dynamically (the VQK and the KDS are created statically,

so they are not considered here). This requires MAX, SHIFT

and MASK operations. These can be implemented efficiently

in custom hardware with few clock cycles. Therefore we

will focus on the comparison between number of INT vs FP

operations to assess the advantage of using this method.

In order for our method to be faster than normal convo-

lution, the time spent to perform the INT operations must

be less than the time spent on the FP32 operations. This

difference is a function of the block size and on the channel

parameter. Equation 9 shows the relation between the time

for an INT operation and the time for an FP operation:

Tint ≤ TFP

Ci − ⌈
Ci

B
⌉

Ci(1 + η)
(9)

The values Tint and TFP capture the amount of time

needed to perform an INT and an FP operation, respectively.

The parameter η is an “ideality” parameter that represents

the overall overhead in the MAX, SHIFT and MASK opera-

tions to perform DSConv in comparison to the normal con-

volution operator.

Also notice that, if Ci is divisible by B (which is of-

ten the case), then Equation 9 becomes independent of the

channel size and simplifies to:

Tint ≤ TFP

1− 1

B

1 + η
, if B | Ci (10)

Table 2 shows the ratio 1− 1

B
for the most common block

sizes experimented, when η = 0. As can be seen, if the

time to compute an INT value is less than 0.75 of the time

to compute a floating point operation, then all block sizes

bigger than 4 will be faster than the normal convolution.

This is often likely to be the case. For example, in modern

CPUs and in some GPUs, 8-bit operations can be up to 10x

faster than FP32 operations [26], and lower bit operations

can potentially be even faster in custom hardware such as

FPGAs. In custom software, operations in less than 8-bit

are also often faster.

Block 4 8 16 32 64 128

Ratio 0.750 0.875 0.938 0.969 0.984 0.992
Table 2. Relationship of Block Size and speed ratio needed.

The block size B imposes a limit on how much faster

DSConv can be over traditional convolution operators. Nat-

urally, DSConv can be up to min(Ci, B) times faster than

the traditional convolution, since it has min(Ci, B) times

less floating point operations than a normal convolution.

For example, for block sizes of 128 to 256 and channel sizes

of more than 256, DSConv can be up to two orders of mag-

nitude faster than a normal convolution.

4.2. Accuracy Before Retraining or Adaptation

Our method is designed to produce accurate results even

when training data is not available, by quantizing from a

pre-trained network.

Accuracy (% @ Top1 and Top5)

Block Bit (W/A) ResNet50 ResNet34 ResNet18

- 32 / 32 76.1 92.9 73.3 91.4 69.8 89.0

256 8 / 32 76.1 92.9 73.3 91.4 69.7 89.0

128 6 / 32 75.9 92.8 73.2 91.4 69.5 89.0

16 4 / 32 75.1 92.3 72.6 91.0 67.7 87.8

4 2 / 32 65.1 86.2 66.8 87.6 59.1 81.7

128 8 / 8 76.1 92.9 73.3 91.4 69.7 89.1

64 6 / 6 75.9 92.8 73.2 91.4 69.6 89.0

64 5 / 5 75.4 92.6 72.7 91.0 68.9 88.5

16 4 / 4 74.8 92.1 72.3 90.8 67.3 87.7

Accuracy (% @ Top1 and Top5)

Block Bit (W/A) GoogLeNet VGG19 Dense121

- 32 / 32 67.6 88.3 72.4 90.9 74.4 92.0

256 8 / 32 67.6 88.3 72.3 90.9 74.4 92.0

128 6 / 32 67.1 88.0 72.4 90.9 74.2 91.8

16 4 / 32 63.3 85.4 72.1 90.7 72.9 91.2

4 2 / 32 27.6 51.1 69.4 89.0 62.7 84.4

128 8 / 8 67.6 88.3 72.3 90.9 74.4 92.0

128 6 / 6 67.1 88.0 72.4 90.8 74.2 91.8

64 5 / 5 65.5 86.8 72.3 90.8 73.8 91.6

16 4 / 8 63.3 85.4 72.1 90.7 72.9 91.2

Table 3. Accuracy of Fast Inference and Compression without data

as a function of Bit width (in Weights and Activation) and Block

Size.

The second and fifth rows of Table 3 show that for both

the compression and fast inference problems, no loss of ac-

curacy can be achieved with 8-bit networks even with very

high block sizes, as already demonstrated by previous pa-

pers and real-life applications [26, 16]. The results also

shows that compression down to 4-bits (which in convo-

lutions with channel size input of 256 would yield a 5x

compression rate) results in an accuracy drop of only 1%

to 2% depending on the architecture. It can also be seen

that very low-bit quantizations become noticeably unstable,

varying greatly with architecture. At the extreme, using 2-

bits, losses vary by as much as -40% for GoogLeNet and

only -11% for ResNet50.

The last four rows show the results for the fast infer-

ence problem. Also as known in previous research papers

[26, 16], models of 8/8 bits lose only around 0.1% accu-

racy. For models of 5/5 and 4/4, we get a drop of 1% to

3% in accuracy. To our knowledge, this is the smallest bit-
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width for fast inference that has been reported when models

are neither retrained nor adapted.

The variance with respect to architecture suggests that

quantization for 5 or less bits is unstable. However, even for

fast-inference with 8-bit accuracy, it can achieve stable and

satisfactory results within 1% of the full precision model.

Accuracy with respect to Block Size Table 4 shows the

accuracy with respect to block size. The table shows the

results of quantizing the weights only, where the number in

parenthesis represents the bit-width of the weights. Natu-

rally, this represents a trade-off between memory and com-

putational load against precision of the network. The largest

Block 256 128 64 32 16 8 4

ResNet50 (4) 73.0 73.5 73.8 74.7 75.1 75.4 75.6

ResNet50 (3) 44.6 51.9 59.6 67.4 69.6 73.6 74.7

ResNet34 (4) 70.8 70.8 71.5 71.9 72.6 72.8 72.9

ResNet34 (3) 59.5 60.4 63.6 66.8 69.2 70.6 71.6

GoogLeNet (4) 52.5 57.0 59.1 61.7 63.3 65.6 66.5

GoogLeNet (3) 5.7 22.4 37.6 40.3 49.2 56.8 62.5

VGG19 (3) 67.6 68.6 69.5 70.4 71.1 71.6 71.8

VGG19 (2) 11.3 21.8 38.1 55.5 63.1 67.5 69.4

Table 4. Accuracy with respect to block size for the compression

case with no data available.

discrepancy in accuracy can be seen in models that use 3 or

2 bit weights. For example, the GoogLeNet model with 3-

bits improves its Top1 accuracy from 5.7% to 56.8% when

changing from a block-size of 256 to 8.

When using 4-bit quantization schemes, a decrease in the

block size achieves accuracy levels that are within 1% to 2%

of the full precision network. This is the case for example

for most networks with block sizes of 16 to 32.

4.3. Accuracy Adapted using Unlabelled Data

The results when adapting our network with extra un-

labelled data are reported in Table 5. For each Block-Bit

configuration, two results are reported: on the top we show

the result before adaptation and the bottom (in bold) the re-

sult after adaptation using unlabelled data. This strategy in-

creases inference accuracy using 4-bits only for the weights

and for the activations to within 2% of the FP32 precision

of the network, even for the extreme cases of using 128 as

the block size.

For 3-bits, even though we recover up to 30% accuracy,

there is still a considerable gap between the low-bit accura-

cies and the full precision ones. For ResNet50 this gap is of

6% whereas for GoogLeNet it can reach 10%.

Table 6 shows results of recent papers (introduced in

the literature review) that use calibration. This is similar

in spirit to our adaptation stage, in that both approaches

use only unlabelled data. The notable exception is that we

use distillation to convert a full-precision model to a low-

precision model, whereas the other approaches generally

Accuracy (% @ Top1 and Top5)

Block
Bit

(W/A)
ResNet50 ResNet34 ResNet18 GoogLeNet

32 4 / 4
74.1 91.8 71.3 90.2 66.4 87.1 61.2 81.9

74.8 92.1 71.8 90.6 68.3 88.1 66.1 87.2

64 4 / 4
73.0 89.8 70.9 88.4 66.1 85.1 58.4 79.3

74.8 92.1 71.8 90.6 68.4 88.1 65.2 86.8

128 4 / 4
72.6 89.6 70.2 87.9 65.8 84.8 55.8 77.3

74.2 92.0 71.3 90.5 67.5 87.8 64.7 86.3

32 3 / 3
63.3 85.0 63.2 85.0 55.3 78.4 34.5 60.5

72.6 91.1 69.6 89.4 66.8 87.5 60.0 83.3

64 3 / 3
54.4 77.9 58.1 81.3 30.1 51.6 29.3 53.9

71.5 90.4 69.1 89.3 65.8 87.0 56.7 81.0

Table 5. Results of adaptation for a variety of architectures for the

case where an adaptation dataset is provided.

calibrate just the optimal clipping strategy. It can be seen

that, even using a big block size of 64, we achieve bet-

ter performance. To our knowledge, this is the best result

achieved for fast inference using only adaptation data.

VGG16 AlexNet ResNet18 ResNet50

W A Top1 Top1 Top1 Top1

Naive [4] 4 8 29.0% 1.8% 0.8% 0.4%

CW [4, 26] 4 8 70.2% 52.9% 59.3% 72.4%

K+B [4] 4 8 70.0% 54.7% 67.0% 74.2%

OCS+MSE [39] 5 8 - - - 73.4%

Ours NA (16) 4 8 71.3% 55.9% 67.6% 75.1%

Ours NA (32) 4 8 71.2% 55.4% 66.7% 74.7%

Naive [4] 8 4 53.9% 41.6% 53.2% 52.7%

KLD [4, 1] 8 4 67.0% 49.6% 65.1% 70.8%

ACIQ [4] 8 4 70.5% 55.2% 68.9% 74.8%

Ours NA (16) 8 4 71.5% 56.4% 69.6% 75.7%

Ours NA (32) 8 4 71.5% 56.4% 69.6% 75.6%

Naive [4] 4 4 23.7% 1.8% 0.6% 0.4%

ACIQ [4] 4 4 68.9% 53.0% 65.3% 72.6%

OMSE+O [8] 4 4 - 54.5% 67.4% 72.6%

Our (64) 4 4 71.1% 55.8% 68.4% 74.8%

Table 6. Adaptation of our method vs previous papers. The Naive

method refers to simple clipping. CW is Channel-Wise quanti-

zation adopted in [36, 26]. K+B is the K-Means + Bias method

of [4]. KLD is the KL-Divergence method first proposed in [1].

OMSE+O is the OMSE + offset method of [8]. “Ours NA” refer

to our method with No Adaptation

4.4. Accuracy After Labelled Data Retraining

We also compared DSConv with previous methods that

retrain/finetune with labelled data (the vast majority in the

literature). Training happens similarly to adaptation, but

now we use labelled data and use cross-entropy loss in the

classification error instead of using logits.

Table 7 shows the results for ImageNet on a variety of

architectures. As many previous papers report different ini-

tial FP accuracy for the same architecture, we have also in-
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ResNet 18 ResNet34

W A Top1 Top5 W A Top1 Top5

FP 32 32 69.6 89.2 FP 32 32 73.3 91.3

FPLQ [38] 32 32 70.3 89.5 FPLQ [38] 32 32 73.8 91.4

BWN [32] 1 32 60.8 83.0 Ours (32) 3 32 73.4 90.1

TWN [28] 2 32 61.8 84.2 Ours (32) 4 32 73.6 90.1

TWN [28] 2 32 65.3 86.2 HWGQ [6] 1 2 64.3 85.7

TTQ [41] 2 32 66.6 87.2 Ours (64) 1 4 68.2 86.8

LQ [38] 2 32 68.0 88.0 ABC [29] 3 3 66.7 87.4

Ours (32) 2 32 68.7 86.7 ABC [29] 5 5 68.4 88.2

LQ [38] 3 32 69.3 88.8 Ours(16) 4 4 73.0 89.7

Ours (32) 3 32 69.7 87.5 LQ[38] 1 2 66.6 86.9

LQ [38] 4 32 70.0 89.1 LQ [38] 2 2 67.8 89.1

Ours (32) 4 32 70.0 87.6 LQ [38] 3 3 71.9 90.2

XNOR [32] 1 1 51.2 73.2 Ours (16) 3 3 72.7 89.6

DoReFa [40] 1 2 53.4 -

DoReFa [40] 1 4 59.2 - ResNet50

Ours (32) 1 4 65.2 86.2 W A Top1 Top5

HWGQ [6] 1 2 59.6 82.2 FP 32 32 76.0 93.0

ABC [29] 3 3 61.0 83.2 FPLQ [38] 32 32 76.4 93.2

ABC [29] 5 5 65.0 85.9 LQ[38] 2 32 75.1 92.3

Ours (128) 5 5 70.0 89.3 Ours (32) 2 32 75.2 92.6

LQ [38] 1 2 62.6 84.3 LQ[38] 4 32 76.4 93.1

LQ[38] 2 2 64.9 68.2 Ours(128) 4 32 76.4 93.0

LQ [38] 3 3 68.2 87.9 HWGQ [6] 1 2 64.6 85.9

Ours (16) 3 3 69.2 88.9 ABC [29] 5 5 70.1 89.7

LQ [38] 4 4 69.3 88.8 LQ[38] 1 2 68.7 88.4

Ours (64) 4 4 69.8 89.2 LQ[38] 2 2 71.5 90.3

Ours(32) 2 2 72.5 91.2

DenseNet121 LQ[38] 3 3 74.2 91.6

W A Top1 Top5 Ours (32) 3 3 75.2 92.4

FP 32 32 75.0 92.3 LQ[38] 4 4 75.1 92.4

DoReFa [40] 2 2 67.7 88.4 Ours (64) 4 4 76.2 92.9

FPLQ [38] 32 32 75.3 92.5 Ours (128) 4 4 76.1 92.8

LQ [38] 2 2 69.6 89.1

FPOurs 32 32 74.4 92.2 GoogLeNet

Ours (32) 2 32 74.0 91.8 W A Top1 Top5

Ours (16) 2 2 72.1 90.6 FPHWGQ [6] 32 32 71.4 90.5

HWGQ [6] 1 2 63.0 84.9

AlexNet FPLQ [38] 32 32 72.9 91.3

W A Top1 Top5 LQ [38] 1 2 65.6 86.4

FP 32 32 57.1 80.2 LQ [38] 2 2 68.2 88.1

TWN [28] 2 32 54.5 76.8 FPOurs 32 32 67.6 86.3

FPLQ [38] 32 32 61.8 83.5 Ours (32) 4 4 66.3 85.5

LQ[38] 2 32 60.5 82.7 Ours (64) 4 4 65.7 85.1

FPOurs 32 32 56.6 79.1

Ours (32) 2 32 55.0 78.1

Table 7. Results of retraining for a variety of architectures. Table

derived from [38]

cluded the initial FP of the single precision results to make

an evaluation that takes into account the “upper limit” of the

architecture itself.

From the results, it can be seen that our method can beat

the state-of-the-art for a variety of cases, as long as the

Block Size is adjusted properly to give more emphasis on

accuracy rather than speed.

DSConv can beat the state-of-the-art when using bit sizes

that are either 4 or 5. In these cases (such as ResNet18

using 5/5, ResNet50 using 4/4 and GoogLeNet using 4/4),

we also use a large Block Size, with slightly better than the

FP efficiency in ResNet18 when using B = 128 and bit

sizes of 5/5, and B = 64 for bit sizes of 4/4.

In order to get state-of-the-art results for 3-bits or less, a

lower block size is needed. This is shown for DenseNet121

results, which uses bit-width of 2 and Block Size of 16 to get

72.1% accuracy. Extremely low-bit weights and activations

do not work very well because the assumption that lower

information loss in quantization corresponds to higher ac-

curacy starts to break down. This is supported by the fact

that the state-of-the-art approaches for 1 and 2 bit weights

are trained from scratch, which suggests that for these cases,

quantizing from a pre-trained network is not ideal.

We also show good results for the compression case.

ResNet50 with 4 bit and B = 128 illustrates that no loss

of accuracy is observed, and even using only 2 bits, with

accuracy staying within 1% using B = 32.

5. Conclusion

We presented DSConv, which proposes an alternative

convolution operator that can achieve state-of-the-art results

whilst quantizing models to up to 4-bits in weight and acti-

vation without retraining or adaptation.

We showed that our method can achieve state-of-the-art

results without retraining in less than 8 bit settings, which

makes it possible for fast inference and less power con-

sumption for rapid deployment in custom hardware. By

having the advantage of being tunable by the block size hy-

perparameter and not needing any training data in order to

run, we propose that this method is very suitable for accel-

eration of convolutional neural networks of any kind.

When using unlabelled data and distillation from the

FP32 model, we can achieve less than 1% loss using 4-

bit for both weights and activations. Also, as in previous

methods, we demonstrate that the assumption that lower in-

formation loss in weight quantization correspond to higher

inference accuracy breaks down when quantizing to ex-

tremely low bits (1, 2 or 3 bits). In these cases, retrain-

ing seems inevitable since they are quintessentially different

than higher accuracy models.
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