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1. ShapeGlot details

To build the triplets comprising the communication con-
texts of ShapeGlot, we exploited the latent (bottleneck-
derived) vector space of a Point-Cloud based AutoEncoder
(PC-AE) [1], trained with chair-only objects of ShapeNet
[3]. Concretely, we used a PC-AE with small bottleneck
(64D) to promote meaningful euclidean distances and af-
ter embedding all ~ 7000 ShapeNet chairs in the resulting
space, we computed their underlying 2-(euclidean)-nearest-
neighbor graph. On this graph, we selected the 1K chairs
with the highest in-degree to ‘seed’ the triplet generation.
For each of the 1K (seed) chairs, we considered it together
with its two nearest neighbors from the entire shape collec-
tion to form a Hard triplet. Also, we considered it together
with the two chairs that were closest to it but which were
also more distant from it than the median of all pairwise
distances, to form an Easy triplet. The above procedure
gives rise to 2000 communication contexts when target vs.
distractor information is ignored. However, to counterbal-
ance the dataset while annotating these contexts in AMT,
we ensured that each chair of a context was considered as
a distractor and as a target, and that each resulting combi-
nation was annotated by at least 4 humans. Last, we note
that when building the Hard triplets, we applied a manually
tuned distance-threshold, to reject triplets that contained ob-
jects that were ‘too’ close: we found that about ~ 3% of
chairs had a geometric duplicate that could vary only wrt.
its texture.

2. Image and point-cloud pre-training

For the listeners and speakers we trained a PC-AE un-
der the Chamfer loss [1] with a 128D bottleneck and point
clouds with 2048 points extracted from 3D CAD models,
uniformly area-wise. We also fine-tuned a VGG-16 pre-
trained on ImageNet on a 8-way classification, with 36,632
rendered images of textureless 3D CAD models, taken from
a single view-point. Concretely, we used images of the 8

largest object classes of Shape-Net (car, airplane, vessel,
sofa, chair, table, lamp, riffle) and a uniformly random i.i.d.
split of [90%, 5%, 5%] for train/test/val purposes. We fine-
tuned the network for 30 epochs. During the first 15 epochs
we optimized only the weights of the last (fc8) layer and
during the last 15 epochs the weights of all layers. The at-
tained test classification accuracy was 96.9%. Last, to em-
bed an image for the downstream listening/speaking tasks,
we used the 4096D output activations of the penultimate
(fc7) fully-connected layer.

3. Pre-processing utterances

We preprocessed the collected human utterances by 1)
lowercasing, ii) tokenizing by splitting off punctuation, iii)
tokenizing by splitting superlative or comparative adjectives
ending in -er, -est to their stem word, e.g. ‘thinner:” —
[‘thin’, ’er’] and, iv) replacing tokens that appear once or
not at all in a training split with a special symbol mark-
ing an unknown token (<UNK>). Furthermore, we ignored
the utterances comprised by more than 33 tokens (99th per-
centile) and those for which the human listener in the un-
derlying trial did not guess correctly the target. Last, we
concatenated listener and speaker utterances from the same
trial (in their order of formulation) by adding in the end of
each but the last utterance a special symbol marking a dia-
logue: (<DIA>), e.g. [‘the’, ‘thin’, ‘chair’, <DIA>, ‘yes’].

4. Listeners details

For the listeners we used a uni-directional LSTM cell
with 100 hidden units, the output of which was passed
into a 3-layer MLP with [100, 50, 3] neurons that pre-
dicted the triplet’s classification logits. To the output of
each hidden layer of the MLP, batch normalization [4] and
a ReLU [7] non-linearity was applied. The listeners’ word-
embedding was initialized with a 100D GloVe embedding
pre-trained on the 6B Wikipedia 2014 corpus, and which
was further fine-tuned during training. The PC-AE (128D)
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Figure 1: Baseline listener architecture combining 2D images, 3D point-clouds and linguistic utterances.

Architecture
Hyper Baseline | Early-Context | Combined-Interpretation
Parameters
Learning rate 0.0005 0.001 0.001
Label-smoothing 0.9 0.9 0.9
L5 regularization 0.3 0.05 0.09
LSTM-input-dropout 0.5 0.7 0.45

Table 1: Optimal hyper-parameters for ablated neural listener architectures, using both geometric modalities and word-
attention and various degrees of context. Dropout numbers reflect the keep probability.

and VGG (4096D) latent vectors, that encoded each object,
were passed as input to the LSTM when only one geometric
modality was used. When the two modalities used together,
the PC-AE codes were concatenated with the output of the
LSTM, and the concatenated result was processed by the
final MLP. In either case, we first re-embedded these geo-
metric codes (100D) with 2 separate/single FC-ReLU layers
(referred as ‘projection’ layers in the Main Paper Section 3).
An overview of the proposed listener reflecting the overall
design choices is given in Fig.1. We used dropout with 0.5
keep probability before the ‘projection’ layers with a drop-
out mask that was the same for the objects of a given triplet.
Separate dropout with 0.5 keep probability was applied in
all input vectors of the LSTM (i.e. on the language tokens
or the grounding geometric codes). Last, the ground-truth
indicator vectors of each triplet were label-smoothed [10]
by assigning 0.933 probability mass to the target and 0.0333
to the distractors (i.e. smoothing of 0.9).

Discussion Label smoothing yielded a mild performance
boost of ~ 2% across all ablated listener architectures, in
accordance with previous work [10]. We note that we did
not manage to improve the best attained accuracies by ap-
plying layer normalization [2] in the LSTM, or adversarial

regularization [8] on the word-embedding. Dropout [9] was
by far the most effective form of regularization for our lis-
teners (~[8-9]%), following by Ly weight-regularization of
the projection layers (~[2-3]%). Finally, using a separate
MLP to process the PC-AE codes, was slightly better than
feeding them directly in the LSTM (after the tokens of each
utterance were processed). However, grounding the LSTM
with the PC-AE codes, and using the VGG codes in the
end of the pipeline (either via pre-MLP concatenation or by
feeding the latter in the LSTM) deteriorate significantly all
attained results.

Context Ablations We ablated three architectures that
used simultaneously images and point-clouds, word atten-
tion and different degrees of context (See Main Paper Sec-
tion 3). The optimal Hyper-Parameters (HP) for each archi-
tecture are shown in Table 1. We did a grid search over the
space of HP associated with each architecture separately.
To circumvent the exponential growth of this space, we
search it into two phases. First, we optimized the learn-
ing rate (in the regime of [0.0001, 0.0005, 0.001, 0.002,
0.004, 0.005]) in conjunction with the drop-out (keep prob-
ability) applied at the LSTM’s input, in the range [0.4-0.7]
with increments of 0.05. Given the acquired optimal val-



ues, we searched for the optimal Lo weight-regularization
(in the range of [0.005, 0.01, 0.05, 0.1, 0.3, 0.9]) applied
at the two projection layers, and label-smoothing ([0.8, 0.9,
1.0]). For these experiments we used a single random seed
to control for the data splits with the object-generalization
task. We note that for the Early-Context listener, using a
single 1D convolutional layer to extract the grounding vec-
tor of each object, appeared to produce better results than
using a single FC layer (or deeper alternatives). This sin-
gle convolutional layer we used, converted the input sig-
nal [f(v;,vk)||g(vj, vg)||vi] € RI99X3 0 a R10OX1 LSTM-
grounding vector for each object v;, with an 8 x 3 x 1 kernel
and stride 1.

Training We trained the Baseline and the Combined-
Interpretation for 500 epochs and the Early-Context for
350. This was sufficient, as more training increased overfit-
ting without improving the attained test/val accuracies. We
halved the learning every 50 epochs, if the validation error
was not improved in any of them. Namely, every 5 epochs
we evaluated the model on the validation split in order to se-
lect the epoch/weights with the best accuracy. Because the
Combined-Interpretation is sensitive in the input order of
the object codes, we randomly permute them during train-
ing. We use the ADAM [6] (51 = 0.9) optimizer for all
experiments.

5. Speaker details

Image-based speaker To find good model parameters for
an image-based speaker, we considered a hyper-parameter
search on a literal variant. Similarly, to what we did in the
ablations of listener variants we conducted a two-stage grid
search given a single random seed and the object general-
ization task. At the first stage, we searched models varying:
a) the hidden neurons of the LSTM (100 or 200), b) the
initial learning rate ([0.0005, 0.001, 0.003]), c) the drop-
out keep probability applied on the word-embeddings ([0.8,
0.9, 1.0]) and d) the dropout keep probability applied at the
LSTM’s output ([0.8, 0.9, 1.0]). The two best performing
models were further optimized by considering Lo-weight
regularization applied at the FC-projection layer (with val-
ues in [0, 0.005, 0.01]) and the dropout keep-probability
applied before the FC-projection layer ([0.5, 0.7, 0.9 1.0]).
The resulting optimal parameters are reported in Table 2.

Point-cloud-based speaker For the point-based speaker,
we did a similar but more constrained hyper-parameter
search as we did for the image-based speaker, by also con-
sidering its literal variant. Here, we fixed the drop-out ap-
plied the word-embeddings and to the LSTM’s output (0.8
and 0.9 keep-probability respectively) and ablated the re-
maining hyper-parameters as we did for the image-based

speaker. We found the same configuration of parameters
(Table 2) to be optimal for point-based models as well. Ex-
ception to this was the the dropout applied to the PC-AE
codes before the FC-projection (no dropout at all was best
in this case). Also, the point-based speakers needed more
training to converge than the image-based ones (maximally
400 epochs vs. 300).

Model selection To do model selection for a training
speaker, we used a pre-trained listener (with the same
train/test/val splits) which evaluated the synthetic utterances
produced by the speaker during training. To this purpose
the speaker generated 1 utterance for each unique triplet in
the validation set via greedy (arg-max) sampling every 10
epochs of training and the listener reported the accuracy of
predicting the target given the synthetic utterance. In the
end of training (300 epochs for image-based speakers vs.
400 for point-based ones), the epoch/model with the high-
est accuracy was selected.

Other details We initially used GloVe to provide our
speakers pre-trained word embeddings, as in the listener,
but found that it was sufficient to train the word embedding
from uniformly random initialized weights (we used the
range [-0.1, 0.1]). We also initialized the bias terms of the
linear word-encoding layer with the log probability of the
frequency of each word in the training data [5], which pro-
vided faster convergence. We train with SGD and ADAM
(61 = 0.9) and apply norm-wise gradient clipping with a
cut-off threshold of 5.0. The training utterances have a max-
imal length of 33 tokens (99th percentile of the dataset). For
any speaker we sampled utterances of the maximum train-
ing length. For the pragmatic speaker we sample and score
50 utterances per triplet at test time (following Eq.1 of Main
Paper).

Point-cloud & image-based speaker In preliminary ex-
periments, we attempted to incorporate both geometric
modalities: point-clouds and images in a speaker net-
work, similarly to what we did for the best-performing lis-
tener. While, this resulted in a (literal) speaker model that
could achieve higher neural-listener evaluation-accuracy
than when either modality was used in isolation, we did not
observe any improvement against the image-based speaker
in AMT human-listener experiments.

We attempted three ways of ‘mixing’ the two modalities
in a speaker. Namely, for each object of a communication
context: a) providing the LSTM with the concatenation of
its projected VGG code and its projected PC-AE code, b)
same as a) but instead of concatenation, using the sum op-
erator, c) first providing its PC-AE projected code followed
at the next time step by its VGG one. We compared these
approaches by using the optimal hyper-parameters for an



LSTM Size | Learning rate | Lo-reg.

Word-Dropout | Image-Dropout | LSTM-out Dropout

200 0.003 0.005

0.5 0.9

Table 2: Optimal hyper parameters for literal image-based neural-speaker. The dropout numbers reflect keep probabilities
and the Image-Dropout refers to the dropout applied at the VGG-image codes, before the FC-projection layer.

Approach Listener’s Accuracy
Concat (100D) 65.1 +0.51%
Concat (200D) 78.2 £ 0.95%

Sum 77.9 +0.38%
Serial 79.0 + 0.32%

Table 3: Ablating approaches for incorporating simultane-
ously point-clouds with images in a literal neural-speakers.
Sum: Summing the two latent codes for each object. Con-
cat: Concatenating the codes. Serial: Feeding them one af-
ter the other in the LSTM. Concatenation naturally doubles
the input-dimensions of the LSTM (Concat 200D). To keep
them the same as with all other experiments (100D) we also
tested reducing the VGG/PC-AE projection layers to 50 di-
mensions for each modality (Concat 100D). Results are av-
erages of 5 samples of utterances for a fixed test dataset.

image-based speaker and only vary the amount of dropout
applied to the point-cloud before the projection layer ([1.0
0.8, 0.6] keep probability). In all cases, avoiding dropout
was best. The final results for a single random-seed and
the object-generalization task are reported in Table 3. We
note that while the optimal speaker that used two modalities
performed slightly better than the image-based speaker, per
neural-listener evaluation, it did not improve the attained
performance in preliminary experiments with of human lis-
teners in AMT.

6. Further quantitative results
6.1. Listeners: context incorporation

In Table 4 we complement the results presented in
the Main Paper at Table 1, by including two more sub-
populations (‘Negative’ and ‘Split’). In Table 5, we repeat
this study for listeners trained and tested on the language
generalization task. *Negative’ is a subpopulation of utter-
ances that contain at least one word of negative content e.g.
‘not’, ‘but’ etc. and is comprised by ~ 15.0% of all test
utterances. ‘Split’ is smaller subpopulation (~ 3.2% of test
data) that includes language the explicitly contrasts the tar-
get with the distractors e.g. ‘from the two that have thin
legs, the one...”. We used an ad hoc set of search queries
to find such utterances among the test set and found that
the Early-Context architecture does perform noticeably bet-
ter on these utterances. However, given the low occurrence
of such cases, the resulting effects were not significant and

we decided the gains of Early-Context architecture were not
worth the increase in model complexity and rigidity with re-
spect to context size.

6.2. Listeners: part-lesion

We complement Table 3 of the Main Paper, with a simi-
lar study (Table 6) where we ablate our neural listeners with
regards to their sensitivity in referential utterances based on
object parts, when both geometric modalities are used. We
have observed that the PC-AE attempts to reconstruct (de-
code) noisy but complete models, even when the input is a
partial, which could explain the gains seen in Table 6 com-
pared to Table 3.

6.3. Speakers: length penalty and listener aware-
ness

To find the optimal length-penalty value («, Main Pa-
per Eq.1) for image-based literal and a context-unaware
speaker variants, we used our best-performing listener to
simultaneously score and evaluate the utterances produced
by the speakers for different values of « (Fig. 2a). The best
performing length penalty for a context-unaware speaker is
0.7, and for a literal 0.6. Given the optimal « values, for
these models we show the effect of using different degrees
of listener-awareness () in Fig. 2b. It is interesting to ob-
serve that even the context-unaware speaker can generate
utterances that an evaluating listener can find them very dis-
criminative, as long as is allows to rank them.

In Fig. 3 we demonstrate the effect that the relative
(training) size of the evaluating listener vs. the ’internal’
listener used by a pragmatic speaker has for the evaluating
accuracy, for two values of 3. In either case we observe a
slow decline in evaluating accuracy as the training size for
the evaluating listener increases (from 0.5 to 0.9) and conse-
quently the training size for the ’internal’ listener decreases
(from 0.5 to 0.1).

6.4. Understanding out-of-class reference

We complement the Table 5 (Main) with the standard-
deviations of the underlying accuracies in Table 8. We
also report simple statistics regarding the underlying trans-
fer classes in Table 7. We note that the transfer learning
accuracies acquired by listeners operating with both point-
clouds and images for these experiments were significantly
lower (~ 7% on average). We hypothesize that this is due to
the fact that our (chair-trained) listener models that utilize



. Subpopulations
Architecture Overall Hard Easy Sup-Comp Negative Split
Combined-Interpretation | 75.9 +0.5% | 67.4+1.0% 83.8+0.6% 74.4+1.5% 77.3+1.5% 65.8+5.2%
Early-Context 79.4+0.8% | 70.1+1.3% 88.1+0.6% 75.6+2.2% 789+1.4% 67.4+3.6%
Baseline 79.6 £0.8% | 69.9+1.3% 88.8+04% 763+1.3% 77.5+1.2% 625+3.7%

Table 4: Comparing the effect of context inspection for listening on various (test) subpopulations of the object generalization
task. The listeners use images, point-clouds and word-attention. Reporting averages of five random seeds controlling the

split populations and the network’s initialization.

. Subpopulations
Architecture Overall Hard Easy Sup-Comp Negative Split
Combined-Interpretation | 78.4+0.2% | 71.5+0.6% 852+0.3% 758+09% 77.6+0.8% 61.8+3.0%
Early-Context 84.4+05% | 785+0.8% 90.2+0.7% 809+0.6% 82.6+1.1% 68.9+2.3%
Baseline 83.7+0.2% | 77.0+£0.8% 90.3+0.3% 80.8+0.8% 80.5+1.0% 64.6+3.7%

Table 5: Comparing the effect of context inspection for listening on various (test) subpopulations of the language general-
ization task. The listeners use images, point-clouds and word-attention. Reporting averages of five random seeds controlling

the split populations and the network’s initialization.

Single Part | Single Part

Lesioned Present
Mentioned Part | 44.9%4+1.2 | 67.2% £1.1
Random Part 68.9% +£1.3 | 42.3% +1.3

Table 6: Evaluating the part-awareness of neural listeners
by lesioning object parts. Results shown are for listeners
using both point-clouds and images, with average accuracy
of 78.8% when intact objects are used.

Population
Class entire H with part ‘ without part
chair || 7.1 8.0(77%) | 4.7(21%) |
bed 6.4 7.0 26%) 5.3 (48%)
lamp 7.3 || 11.0 20%) 5.9 (37%)
sofa 10.1 11.0 (72%) 5.9 (15%)
table 6.6 8.0 (40%) 4.9 (42%)
average 7.6 || 9.3(39.5%) | 55(35.5%)

Table 7: Average length of utterances for various transfer
classes (complementing Table 5, Main Paper). Between
parentheses is reported the percentage of the entire popu-
lation that is captured by its specific sub-population. The
average (last row) is wrt. the transfer classes only; the chair-
category is displayed for reference.

point-clouds, rely on a pre-trained single-class PC-AE, un-
like the pre-trained VGG (image encoder) which was fine-
tuned with multiple ShapeNet classes. Also, for these ex-
periments, [~1% ~7%] (depending on the transfer class) of
the tokens were not in the chair-vocabulary, and we chose

to ignore them i.e. treat them as white-space. Last, per Ta-
ble 7 in all transfer classes the with-part population contains
quite larger utterances than the without-part (9.3 vs. 5.5 on
average) and that even in the case of lamps, arguably the
most dissimilar category from chairs, 20 4 37 = 57% of the
collected utterances are in the known population.
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Figure 2: Left: Measuring the effect of using different length-penalty («) values to select the top-1 scoring utterance for
context-unaware and pragmatic speakers for contexts of the object generalization validation split (left). Right, measuring
the the effect of various 3-values used in turning the context-unaware and literal speakers (5 = 0.0) to pragmatic speakers,
under the optimal « of the left figure. In both plots, the y-axis reflects the performance of a listener who is used to rank and
evaluate the utterances. Averages are with respect to 5 random seeds controlling the data splits and the initializations of the
neural-networks.
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Figure 3: Effect of partitioning the training data for the evaluating and ‘internal’ listeners. Here, we turn context-unaware
and literal speakers into pragmatic ones under two [ values. The x-axis shows the fraction (f) of the training data that was
used to train the evaluating listener (the remaining 100 — f% is used to train the infernal listener) of the resulting pragmatic
speaker. On the y-axis we display the performance of the evaluating listener for the top-scoring model-generated utterance.

: Class bed chair lamp sofa table
Population
entire 56.4 +2.0% | 77.4 £0.9% | 50.1 £1.3% | 53.6 £2.0% | 63.7 +£1.2%
known 558 £1.5% | 77.8 £0.8% | 51.9 +1.8% | 55.0 +£2.0% | 65.5 £0.9%
with part 63.8 +4.2% | 77.0 £0.8% | 60.3 +4.4% | 55.1 +2.5% | 68.3 +2.6%
without part 51.5 +£3.0% | 80.5 £1.2% | 47.1 £2.8% | 54.7 £5.5% | 62.7 +0.9%

Table 8: Transfer-learning of neural listeners in novel object classes: average accuracies with standard deviations (comple-
menting Table 8, Main Paper). The sub-populations denote entire: all collected utterances, known: utterances containing
only chair-training-vocabulary words, with-part: subset of known, with utterances containing at least one part-related word,
without-part subset of known and complement of with-part. For reference the test-chair statistics are shown (first row) but
not included in the reported average (last row).



Figure 4: Examples of attention weights on human utterances. The listener’s LSTM appears to learn attention weights
that emphasize the more informative words disambiguating the referent. For these results the Baseline listener is used and
the attention-scores are extracted when the target object is grounding the LSTM.
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human utterance  adirondack chair <DIA> flat

0.00 0.10 0.90

listener scores

human utterance  the chair has lines all up the back the one that almost has a solid
listener scores 0.29 0.02 0.69 0.21 0.02 0.77
human utterance  fancy back with armrest chair has triangles on back support
listener scores 0.01 0.07 0.92 0.31 0.02 0.67
has four spaces in the back

human utterance back and seat have slats .
and multiple pieces for the seat



Figure 5: Examples of lesioning all but the mentioned part. Here, we show the response of a Baseline listener tested with
visual representations of entire objects (left column, three chairs) vs. its response when it receives only the visual features
corresponding to the referred semantic-part (right column). The corresponding utterance is shown left-most of each row. In
these examples the listener assigns higher confidence to the actual target when the isolated parts are considered instead of the
entire objects, implying that further performance gains can occur with an explicit part-aware visual attention mechanism.
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Figure 6: Pragmatic vs. literal speakers for two modalities. More examples of pragmatic vs. literal generations in Hard
contexts. Tor-row includes examples from image-based speakers. Bottom-row from point-based ones.
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(a) Model generations with real images. The top-scoring utterance of a pragmatic model is displayed under each context.
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(b) Human-utterance comprehension with unseen object classes. The human utterance is color-coded according to the attention placed
by a chair-trained listener who also evaluates the object-utterance compatibility (scores shown under its context).
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= a2

the target has sections for the back this sofa has rounded and corners
listener scores ~ 0.04 0.06 0.90 listener scores 0.01 0.06 0.93
the bed is square shaped and the the bed has a fancy metal
headboard is the shape of a headboard and two pillows
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Figure 8: Effect of context on production: Synthetic utterances generated by a literal and pragmatic image-based speaker. The top and bottom rows show
utterances produced for the same target in a Easy and Hard context, respectively. The Baseline (with point-clouds and images and attention) listener is used to
predict the target and its confidence is displayed above each utterance. While both speaker models produce similarly effective utterances in Easy contexts, the
literal speaker fails to produce effective utterances in Hard contexts.
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(a) Neural-listener failure cases. Our top-performing listener model appears to struggle to interpret referential language that relies on
metaphors, precisely counting parts, or (to a less degree) negations. All examples are drawn from the test set and were correctly classified
by human listeners in the original task.

metaphors
distractors target distractors target
listener scores 0.39 Q.27 0.34 0.48 0.13 0.39
human utterance mickey mouse ears if it were a man’s suit it would have tails
counting negation
listenerscores 9,63 0.2 .35 0.57  0.13 0.30

human utterance six bars on back open arms, no rails on back

(b) Neural-speaker failure cases. Sometimes even the pragmatic speaker produces insufficiently specific utterances that mention only
undiagnostic features, or produces utterances that are literally false of the target (e.g. there technically is a hole in the back) while still
succeeding in distinguishing the objects.

literally inaccurate

not specific enough but relatively true
distractors target distractors target
listener scores @0.22 0.48 0.30 0.02 0.06 0.92
pragmatic the one with the square base no holes in back
listener scores  @.32 0.21 Q.47 0.05 0.09 0.86

literal the one with the thicker cushion solid



word

office

sofa

regular

folding

wooden

stool

wheels

metal

normal

rocking

Easy pmi

-1.70

-0.94

-0.88

-0.84

-0.83

-0.79

-0.78

-0.71

-0.67

-0.66

Hard word

alike

identical

thickness

texture

darker

skinnier

thicker

perfect

similar

larger

pmi

0.69

0.67

0.67

0.66

0.65

0.64

0.63

0.62

0.62

0.61

Table 9: Most distinctive words in each context type accord-
ing to point-wise mutual information (excluding tokens that
appeared fewer than 30 times in the dataset). Lower num-
bers are more distinctive of Easy and higher numbers are
more distinctive of Hard.

7. Miscellaneous

Each game consisted of 69 trials (unique triplets) and
participants swapped speaker and listener roles with the
conclusion of each trial. The game’s interface is depicted
in Figure 10. Participants were allowed to play multiple
games, but most participants in our dataset played exactly
one game (81% of participants). The most distinctive words
in each triplet type (as measured by point-wise mutual in-
formation) are shown in Table 9).

You are the speaker.

You the back rest and the bottom parts look the same

You ‘ top part of the back is wider than in the seat

Partner | ok, got it
send

Bl BB

Figure 10: Reference game interface. Communication was
natural without any system constraints being imposed.
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