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The supplemental material is organized as follows.
Sec. S1 provides a brief explanation of a standard camera
imaging pipeline, including where white balance (WB) is
applied. Sec. S2 provides qualitative results of the proposed
method. The training details are provided in Sec. S3. Sec.
S4 provides more failure examples of pre-trained deep neu-
ral network (DNN) models. Lastly, we provide additional
results of our experiments in Sec. S5.

S1. Camera Imaging Pipeline

Digital cameras apply a series of processing routines to
convert a captured raw-RGB sensor image to the final sRGB
output image. These routines are part of the image signal
processor (ISP) hardware on the camera. While each cam-
era manufacturer has its own customized ISP, researchers
have developed reasonable representative ISP that includes
the main components of typical camera pipeline [15, 26].

Fig. S1 provides a high-level diagram of the common
steps applied onboard a camera’s ISP. Stages in the pipeline
that are nonlinear in nature have yellow boxes around them.
Input raw-RGB image The input starts with a minimally
processed sensor image referred to as the raw-RGB image.
The RGB values are with respect to the spectral sensitivity
of the R, G, B color filters on the sensors color filter array.
Demosaicing The first step is to reconstruct three R, G, B
values for each pixel based on the incomplete color samples
provided by the color filter array.
Noise reduction Many cameras include a routine to reduce
sensor noise.
WB and Colorimetric transform The next step is to ap-
ply WB correction based on the scene illumination. This
is done by applying a single 3 × 3 diagonal matrix to each
RGB color value. The entries of this diagonal matrix are re-
lated to the scene illumination. This can be either estimated
directly from the image (i.e., auto white balance), or based
on a manually selected pre-set matrix (i.e. the user selects
the illumination type from a menu). Based on the estimated
correlated color temperature of the WB, a colorimetric con-
version matrix is then applied to map the white-balanced

raw-RGB values to a perceptual color space – namely, the
CIE 1932 XYZ space [6]. Note that if the WB is applied
incorrectly, the image will have a strong color cast and the
resulting CIE XYZ values will be wrong. An example is
shown in Fig. S1, where both an incorrect and a correct
WB images in their intermediate CIE XYZ image-states are
shown after the WB and CIE XYZ transform step.
Hue/saturation Manipulation The hue/saturation manip-
ulation is applied to make the rendered images more ap-
pealing [13]. This process is usually implemented as a 3D
lookup table (LUT).
Exposure Compensation Beside the physical exposure
control (i.e., shutter speed and aperture size), digital expo-
sure may be applied to the pixel intensities using a simple
linear gain.
General Color Manipulation Each camera has its own
color manipulation function that is usually represented by
a 3D LUT and applied in order to get more visually pleas-
ing colors.
sRGB Color Space Conversion At this stage, a 3×3 full
matrix is used to convert pixel values from the previous
stage to the final sRGB color space. During this stage, a
gamut mapping operation is performed to map the out-of-
gamut pixels to the sRGB gamut. The simple approach is
gamut clipping [21], while gamut compression can be used
for a better mapping [12].
Tone Curve Application Before producing the final sRGB
image, a camera-specific tone map operation is applied.
This tone map is specified based on the current selected
camera photo-finishing style. It is worth noting that tone
mapping operations may include local image processing
that are dynamically changed based on the context of the
captured scene [4, 13, 22].

The entire processing chain that “renders” the final
sRGB image, as described above can be expressed the fol-
lowing equation [1]:

IsRGB = fraw→sRGB(Iraw), (S1)

where Iraw and IsRGB are 3×n matrices containing sensor
raw-RGB and final sRGB rendered values of the image, re-
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Figure S1. This figure is adapted from [15] and shows a typical camera ISP pipeline, where a correct and incorrect WB has been applied. As
can be seen, the WB procedure (shown in green) is performed early in the pipeline. Afterwards, a number of nonlinear color manipulations
(shown in yellow) are applied to obtain the sRGB output image. Applying the incorrect WB results incorrect colors in the final output.
This examples show the same image rendered with the correct and an incorrect WB setting.
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Figure S2. (A) Input image rendered with a correct WB. (B) The same image rendered with different in-camera color temperatures (denoted
by t) and photo-finishing styles. (C) Our generated images. (D) Residual error between (B) and (C). The terms AS and CS refer to Adobe
Standard and Camera Standard photo-finishing styles, respectively. The 4E 2000 error [27] is shown on top of each image in (C). The
original raw-RGB image was taken from MIT-Adobe FiveK dataset [5].

spectively, and f(·)raw→sRGB represents the in-camera ren-
dering operations.

It is important to emphasize that the arrangement and the
details of the shown camera pipeline components in Fig. S1
may differ based on the camera manufacturer and model
producing different colors by each camera capturing the
same scene under the same conditions.

From this quick review of camera imaging pipeline, we
can see that computing f−1raw→sRGB(·) to invert the photo-
finishing process is a challenging task. The current methods
for linearization (i.e., undoing the nonlinearity applied on
the rendered sRGB colors) simplify the color rendering pro-
cedure by a global tone mapping function, called the camera
response function (e.g., [7, 11, 19, 20]), or a single gamma
operation (e.g., [2, 9]). This simplifications, however, can-
not properly linearize sRGB images captured by arbitrary

cameras (e.g., images from the Internet) [1].
In order to undo such nonlinear operations, a careful

camera-specific calibration is needed [16]. Even the ex-
isting methods for raw-RGB image reconstruction only can
work under certain conditions, such as embedding metadata
for the reconstruction process [23, 24], or using camera-
specific DNN model [22]. Because of these challenges, we
sought to find a solution that can work directly in the sRGB
color space in order to emulate different WB effects.

S2. Results of WB Errors Emulation

Our WB emulation method produces images with differ-
ent realistic color casts related to correlated color tempera-
ture. Here, we show some additional results of our method
in Fig. S2. Specifically, we show that our results are similar
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Figure S3. Unlike traditional color augmentation techniques, our generated images are similar to what real camera produces with different
WB settings. (A) Input image captured with the correct WB setting. (B) Images generated by RGB color jittering (first row) and HSV
jittering (second row). (C) Images generated by our method. (D) The same image rendered with different in-camera WB settings. The
color temperatures (denoted by t) are written on each image in (A), (C), and (D). Except for the first image, original raw-RGB images were
taken from MIT-Adobe FiveK dataset [5].

to what the actual in-camera sRGB rendered images would
look like with the same color temperatures. Fig. S3 shows
a qualitative comparison between our results and gener-
ated images by traditional color augmentation techniques—
namely, RGB color and HSV jittering. We show the real
in-camera rendered images with the same color tempera-
tures used by our WB emulation method. We can see that
our results are close to real camera rendered images with
different WB settings.
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Figure S5. Image rendered with two in-camera color temperatures
(denoted by t). The first image (left) is classified as corn, while
the second image (right) is classified as packet. Classification
results were obtained by AlexNet [18].
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Figure S4. Different strategies to deal with improperly white-balanced images. (A) Traditional training process with unprocessed training
set and applying a pre-processing WB correction step to each image in the inference phase. (B) Applying a pre-processing WB correction
step to both training and testing images. (C) Color augmenting training images without any pre-processing applied during the inference
phase. In (A) and (B), we used the WB-sRGB method [1] for the pre-processing WB correction.

(A) Cat images with incorrect WB are misclassified

class: lynx

(B) White-balanced images are correctly classified

class: Egyptian cat

class: doormat

class: tabby

class: cup

class: Egyptian cat

Figure S6. This figure shows the effect of incorrect WB on DNN
models for image classification. (A) Three cat images rendered
with incorrect WB settings are misclassified by ResNet-50 [14],
trained on ImageNet [8]. (B) After applying a pre-processing
WB [1], the images are correctly classified. Photo credit: Hisashi
Flickr (CC BY-SA 2.0).
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Figure S7. Our proposed method generates images similar to what
camera produces with different WB settings which can negatively
affect pre-trained DNN models for image classification. In this
example, we show predicted classes by AlexNet [18] in top of each
image. (A) Correctly white-balanced image. (B) Rendered images
with different in-camera WB settings. (C) Our generated images.
The color temperature (denoted by t) is shown in bottom of each
image. The term E stands to Egyptian.

S3. Training Details
In order to examine the potential improvement of the

strategies discussed in the main paper (summarized in Fig.
S4), we trained SmallNet [25] on CIFAR-10 training set
[17]. We also fine-tuned AlexNet [18] to recognize the

(A) Original images (B) Generated images with different WB settings

Figure S8. Examples from ImageNet validation set [8] (first row)
and ADE20K validation set [29] (second row). (A) Original im-
ages. (B) Images with different WB settings produced by our
method.

Real incorrect WB examples are misclassified as ‘recolored images’ 
by [ ]. The images were rendered from raw images in Gehler-Shi 

dataset without recoloring post-processing.

Figure S9. A pre-trained DNN for image recoloring detection
classifies improperly white-balanced images as “ recolored
images”—which is incorrect. In this example, we used a recent
DNN model proposed in [28].

new classes in CIFAR-10/100 datasets [17]. SmallNet and
AlexNet were used to evaluate the potential improvement
on image classification results. Additionally, we fine-tuned
SegNet [3] on the training set of ADE20K dataset [29] for
image semantic segmentation. The detailed results obtained
by each model were discussed in the main paper. Now, we
provide more details about the training process.

As CIFAR dataset contains 32×32 pixels images, Small-
Net was implemented to accept images with these dimen-
sions. In order to fine-tune AlexNet, we rescale all images
to 227× 227 pixels to fit with the input size of the architec-
ture. For SegNet, the input size was 360× 480 pixels.

Training was performed using mini-batch stochastic gra-
dient descent with momentum. In our experiments, we used
0.9 momentum. The L2 regularization factor was set to
0.0005. The mini-batch size was 512 images for SmallNet



and AlexNet. For SegNet, the mini-batch size was 4 images
due to the GPU memory limitation.

The cross entropy loss was used for image classification
(i.e., SmallNet and AlexNet). For image semantic segmen-
tation (i.e., SegNet), we adopted the weighted pixel-wise
entropy loss as be suggested by [3]. The assigned weights
for each class were computed using the median frequency
balancing [10].

The learning rate λ was as follows. For AlexNet’s
conv1–fc7 layers, we used λ = 10−4. For AlexNet’s fc8
layer, we used λ = 10−4 × 20. SmallNet and SegNet
were trained using λ = 10−3. We trained SmallNet and
AlexNet for 300 and 30 epochs without and with color aug-
mentations, respectively. SegNet was trained for 110 and 11
epochs without and with color augmentations, respectively.
Each model was trained for less than 1 day, ∼15 days , and
∼25 days for SmallNet, AlexNet, and SegNet, respectively.

As demonstrated in the main paper, the reason behinds
adjusting the number of epochs for training with and with-
out color augmentation is our seek for unbiased compar-
isons between models trained on original training sets and
those trained on color augmented training sets—color aug-
mented training set is 10 times the original training set. As
a result, each model was trained on the same number of
mini-batches (i.e., the same number of iterations).

S4. Failure Cases of Pre-trained DNNs
In the main paper, we illustrated an example showing

that different WB settings can change the attention of DNN
models. In Fig. S5, we show another example illustrating
the impact of color casts caused by different WB settings on
the DNN’s attention.

Fig. S6 shows images rendered with real in-camera in-
correct WB settings. As shown, pre-trained ResNet-50 [14]
misclassifies the original cat images, while they are cor-
rectly classified after applying a pre-processing WB correc-
tion. In this example, we used the WB-sRGB method [1].

As our generated WB effects are close to what real cam-
era produces, both (real and synthetic) WB settings can fool
pre-trained DNNs. Fig. S7 shows an example. In this ex-
ample, we show the classification results of AlexNet [18].

In Sec. 3 of the main paper, we studied the effect of
incorrectly white-balanced images on different pre-trained
models for image classification and semantic segmenta-
tion. In this study, we used ImageNet validation set [8] and
ADE20K validation set [29] after applying different WB
settings on each image using our method. Fig. S8 shows
examples of the generated images with different WB set-
tings used in our study.

Interestingly, incorrectly white-balanced images can also
affect DNN models for other tasks. As an example, Fig. S9
shows images classified as “ recolored images” by a
recent DNN model proposed in [28] for recoloring detec-
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Figure S11. (A) Original image. (B) and (C) Generated by RGB
and HSV jittering, respectively. (D) Generated by our WB emu-
lation method. (E) Ground truth semantic mask. (F) color codes.
Result masks are obtained by training on augmented data using
RGB/HSV jittering and our WB emulation method. The best re-
sults are shown in red borders.

tion. The shown images are not recolored images; however,
they were rendered with an incorrect WB setting which de-
ceives the DNN model.

S5. Additional Results
In this section, we provide additional results obtained

during our experiments discussed in the main paper.
Fig. S10 shows additional examples of SegNet results.

As shown, the trained model using our WB augmentation
is more stable against changes in WB settings compared to
the model trained on the original training set.

It is worth pointing out that when we utilize a certain
augmentation technique, we implicitly help the model to
expect inputs with similar conditions to what the color aug-
menter generates. When the testing images having unre-
alistic color manipulations generated by RGB/HSV jitter-
ing, we found that trained models on augmented data by
these techniques (i.e., RGB/HSV jittering) are more robust
than models trained on other types of images (e.g., original
or WB augmented training images). However, for images
with color casts caused by different WB settings, the trained
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Figure S10. Additional results of SegNet [3] on ADE20K validation set [29]. (A) Original validation image. (B) Ground truth semantic
mask. (C) & (D) Results of trained model wo/w color augmentation using image in (A), respectively. (E) Image with a different WB. (F)
& (G) Results w/o and with color augmentation using image in (E), respectively. (H) Color codes. The term ‘pxl-acc’ refers to pixel-wise
accuracy.

model with our WB augmentation has more resistance than
other models; Fig. S11 shows an example.

In the main paper, we discussed the results acquired us-
ing our collected external set (Cat-2). This set includes
15,098 images rendered with different real in-camera WB
settings. This set was generated by rendering raw-RGB im-
ages of CIFAR-10 object classes in order to test the trained
models on images rendered with in-camera WB settings.
Fig. S12 shows examples from our external testing set.

In Fig. S13, we show additional examples, rendered with
different in-camera WB settings, which are misclassified
by AlexNet trained on the original CIFAR-10 training set.
Note that all the shown misclassified images are correctly
classified by AlexNet model trained on the WB augmented
set generated by our method.
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Figure S12. Examples of sRGB images used in Cat-2 (i.e., the external testing set of in-camera rendered images). We used this set to
evaluate trained models on CIFAR-10 dataset [17]. Class labels of CIFAR-10 dataset are written on top of each column. (A) Images were
rendered using the in-camera auto WB setting. (B) Images were rendered with different WB settings. (C) Pre-processing WB correction [1]
is applied to images in (B).

(A) Images rendered with in-camera auto WB are correctly classified after training on the original training set

(B) Images rendered with different WB settings are misclassified after training, but correctly classified after training on WB augmented training set
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Figure S13. Additional results obtained using Cat-2. (A) Correctly classified images rendered with in-camera auto WB. (B) Misclassified
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on WB augmented data.
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