
A. Comparison with State-of-the-art
We give an overview of relevant recent learned compres-

sion methods and their differences to our GC method and
BPG in Table 1. [34] were state-of-the-art in MS-SSIM in
2017, while work [31] is the current state-of-the-art in image
compression in terms of classical metrics (PSNR and MS-
SSIM) when measured on the Kodak data set [24]. Notably,
all methods except ours (BPG, Rippel et al., and Minnen et
al.) employ adaptive arithmetic coding using context models
for improved compression performance. Such models could
also be implemented for our system, and have led to addi-
tional savings of 10% in [30]. Since Rippel et al. and Minnen
et al. have only released a selection of their decoded images
(for 3 and 4, respectively, out of the 24 Kodak images), and
at significantly higher bitrates, a comparison with a user
study is not meaningful. Instead, we try to qualitatively put
our results into context with theirs.

In Figs. 13–15 in Sec. F.4, we compare qualitatively to
[34]. We can observe that even though Rippel et al. [34] use
29–179% more bits, our models produce images of compa-
rable or better quality.

In Figs. 16–19 in Sec. F.5, we show a qualitative com-
parison of our results to the images provided by the work
of [31], as well as to BPG [7] on those images. First, we
see that BPG is still visually competitive with the current
state-of-the-art, which is consistent with moderate 8.41%
bitrate savings being reported by [31] in terms of PSNR.
Second, even though we use much fewer bits compared to
the example images available from [31], for some of them
(Figs. 16 and 17) our method can still produce images of
comparable visual quality.

B. Training Details
We employ the ADAM optimizer [23] with a learning

rate of 0.0002 and set the mini-batch size to 1. Our net-
works are trained for 150000 iterations on Cityscapes and
for 280000 iterations on Open Images. For normalization we
used instance normalization [43], except in the second half
of the Open Images training, we train the generator/decoder
with fixed batch statistics (as implemented in the test mode
of batch normalization [19]), since we found this reduced
artifacts and color shift.

C. Data set and Preprocessing Details
To train GC models (which do not require semantic la-

bel maps, neither during training nor for deployment) for
compression of diverse natural images, we use 200k images
sampled randomly from the Open Images data set [25] (9M
images). The training images are rescaled so that the longer
side has length 768px, and images for which rescaling does
not result in at least 1.25× downscaling as well as high sat-
uration images (average S > 0.9 or V > 0.8 in HSV color

space) are discarded (resulting in an effective training set
size of 188k).

We evaluate these models on the Kodak image compres-
sion data set [24] (24 images, 768×512px), which has a long
tradition in the image compression literature and is still the
most frequently used data set for comparisons of learned im-
age compression methods. Additionally, we evaluate our GC
models on 20 randomly selected images from the RAISE1K
data set [11], a real-world image data set consisting of 8156
high-resolution RAW images (we rescale the images such
that the longer side has length 768px). To investigate the
benefits of having a somewhat constrained application do-
main and semantic labels at training time, we also train GC
models with semantic label maps on the Cityscapes data set
[9] (2975 training and 500 validation images, 34 classes,
2048× 1024px resolution) consisting of street scene images
and evaluate it on 20 randomly selected validation images
(without semantic labels). Both training and validation im-
ages are rescaled to 1024× 512px resolution.

To evaluate the proposed SC method (which requires
semantic label maps for training and deployment) we again
rely on the Cityscapes data set. Cityscapes was previously
used to generate images form semantic label maps using
GANs [20, 50]. The preprocessing for SC is the same as for
GC.

D. Compression Details
We compress the semantic label map for SC by quantizing

the coordinates in the vector graphic to the image grid and
encoding coordinates relative to preceding coordinates when
traversing object boundaries (rather than relative to the image
frame). The so-obtained bitstream is then compressed using
arithmetic coding.

To ensure fair comparison, we do not count header sizes
for any of the baseline methods throughout.

E. Architecture Details
For the GC, the encoder E convolutionally processes the

image x and optionally the label map s, with spatial dimen-
sion W ×H , into a feature map of size W/16× H/16× 960
(with 6 layers, of which four have 2-strided convolutions),
which is then projected down to C channels (where C ∈
{2, 4, 8} is much smaller than 960). This results in a feature
map w of dimension W/16× H/16× C, which is quantized
over L centers to obtain the discrete ŵ. The generator G
projects ŵ up to 960 channels, processes these with 9 resid-
ual units [18] at dimension W/16 × H/16 × 960, and then
mirrors E by convolutionally processing the features back
to spatial dimensions W ×H (with transposed convolutions
instead of strided ones).

Similar to E, the feature extractor F for SC processes
the semantic map s down to the spatial dimension of ŵ,



BPG Rippel et al. (2017) Minnen et al. (2018) Ours (GC)
Learned No Yes Yes Yes
Arithmetic encoding Adaptive Adaptive Adaptive Static
Context model CABAC Autoregressive Autoregressive None
Visualized bitrates [bpp]4 all5 0.08– 0.12– 0.033–0.066
GAN No Non-standard No f-div. based
S.o.t.a. in MS-SSIM No No Yes No
S.o.t.a. in PSNR No No Yes No
Savings to BPG in PSNR 8.41%
Savings to BPG in User Study 17.2–48.7%

Table 1. Overview of differences between [31] (s.o.t.a. in MS-SSIM and PSNR), to BPG (previous s.o.t.a. in PSNR) and [34] (s.o.t.a. in
MS-SSIM in 2017, also used GANs).

which is then concatenated to ŵ for generation. In this
case, we consider slightly higher bitrates and downscale by
8× instead of 16× in the encoder E, such that dim(ŵ) =
W/8× H/8× C. The generator then first processes ŵ down
to W/16× H/16× 960 and then proceeds as for GC.

For both GC and SC, we use the multi-scale architec-
ture of [44] for the discriminator D, which measures the
divergence between px and pG(z) both locally and globally.

We adopt the notation from [44] to describe our encoder
and generator/decoder architectures and additionally use q
to denote the quantization layer (see Sec. 3 for details). The
output of q is encoded and stored.

• Encoder GC: c7s1-60, d120, d240, d480,
d960, c3s1-C, q

• Encoders SC:

– Semantic label map encoder: c7s1-60, d120,
d240, d480, d960

– Image encoder: c7s1-60, d120, d240, d480,
c3s1-C, q, c3s1-480, d960

The outputs of the semantic label map encoder and the
image encoder are concatenated and fed to the genera-
tor/decoder.

• Generator/decoder: c3s1-960, R960, R960,
R960, R960, R960, R960, R960, R960,
R960, u480, u240, u120, u60, c7s1-3

F. Visuals
In the following Sections, F.1, F.2, F.3, we show the first

five images of each of the three data sets we used for the user
study, next to the outputs of BPG at similar bitrates.

Secs. F.4 and F.5 provide visual comparisons of our GC
models with [34] and [31], respectively, on a subset of im-
ages form the Kodak data set.

In Sec. F.6, we show visualizations of the latent represen-
tation of our GC models.

Finally, Sec. F.7 presents additional visual results for SC.

q

D

G

s
x̂

ŵ
m

E

F

wx

Figure 9. Structure of the proposed SC network. E is the encoder
for the image x and the semantic label map s. q quantizes the latent
code w to ŵ. The subsampled heatmap multiplies ŵ (pointwise)
for spatial bit allocation. G is the generator/decoder, producing
the decompressed image x̂, and D is the discriminator used for
adversarial training. F extracts features from s .



F.1. Generative Compression on Kodak
Ours BPG

0.
0
34

bp
p

0.
04
3

bp
p

0.
0
30

bp
p

0.
0
3
1

bp
p

0.
0
34

bp
p

0.
0
3
5

bp
p

0.
03
2

bp
p

0.
03

2
bp

p

0.
03

6
bp

p

0.
0
43

0
bp

p

Figure 10. First 5 images of the Kodak data set, produced by our GC model with C = 4 and BPG.



F.2. Generative Compression on RAISE1k
Ours BPG

0.
0
36

bp
p

0.
0
3
8

bp
p

0.
03

5
bp

p

0.
0
53

bp
p

0.
03

4
bp

p

0.
0
38

bp
p

0.
03

6
bp

p

0.
0
44

bp
p

0.
03

4
bp

p

0.
0
3
8

0
bp

p

Figure 11. First 5 images of RAISE1k, produced by our GC model with C = 4 and BPG.



F.3. Generative Compression on Cityscapes

Ours BPG

0
.0
3
6

bp
p

0.
0
4
0

bp
p

0
.0
36

bp
p

0.
0
3
8

bp
p

0
.0
36

bp
p

0.
0
4
3

bp
p

0
.0
36

bp
p

0.
0
3
7

bp
p

0
.0
36

bp
p

0.
04
0

0
bp

p

Figure 12. First 5 images of Cityscapes, produced by our GC model with C = 4 and BPG.



F.4. Comparison with [34]

Original Ours, 0.0304bpp Rippel et al., 0.0828bpp (+172%)

Figure 13. Our model loses more texture but has less artifacts on the knob. Overall, it looks comparable to the output of [34], using
significantly fewer bits.

Original Ours, 0.0651bpp Rippel et al., 0.0840bpp (+29%)

Figure 14. Notice that compared to [34], our model produces smoother lines at the jaw and a smoother hat, but provides a worse reconstruction
of the eye.



Original Ours, 0.0668bpp Rippel et al., 0.0928bpp (+39%)

Figure 15. Notice that our model produces much better sky and grass textures than [34], and also preserves the texture of the light tower
more faithfully.



F.5. Comparison with [31]

Original Ours, 0.0668bpp

Minnen et al., 0.221bpp 230% larger BPG, 0.227bpp

Figure 16. Notice that our model yields sharper grass and sky, but a worse reconstruction of the fence and the lighthouse compared to [31].
Compared to BPG, Minnen et al. produces blurrier grass, sky and lighthouse but BPG suffers from ringing artifacts on the roof of the second
building and the top of the lighthouse.



Original Ours, 0.0685bpp

Minnen et al., 0.155bpp, 127% larger BPG, 0.164bpp

Figure 17. Our model produces an overall sharper face compared to [31], but the texture on the cloth deviates more from the original.
Compared to BPG, Minnen et al. has a less blurry face and fewer artifacts on the cheek.



Original Ours, 0.0328bpp

Minnen et al., 0.246bpp, 651% larger BPG, 0.248bpp

Figure 18. Here we obtain a significantly worse reconstruction than [31] and BPG, but use only a fraction of the bits. Between BPG and
Minnen et al., it is hard to see any differences.



Original Ours, 0.03418bpp

Minnen et al., 0.123bpp, 259% larger, BPG, 0.119bpp

Figure 19. Here we obtain a significantly worse reconstruction compared to [31] and BPG, but use only a fraction of the bits. Compared to
BPG, Minnen et al.has a smoother background but less texture on the birds.



F.6. Sampling the compressed representations
C

ity
sc

ap
es

O
pe

n
Im

ag
es

Figure 20. We uniformly sample codes from the (discrete) latent space ŵ of our generative compression models (GC with C = 4) trained
on Cityscapes and Open Images. The Cityscapes model outputs domain specific patches (street signs, buildings, trees, road), whereas the
Open Images samples are more colorful and consist of more generic visual patches.

GC (C = 4) MSE (C = 4)

Figure 21. We train the same architecture with C = 4 for MSE and for generative compression on Cityscapes. When uniformly sampling
the (discrete) latent space ŵ of the models, we see stark differences between the decoded images G(ŵ). The GC model produces patches
that resemble parts of Cityscapes images (street signs, buildings, etc.), whereas the MSE model outputs looks like low-frequency noise.



GC model with C = 4 MSE baseline model with C = 4

Figure 22. We experiment with learning the distribution of ŵ = E(x) by training an improved Wasserstein GAN [14]. When sampling
form the decoder/generator G of our model by feeding it with samples from the improved WGAN generator, we obtain much sharper images
than when we do the same with an MSE model.



F.7. Selective Compression on Cityscapes

road (0.077 bpp) car (0.108 bpp) everything (0.041 bpp)

people (0.120 bpp) building (0.110 bpp) no synth (0.186 bpp)

road (0.092 bpp) car (0.134 bpp) everything (0.034 bpp)

people (0.147 bpp) building (0.119 bpp) no synth (0.179 bpp)

Figure 23. Synthesizing different classes for two different images from Cityscapes, using our SC network with C = 4. In each image except
for no synthesis, we additionally synthesize the classes vegetation, sky, sidewalk, ego vehicle, wall.



Figure 24. Example images obtained by our SC network (C = 8) preserving a box and synthesizing the rest of the image, on Cityscapes.
The SC network seamlessly merges preserved and generated image content even in places where the box crosses object boundaries.

0.019 bpp 0.021 bpp 0.013 bpp
Figure 25. Reconstructions obtained by our SC network using semantic label maps estimated from the input image via PSPNet [49].


