
Proximal Mean-field for Neural Network Quantization
Supplementary Material

Thalaiyasingam Ajanthan∗1, Puneet K. Dokania2, Richard Hartley1, and Philip H. S. Torr2

1Australian National University 2University of Oxford

Here, we provide the proofs of propositions and theo-
rems stated in the main paper and a self-contained overview
of the mean-field method. Later in Sec. C, we give the ex-
perimental details to allow reproducibility, and more empir-
ical analysis for our Proximal Mean-Field (PMF) algorithm.

A. Mean-field Method
For completeness we briefly review the underlying the-

ory of the mean-field method. For in-depth details, we refer
the interested reader to the Chapter 5 of [7]. Furthermore,
for background on Markov Random Field (MRF), we refer
the reader to the Chapter 2 of [1]. In this section, we use the
notations from the main paper and highlight the similarities
wherever possible.

Markov Random Field. Let W = {W1, . . . ,Wm} be a
set of random variables, where each random variable Wj

takes a label wj ∈ Q. For a given labelling w ∈ Qm, the
energy associated with an Markov Random Field (MRF) can
be written as:

L(w) =
∑
C∈C

LC(w) , (19)

where C is the set of subsets (cliques) ofW and LC(w) is
a positive function (factor or clique potential) that depends
only on the values wj for j ∈ C. Now, the joint probability
distribution over the random variables can be written as:

P (w) =
1

Z
exp(−L(w)) , (20)

where the normalization constant Z is usually referred to
as the partition function. From Hammersley-Clifford theo-
rem, for the factorization given in Eq. (19), the joint prob-
ability distribution P (w) can be shown to factorize over
each clique C ∈ C, which is essentially the Markov prop-
erty. However, this Markov property is not necessary to
write Eq. (20) and in turn for our formulation, but since

∗Part of the work was done while at the University of Oxford.

mean-field is usually described in the context of MRFs we
provide it here for completeness. The objective of mean-
field is to obtain the most probable configuration, which is
equivalent to minimizing the energy L(w).

Mean-field Inference. The basic idea behind mean-field
is to approximate the intractable probability distribution
P (w) with a tractable one. Specifically, mean-field obtains
a fully-factorized distribution (i.e., each random variable
Wj is independent) closest to the true distribution P (w)
in terms of KL-divergence. Let U(w) =

∏m
j=1 Uj(wj) de-

note a fully-factorized distribution. Recall, the variables
u introduced in Sec. 2.2 represent the probability of each
weight Wj taking a label qλ. Therefore, the distribution U
can be represented using the variables u ∈ ∆m, where ∆m

is defined as:

∆m =

{
u

∑
λ uj:λ = 1, ∀ j

uj:λ ≥ 0, ∀ j, λ

}
. (21)

The KL-divergence between U and P can be written as:

KL(U‖P) =
∑

w∈Qm

U(w) log
U(w)

P (w)
, (22)

=
∑

w∈Qm

U(w) logU(w)−
∑

w∈Qm

U(w) logP (w) ,

= −H(U)−
∑

w∈Qm

U(w) log
exp(−L(w))

Z
, Eq. (20) ,

= −H(U) +
∑

w∈Qm

U(w)L(w) + logZ .

Here, H(U) denotes the entropy of the fully-factorized dis-
tribution. Specifically,

H(U) = H(u) = −
m∑
j=1

d∑
λ=1

uj:λ log uj:λ . (23)

1

Furthermore, in Eq. (22), since Z is a constant, it can be
removed from the minimization. Hence the final mean-field
objective can be written as:

min
U

F (U) :=
∑

w∈Qm

U(w)L(w)−H(U) , (24)

= EU [L(w)]−H(U) ,

where EU [L(w)] denotes the expected value of the loss
L(w) over the distribution U(w). Note that, the expected
value of the loss can be written as a function of the variables
u. In particular,

E(u) := EU [L(w)] =
∑

w∈Qm

U(w)L(w) , (25)

=
∑

w∈Qm

m∏
j=1

uj:wj
L(w) .

Now, the mean-field objective can be written as an opti-
mization over u:

min
u∈∆m

F (u) := E(u)−H(u) . (26)

Computing this expectation E(u) in general is intractable
as the sum is over an exponential number of elements (|Q|m
elements, wherem is usually in the order millions for an im-
age or a neural network). However, for an MRF, the energy
function L(w) can be factorized easily as in Eq. (19) (e.g.,
unary and pairwise terms) andE(u) can be computed fairly
easily as the distribution U is also fully-factorized.

In mean-field, the above objective (26) is minimized it-
eratively using a fixed point update. This update is derived
by writing the Lagrangian and setting the derivatives with
respect to u to zero. At iteration k, the mean-field update
for each j ∈ {1, . . . ,m} can be written as:

uk+1
j:λ =

exp(−∂Ek/∂uj:λ)∑
µ exp(−∂Ek/∂uj:µ)

∀λ ∈ {1, . . . , d} .

(27)
Here, ∂Ek/∂uj:λ denotes the gradient of E(u) with re-
spect to uj:λ evaluated at ukj:λ. This update is repeated until
convergence. Once the distribution U is obtained, finding
the most probable configuration is straight forward, since
U is a product of independent distributions over each ran-
dom variable Wj . Note that, as most probable configura-
tion is exactly the minimum label configuration, the mean-
field method iteratively minimizes the actual energy func-
tion L(w).

B. BinaryConnect as Proximal ICM
Proposition B.1. Consider BinaryConnect (BC) and Proxi-
mal Iterative Conditional Modes (PICM) with q = [−1, 1]T

and ηw > 0. For an iteration k > 0, if w̃k = ũkq then,

1. the projections in BC: wk = sign(w̃k) and
PICM: uk = hardmax(ũk) satisfy wk = ukq.

2. let the learning rate of PICM be ηu = ηw/2, then the
updated points after the gradient descent step in BC and
PICM satisfy w̃k+1 = ũk+1q.

Proof. 1. In the binary case (Q = {−1, 1}), for each j ∈
{1, . . . ,m}, the hardmax projection can be written as:

ukj:−1 =

{
1 if ũkj:−1 ≥ ũkj:1
0 otherwise

,

ukj:1 = 1− ukj:−1 . (28)

Now, multiplying both sides by q, and substituting
w̃kj = ũkjq,

ukjq =

{
−1 if w̃kj = −1 ũkj:−1 + 1 ũkj:1 ≤ 0
1 otherwise

,

wkj = sign(w̃kj) . (29)

Hence, wk = sign(w̃k) = hardmax(ũk)q.

2. Since wk = ukq from case (1) above, by chain rule
the gradients gkw and gku satisfy,

gku = gkw
∂w

∂u
= gkw qT . (30)

Similarly, from case (1) above, for each j ∈
{1, . . . ,m},

wkj = sign(w̃kj) = sign(ũkj q) = hardmax(ũkj)q ,

(31)∂wj
∂ũj

=
∂ sign

∂ũj
=
∂ sign

∂w̃j

∂w̃j
∂ũj

=
∂ hardmax

∂ũj
q .

Here, the partial derivatives are evaluated at ũ = ũk

but omitted for notational clarity. Moreover, ∂wj

∂ũj
is

a d-dimensional column vector, ∂ sign
∂w̃j

is a scalar, and
∂ hardmax

∂ũj
is a d × d matrix. Since, ∂w̃j

∂ũj
= q (similar

to Eq. (30)),

∂wj
∂ũj

=
∂ sign

∂w̃j
q =

∂ hardmax

∂ũj
q . (32)

Now, consider the gkũ for each j ∈ {1, . . . ,m},

gkũj
= gkuj

∂uj
∂ũj

= gkuj

∂ hardmax

∂ũj
, (33)

gkũj
q = gkuj

∂ hardmax

∂ũj
q , multiplying by q ,

= gkwj
qT

∂ hardmax

∂ũj
q , Eq. (30) ,

= gkwj
qT

∂ sign

∂w̃j
q , Eq. (32) ,

= gkwj

∂ sign

∂w̃j
qT q ,

= gkw̃j
qT q , ∂ sign

∂w̃j
=

∂wj

∂w̃j
,

= 2 gkw̃j
, q = [−1, 1]T .

Now, consider the gradient descent step for ũ, with
ηu = ηw/2,

ũk+1 = ũk − ηu gkũ , (34)

ũk+1 q = ũk q− ηu gkũ q ,

= w̃k − ηu 2gkw̃ ,

= w̃k − ηw gkw̃ ,

= w̃k+1 .

Hence, the proof is complete.

Note that, in the implementation of BC, the auxiliary
variables w̃ are clipped between [−1, 1] as it does not affect
the sign function. In the u-space, this clipping operation
would translate into a projection to the polytope ∆m, mean-
ing w̃ ∈ [−1, 1] implies ũ ∈ ∆m, where w̃ and ũ are related
according to w̃ = ũq. Even in this case, Proposition B.1
holds, as the assumption w̃k = ũkq is still satisfied.

B.1. Approximate Gradients through Hardmax

In previous works [3, 6], to allow back propagation
through the sign function, the straight-through-estimator [4]
is used. Precisely, the partial derivative with respect to the
sign function is defined as:

∂ sign(r)

∂r
:= 1[|r| ≤ 1] . (35)

To make use of this, we intend to write the projection func-
tion hardmax in terms of the sign function. To this end,
from Eq. (28), for each j ∈ {1, . . . ,m},

ukj:−1 =

{
1 if ũkj:−1 − ũkj:1 ≥ 0
0 otherwise

, (36)

ukj:1 = 1− ukj:−1 . (37)

Dataset Architecture PMF wo ũ PMF

MNIST
LeNet-300 96.74 98.24
LeNet-5 98.78 99.44

CIFAR-10
VGG-16 80.18 90.51
ResNet-18 87.36 92.73

Table 3: Comparison of PMF with and without storing the
auxiliary variables ũ. Storing the auxiliary variables and
updating them is in fact improves the overall performance.
However, even without storing ũ, PMF obtains reasonable
performance, indicating the usefulness of our relaxation.

Hence, the projection hardmax(ũk) for each j can be writ-
ten as:

ukj:−1 = (sign(ũkj:−1 − ũkj:1) + 1)/2 , (38)

ukj:1 = (1− sign(ũkj:−1 − ũkj:1))/2 . (39)

Now, using Eq. (35), we can write:

∂uj
∂ũj

∣∣∣∣
ũj=ũk

j

=
1

2

[
1[|υkj | ≤ 1] −1[|υkj | ≤ 1]

−1[|υkj | ≤ 1] 1[|υkj | ≤ 1]

]
, (40)

where υkj = ũkj:−1 − ũkj:1.

C. Experimental Details
To enable reproducibility, we first give the hyperparam-

eter settings used to obtain the results reported in the main
paper in Table 4.

C.1. Proximal Mean-field Analysis

To analyse the effect of storing the auxiliary variables ũ
in Algorithm 1, we evaluate PMF with and without storing
ũ, meaning the variables u are updated directly. The results
are reported in Table 3. Storing the auxiliary variables and
updating them is in fact improves the overall performance.
However, even without storing ũ, PMF obtains reasonable
performance, indicating the usefulness of our continuous re-
laxation. Note that, if the auxiliary variables are not stored
in BC, it is impossible to train the network as the quantiza-
tion error in the gradients are catastrophic and single gradi-
ent step is not sufficient to move from one discrete point to
the next.

C.2. Effect of Annealing Hyperparameter β

In Algorithm 1, the annealing hyperparameter is grad-
ually increased by a multiplicative scheme. Precisely, β
is updated according to β = ρβ for some ρ > 1. Such
a multiplicative continuation is a simple scheme suggested
in Chapter 17 of [5] for penalty methods. To examine the

0 50 100 150 200 250
Epochs

0

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

1.2
1.15
1.1
1.05
1.02

Figure 3: PMF results on CIFAR10 with ResNet-18 by varying
ρ values. While PMF is robust to a range of ρ values, the
longer exploration phase in lower values of ρ tend to yield
slightly better final accuracies.

sensitivity of the continuation parameter ρ, we report the
behaviour of PMF on CIFAR-10 with ResNet-18 for various
values of ρ in Fig. 3.

C.3. Multi-bit Quantization

To test the performance of PMF for quantization lev-
els beyond binary, we ran PMF for 2-bit quantization with
Q = {2, 1, 1, 2} on CIFAR-10 with the same hyperparam-
eters as in the binary case and the results are, ResNet-18:
92.88% and VGG-16: 91.27%, respectively. We believe,
the improvements over binary (+0.15% and +0.76%) even
without hyperparameter tuning shows the merits of PMF for
NN quantization. Note, similar to existing methods [2], we
can also obtain different quantization levels for each weight
wj , which would further improve the performance.

References
[1] Thalaiyasingam Ajanthan. Optimization of Markov random

fields in computer vision. PhD thesis, Australian National
University, 2017. 1

[2] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quan-
tized neural networks via proximal operators. ICLR, 2019. 4

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. NIPS, 2015. 3

[4] Geoffrey Hinton. Neural networks for machine learning.
Coursera, video lectures, 2012. 3

[5] Jorge Nocedal and Stephen Wright. Numerical optimization.
Springer, 2006. 3

[6] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. ECCV, 2016. 3

[7] Martin J Wainwright, Michael I Jordan, et al. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends R© in Machine Learning, 2008. 1

Hyperparameter
MNIST with LeNet-300/5 TinyImageNet with ResNet-18

REF BC/PICM PQ PGD PMF REF BC/PICM PQ PGD PMF

learning rate 0.001 0.001 0.01 0.001 0.001 0.1 0.0001 0.01 0.1 0.001
lr decay step step - step step step step step step step
lr interval 7k 7k - 7k 7k 60k 30k 30k 30k 30k
lr scale 0.2 0.2 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2
momentum - - - - - 0.9 - - 0.95 -
optimizer Adam Adam Adam Adam Adam SGD Adam Adam SGD Adam
weight decay 0 0 0 0 0 0.0001 0.0001 0.0001 0.0001 0.0001
ρ (ours) or reg rate (PQ) - - 0.001 1.2 1.2 - - 0.0001 1.01 1.02

CIFAR-10 with VGG-16 CIFAR-10 with ResNet-18
REF BC/PICM PQ PGD PMF REF BC/PICM PQ PGD PMF

learning rate 0.1 0.0001 0.01 0.0001 0.001 0.1 0.0001 0.01 0.1 0.001
lr decay step step - step step step step - step step
lr interval 30k 30k - 30k 30k 30k 30k - 30k 30k
lr scale 0.2 0.2 - 0.2 0.2 0.2 0.2 - 0.2 0.2
momentum 0.9 - - - - 0.9 - - 0.9 -
optimizer SGD Adam Adam Adam Adam SGD Adam Adam SGD Adam
weight decay 0.0005 0.0001 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001 0.0001
ρ (ours) or reg rate (PQ) - - 0.0001 1.05 1.05 - - 0.0001 1.01 1.02

CIFAR-100 with VGG-16 CIFAR-100 with ResNet-18
REF BC/PICM PQ PGD PMF REF BC/PICM PQ PGD PMF

learning rate 0.1 0.01 0.01 0.0001 0.0001 0.1 0.0001 0.01 0.1 0.001
lr decay step multi-step - step step step step step step multi-step

lr interval 30k
20k - 80k,

- 30k 30k 30k 30k 30k 30k
30k - 80k,

every 10k every 10k
lr scale 0.2 0.5 - 0.2 0.2 0.1 0.2 0.2 0.2 0.5
momentum 0.9 0.9 - - - 0.9 - - 0.95 0.95
optimizer SGD SGD Adam Adam Adam SGD Adam Adam SGD SGD

weight decay 0.0005 0.0001 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001 0.0001
ρ (ours) or reg rate (PQ) - - 0.0001 1.01 1.05 - - 0.0001 1.01 1.05

Table 4: Hyperparameter settings used for the experiments. Here, if lr decay == step, then the learning rate is multiplied by
lr scale for every lr interval iterations. On the other hand, if lr decay == multi-step, the learning rate is multiplied by lr scale
whenever the iteration count reaches any of the milestones specified by lr interval. Here, ρ denotes the growth rate of β (refer
Algorithm 1) and β is multiplied by ρ every 100 iterations.

